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ABSTRACT 

Hit-to-lead virtual screening frequently relies on a cascade of computational methods that starts 
with rapid calculations applied to a large number of compounds and ends with more expensive 
computations restricted to a subset of compounds that passed initial filters. This work focuses on 
protocols for alchemical free energy (AFE) scoring in the context of a Docking – MM/PBSA – 
AFE cascade. A dataset of 15 congeneric inhibitors of the ACK1 protein was used to evaluate the 
performance of AFE protocols that varied in the steps taken to prepare input files (fully automated 
from previously docked and scored poses, manual selection of poses, manual placement of 
binding site water molecules). The main finding is that use of knowledge derived from X-ray 
structures to model binding modes, together with the manual placement of a bridging water 
molecule, improves the R2 from 0.45 ± 0.06 to 0.76 ± 0.02 and decreases the mean unsigned error 
from 2.11 ± 0.08 to 1.24 ± 0.04 kcal mol-1. By contrast a brute force automated protocol that 
increased the sampling time ten-fold lead to little improvements in accuracy. 

 

KEYWORDS: computer-aided drug design; protein-ligand interactions; alchemical free energy 
calculation; ACK1 
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INTRODUCTION 

There is continuous interest in computational methods to decrease time and costs of hit-to-lead 
and lead optimization efforts in preclinical drug discovery[1]. A recurring topic in computational 
chemistry is he use of virtual in silico screens to find ligands for proteins[2,3]. Typically, the goal 
is to filter via a cascade of computational methods a large library to focus experimental efforts on 
a small number of molecules. Usually inexpensive methodologies are applied first to eliminate a 
large number of poorly suited molecules, with more expensive calculations applied reserved to a 
subset of promising ligands. This approach may be applied in the context of hit discovery where 
the goal is to identify a few weak binders from a library of existing molecules; or for hit-to-lead 
efforts where the goal is to identify analogues of a hit structure that could be prioritized for 
synthesis and assays. In both cases the main steps frequently involve library screening, docking, 
initial scoring, and re-scoring with diverse molecular simulation methods such as Molecular 
Mechanics Poisson Boltzmann (Generalized Born) Surface Area (MM/PBSA)[4], Linear 
Interaction Energy (LIE)[5] or Free energy Perturbation (FEP)[6] methods[7].  

In a previous study a multistep docking and scoring protocol was benchmarked in the context of 
re-scoring with the MM/PB(GB)SA method [8]. The set of ligands analysed in that study 
belonged to the same scaffold and it was assumed that the core binding mode of the conserved 
scaffold would not deviate from that of the experimentally X-ray resolved one. The present study 
investigates the suitability of alchemical free energy (AFE) methods for improving on this 
multistep docking and scoring protocol by means of a further re-scoring of ligands. AFE methods 
are increasingly used for predictions of free energies of binding in blinded competitions such as 
such as SAMPL (Statistic Assessment of Modelling of Proteins and Ligands) and D3R grand 
challenges[9-15]. Some AFE protocols have even achieved predictions of binding energies with 
root mean square deviations (RMSD) under 1.5 kcal mol−1, and Pearson Correlation coefficients 
(R) of around 0.7 or better[16-18]. Nevertheless, the performance varies significantly between 
different AFE protocols and targets[19-21] and it is important to explore further the robustness of 
these methodologies. 

Specifically, this study aimed to explore the extent to which a setup protocol motivated by 
previous domain knowledge may influence the accuracy of AFE calculations, and whether issues 
such as binding poses selection or binding site water placement can be overcome via brute force 
automation. This was investigated using a dataset of 15 congeneric inhibitors of the protein 
activated Cdc42-associated kinase (ACK1)[22], a potential cancer target[23,24]. The compounds 
span a large range of activity (Ki values ranging from more than 10 µM to 0.0002 µM), as seen 
in Table 1, and are typical of the structural modifications performed in hit-to-lead programs. The 
15 ligands were first docked into the ACK1 ATP-binding site, and a set of docked poses obtained 
for each ligand was re-scored with a 4-step minimization protocol followed by a single-snapshot 
MM/PBSA re-scoring. The best scored pose was alchemically studied and the relative binding 
energy was compared to the experimental one. The alchemical calculations were also repeated 
with a 10-fold increase in sampling time. The role of a possible bridging water molecule in the 
binding pocket was also considered. Finally, thermodynamic cycle closures were analyzed as a 
way to detect incorrectly predicted poses without knowledge of the experimental relative binding 
energies.  
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Table 1. Ligands studied in this work, along with reported Ki values[22]. Compound numbering 
is the same as that used in reference 22. 

 

Batch 1 

A B C D E F G J Ki (µM)22 Compound 
O C  N C C O H 0.01 2 
O C  N C C S H > 10 3 
O C  N C N N H 7.3 4 
O C  N N C N H 1.8 5 
O C  C C C O H 0.07 6 
O C  N C C NH H 0.006 7 

Linker O C  N C C O OCH3 0.005 8 

Batch 2 

O C  N C C O O(CH2)2NMe2 0.005 15 
O C  N C C NH O(CH2)2NMe2 0.006 16 
S S  N C C NH O(CH2)2NMe2 0.0003 35 
S S  N C C O O(CH2)2NMe2 0.0002 36 
S C  N C C O O(CH2)2NMe2 0.08 38 
O O  N C C O O(CH2)2NMe2 0.013 39 
C C OH N C C NH O(CH2)2NMe2 0.04 44 
C C OMe N C C NH O(CH2)2NMe2 0.05 45 

 

 
Figure 1. (a-d) Superimposition of the X-ray diffraction derived structure of the ACK1 protein 
co-crystallized with ligand 35 (grey) (PDB code 4EWH), (a) with the best predicted MM/PBSA 
docked pose for ligand 6 (blue), (b) with ligand 7 (purple) exhibiting a different binding mode, 
(c) with ligand 44 from MM/PBSA prediction using the best predicted binding mode and (d) with 
ligand 44 using the second-best binding mode prediction. All carbon atoms of ligand 44 are 
colored in red. Hydrogens are omitted for clarity. 
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MATERIALS AND METHODS 

Dataset 

The dataset consists of 15 ACK1 competitive inhibitors for which inhibition constants (Ki) have 
been reported. The structure of only one protein-ligand complex (compound 35) was determined 
by X-ray crystallography[22] (Figure 1a). This dataset was further divided into two subsets: batch 
1 (6 ligands with Ki values ranging from >10 µM to 0.006 µM), and batch 2 (9 ligands with Ki 
values ranging from 0.013 to 0.0002 µM).   

Protein and ligand setup 

The ACK1 kinase domain structure was taken from the Protein Data Bank, code 4EWH[22], 
using chain B of the crystal structure, which was protonated with MOE v2009.1[25]. The structure 
has no missing residues; Tyrosine 284 was dephosphorylated with MOE following Lougheed et 
al. observation that inhibitor binding is not expected to be sensitive to the phosphorylation state 
of this residue[26]. The protonation state of each ligand was predicted using the SDwash program 
in MOE v2009.1. 

Docking 

Docking was performed with MOE v2009.1[25]. The full docking process was done in three 
steps. The first one was an exhaustive conformational search of the ligands using the Systematic 
option of MOE together with the option Enforce chair conformations on. All other parameters 
were set to the standard options. A maximum of 100 conformations by compound were selected 
for the Placement step. In the second step the receptor was defined as those atoms within 9.0 Å 
from the ligand. The Rotate Bonds option was activated and the Affinity dG function employed 
together with the Triangle Matcher method for placement. A maximum of 30 poses for each 
ligand were retained. Finally, the 500 best structures were submitted to the Refinement step with 
the Force Field function and allowing the lateral chains of the pocket residues to move during the 
optimization without restriction. All other parameters were set to the standard options. The five 
best structures obtained for each ligand, according to their predicted binding energies, were 
retained for minimization and re-scoring with MM/PBSA. 

MM/PBSA 

A four-step minimization protocol followed by a single snapshot MM/PBSA re-scoring was 
performed with Amber 14[27]. Ligands were prepared with Antechamber using the GAFF force 
field[28] with AM1-BCC partial charges[29,30],  while the ff99SB[31] force field was used for 
the protein. All systems were solvated in a rectangular box of TIP3P water molecules[32]. 
Counterions were added as necessary to neutralize the systems[33]. Energy minimization was 
performed under periodic boundary conditions using the particle-mesh-Ewald method for the 
treatment of the long-range electrostatic interactions[34]. A cut-off distance of 10 Å was chosen 
to compute non-bonded interactions. The four-step minimization procedure was as follows: 1) 
5000 steepest descent (SD) steps applied to water molecule coordinates only; 2) 5000 SD steps 
applied also to protein atoms, with positional harmonic restraints (5 kcal mol-1 Å-2) applied to 
backbone atoms only; 3) 5000 SD steps as done previously with backbone atom restraints set to 
1 kcal mol-1 Å-2 and 4) 5000 SD steps with no restraints.  
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For each of the energy minimized structures, a binding free energy was estimated following the 
MM/PBSA method using the MM/PBSA.py program[35]. No entropic contributions were taken 
into account, while the variables cavity_surften and cavity_offset were assigned the values of 
0.00542 kcal mol-2 Å-2 and -1.008, respectively, using the defaults for all remaining variables. 

Alchemical free energy calculations  

Relative binding free energies were calculated using a single topology molecular dynamics 
alchemical free energy approach[36]. Alchemical free energy calculations avoid direct 
computation of the free energy change associated with the reversible binding of a ligand to a 
protein trough an artificial morphing of a ligand X into another ligand Y by using a parameter l 
which defines the change from X to Y. Thus, the relative free energy of binding (DDGXàY ) was 
given by equation 1 as: 

ΔΔ𝐺#→%	 = Δ𝐺#→%
()*+,-. − Δ𝐺#→%

01--  (1) 

Where Δ𝐺#→%
01--  is the free energy change for transforming ligand X into ligand Y in solution 

whereas Δ𝐺.→2
()*+,-.  is the free energy change for the same transformation in the protein binding 

site. A relative free energy perturbation network for both batch 1 and batch 2 was designed 
(Figure S1 and Figure S11). The top-scored MM/PBSA pose for each ACK1 ligand was used as 
input for the subsequent alchemical free energy preparation protocol using the FESetup software 
package[37]. The protocol used by FESetup for the automated preparation of ligands, protein and 
complexes was as follows: 

Ligands. Atomic charges were assigned by using the Antechamber module in AmberTools 
14[27],  selecting the AM1-BCC method[29,30], and the GAFF2 force field[28]. Ligands were 
solvated with TIP3P water molecules[32], with counterions added as necessary to neutralize the 
system[33]. Each system was energy minimized for 100 SD cycles and equilibrated at 300 K and 
1 atm pressure for 105 molecular dynamics (MD) steps with a 2 fs timestep using the module 
Sander[27],  with a positional harmonic restraint (10 kcal mol-1 Å-2) applied to ligand atoms. 
Bonds involving hydrogen atoms were constrained.  

Protein. The protein was parametrized using the Amber ff14SB force field37. 

Complexes. Each ligand was combined back with the ACK1 protein model and the complex was 
solvated with TIP3P water molecules[32]. .Counterions were also added to neutralize the 
solution[33]. The system was afterwards equilibrated following the procedure already described 
for ligands, using now 5000 MD steps. 

All alchemical free energy calculations used 11 equidistant l windows. For each l value MD 
trajectories were computed in the NPT ensemble with a pressure of 1 atm and temperature of 300 
K using the software SOMD 2016.1.0[20,38,39]. SOMD has been used in several recent studies 
to model the binding energetics of enzyme inhibitors[21], carbohydrate ligands[19], and host-
guest systems[13]. Each l window was sampled for 4 ns. Pressure was regulated using a Monte 
Carlo barostat[40,41] with an update frequency of 25 MD steps. Temperature was kept constant 
using the Andersen thermostat[42], with a collision frequency of 10 ps-1. A 2 fs time step was 
used with the leapfrog-Verlet integrator. All bonds involving hydrogens were constrained to their 
equilibrium distances. Non-bonded interactions were evaluated setting a cut-off distance of 12 Å. 
Long-range electrostatic interactions were calculated using the shifted atom-based Barker-Watts 
reaction field[43], with the medium dielectric constant set to 82.0. In order to avoid steric clashes 
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at the beginning of each MD run due to modifications of the ligand parameters associated with 
changes in l, each structure was energy minimized for 1000 steps prior to MD simulation. 

Each simulation was repeated at least twice using different initial assignments of velocities, and 
both DDGXàY and DDGYàX were calculated from independent simulations. In some cases, when 
poor agreement was observed between duplicates a third run was performed. 

Ligand 38 was tested as a racemic mixture for consistency with the experimental conditions. 
Calculations were carried out for each enantiomer and the binding energies relative to this ligand 
were given with equation 2:  

∆∆𝐺𝟑𝟖	→# =	−𝑘𝑇 ln :0.5 >exp >
B∆∆CDEF→G

HI
J + exp >B∆∆CDEL→G

HI
JJM (2) 

Cycle closures were evaluated using free energy changes from both the forward (XàY) and 
reverse (YàX) perturbations. The metrics used to evaluate the datasets were the determination 
coefficient R2, linear regression slope and the mean unsigned error (MUE). Experimental binding 
affinities were calculated from the corresponding inhibition constants[22] (Ki) using ∆𝐺 =
𝑅𝑇 ln >OP

QR
J with C0 = 1 mol L-1. As no uncertainties have been reported for the Ki values, an 

uncertainty of 0.4 kcal mol-1 was assumed[39,44]. 

Relative free energies were estimated using the multistate Bennett’s acceptance ratio (MBAR) 
method[45], as included in the software analyse_freenrg from the Sire software suite. Relative 
free energies for complete datasets were evaluated using version 0.3.5 of the freenrgworkflows 
python module [https://github.com/michellab/freenrgworkflows]. For more details, see Mey et 
al[46]. All analysis scripts are available online at https://github.com/michellab/ACK1_Data. 

Alchemical free energy Protocols 

Five different alchemical free energy protocols were followed. Protocol A uses for each ligand 
the best scored pose according to MM/PBSA. This leads to a pose that differs from the X-ray 
crystallographic pose of 35 for several ligands (2, 4, 7, 8, 16, 44 and 45). Protocol B assumes user 
intervention to select the pose that resembles the most the X-ray binding mode among the 5 
MM/PBSA poses. Protocols C and D explore the effect of manually modelling a water molecule 
inside the ACK1 ATP-binding site (see Figure S6). This reflects user knowledge that in other 
high-resolution structures of ACK1 (e.g. the 1.31 Å resolution 4HZR structure[47]) one additional 
binding site water molecule between the protein and ligand is apparent. Protocol C uses the same 
ligand poses as Protocol A, while Protocol D uses the same poses as Protocol B.  

Finally, Protocol E is simply Protocol A with the per l simulation time increased ten-fold. This 
was done to evaluate whether the different binding mode and ATP-binding site water 
rearrangements seen in Protocols A-D can be sampled with longer MD simulation protocols. 
Protocol E is computationally expensive and was applied to batch 1 only (ca. 10 µs of simulation 
time). Figures were rendered with VMD[48], while graphs were prepared with Origin[49] and 
python using plotting libraries Matplotlib version 2.0.2[50] and Seaborn version 0.7.1[51]. 

 

RESULTS 

Batch 1 

Protocol A renders (Figure 2a) modest results, with a R2 of 0.36±0.07 and a strong 
underestimation of relative free energies, as shown by the slope of the regression line (0.3). 
Inspection of Figure 2b shows that ligands 2, 4 and 7 are clear outliers. These ligands have a 
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predicted docked pose which differ more from the X-ray derived binding mode (see Figures 1b 
and 1c). Results for protocol B are shown in Figures 2a, S2 and S5. This protocol gives clearly 
better results, although the underestimation (slope 0.4) of relative binding free energies remains 
high, and ligands 2, 4 and 7 are still ranked poorly. 

 
Figure 2. (a) R2, MUE (kcal mol-1) and slope metrics obtained from the comparison of 
experimental and predicted relative free energies of binding of batch 1. (b) and (c) Comparison 
of experimental and predicted relative free energies of binding of batch 1 for protocols A and D, 
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respectively. Free energies of binding are relative to ligand 3. The linear regression line (dashed 
line) and a line with slope unity (solid line) are also presented. 

An analysis of the relative binding energies calculated with protocols A and B (Figures S1 and 
S2), for ligands 2, 4 and 7, reveals that these ligands appear in the perturbations that show the 
highest deviations between the experimental and calculated relative binding energies. Thus, for 
protocol A deviations of more than 3.0 kcal mol-1 are observed for 2à3, 7à4, 7à6, 7à3 and 
3à7, while for protocol B these deviations appear for perturbations 2à3, 4à7, 7à4, 7à3 and 
3à7. An analysis of the docked structures of ligands 6 and 7 suggested that a possible explanation 
for the inability of the protocol to reproduce the experimental relative binding affinities is due to 
interactions of the extra nitrogen atom in the pyrimidine ring from ligand 7 that is missing in the 
pyridine ring of ligand 6 (see Figure 3). The extra N atom in the pyrimidine ring could establish 
a hydrogen bond with THR205 (see Figure S6) if a bridging water was present. Indeed, several 
water molecules are present inside the ATP-binding pocket of 4HZR[47]. That possibility was 
explored in protocols C and D, where a water molecule was manually placed inside the binding 
pocket between the nitrogen in position D of ligand 7 (see Table 1) and THR205. The final 
position of the water molecule is obtained after 100 steps of SD minimization fixing all other 
atoms. Results for protocol C are shown in Figures 2a and S7, while those for protocol D appear 
in Figures 2a, 2c and 3. Protocol D clearly surpass all others, with a R2 of 0.84±0.03 and an 
improvement in the underestimation of relative binding energies (slope = 0.5). A comparison of 
the calculated relative binding energies for ligands 3 and 4 allows to conclude that using a 
different pose for ligand 4 does not seem to affect the results (both protocols A and B for example, 
give an average DDG3à4 of 1.3 kcal mol-1). Inspection of the calculated trajectories show that 
ligand 4 rapidly converts from its initial docked pose (protocols A and C) to one similar to that 
used as input for protocols B and D.  

 

Figure 3. Calculated and experimental (in bold) relative binding affinities (in kcal mol-1) for all 
the perturbations run in batch 1 with protocol D. The calculated values correspond to independent 
repeats. 

The possibility of resolving ambiguities in binding poses and binding site water content without 
user intervention was next tested by increasing the simulation sampling time to 40 ns for each l 
window. The expectation was this would allow the ligand to find the correct pose and to allow 
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water molecules diffuse in the ATP-binding site (see Figure S6). Results are shown in Figures 2a 
and S8. The increased simulation time does not translate into any improvement of the results. The 
R2, slope and MUE values are as poor or poorer as those for protocol A, while the outliers remain 
the same. The MD trajectories show that, even with the increased simulation time, ligand 7 is not 
able to change its docking pose, while ligand 4 needs under 4 ns to adopt a pose that resembles 
the X-ray pose of 35. Besides, a water molecule enters and remains in the ATP-binding site in 7 
out of 22 MD trajectories only. 

Analysis of the complete dataset 

The robustness of the results obtained for batch 1 was tested by processing batch 2 and re-
analyzing the full dataset. Ligands in batch 2 are positively charged in the assay conditions, 
whereas batch 1 ligands are neutral. Relative free energy calculations that involve a net charge 
change are still technically challenging for simulations carried out with a reaction-field cut-off. 
Thus, the perturbations between ligands 8 and 15 were carried out assuming 15 is neutral. Results 
for individual perturbations in batch 2 are shown in Figures S11 to S15. 

Protocol A, as expected given the results obtained for batch 1, gives modest results, as can be 
seen in Figures 4a and b (R2 =0.45±0.06 and slope of 0.5). The slope has improved from 0.3 to 
0.5 because the relative free energies of the compounds in batch 2 are not as under predicted as 
those from batch 1 (see Table S1). Ligands 16, 44 and 45 need further inspection. Figure S11 
shows that, while the experimental DDG45à44 is -0.1 kcal mol-1, the calculated DDG45à44 are 
1.8/1.5 (run 1/run 2) kcal mol-1 (the reverse perturbation was calculated as -2.0/-1.9  kcal mol-1). 
Similarly, while the experimental DDG16à45 is 1.2 kcal mol-1, the calculated results are DDG16à45 
-0.8/-1.6 (run 1/run 2) kcal mol-1 and DDG45à16 -2.2/-2.4 /run 1/run 2) kcal mol-1.  
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Figure 4. (a) R2, MUE (kcal mol-1) and slope metrics obtained from the comparison of 
experimental and predicted relative free energies of binding of the whole set. (b) and (c) 
Comparison of experimental and predicted relative free energies of binding of the whole set for 
protocols A and D, respectively. Free energies of binding are relative to ligand 3. The linear 
regression line (dashed line) and a line with slope 1 (solid line) are also presented.  

Interestingly, the dihedral angle defining the relative orientation of the NH group that links the 
pyrimidine and the cyclopentanol rings changes values rather quickly during the simulation. 
Figure 5a shows an example for the first repeat of the perturbation 44à45 at l=0. For the 
simulations involving ligand 44 an intramolecular H-bond between its aniline NH group and its 
cyclopentyl hydroxyl group is established (see Figure 5c). That conformation is precisely the 
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second-best MM/PBSA docked one (see Figure 1c), which features that intramolecular hydrogen 
bond. Thus, batch 2 protocol B includes the second-best scored MM/PBSA poses for ligands 8, 
16 and 44. In the case of ligands 8 and 16, this implies using a pose that resembles the most the 
X-ray binding mode, while for ligand 44 the second-best scored MM/PBSA pose differs from the 
best-scored one in the aniline NH dihedral angle (see Figure 1c). The improvement, as shown in 
Figures 4a and S9, for protocol B as compared with protocol A, is quite modest. Results are clearly 
better for the 16à45 and 45à16 perturbations, with the disagreement between experimental and 
calculated relative binding energy decreasing from 3.5 to 0.3 kcal mol-1 (compare Figure S11 and 
S12), but ligand 44 is still an outlier. Although the experimental relative binding energy for the 
45 à 44 perturbation is just -0.1 kcal mol-1, ligand 45 is predicted to bind much more strongly to 
ACK1 (calculated DDG45à44 are –2.0/-1.9 and -1.2/-1.6 kcal mol-1 for protocols A and B, 
respectively) than 44. This suggests possible deficiencies in the force field used for 44 in this 
study. 

 

Figure 5. (a) 4 ns trajectory monitoring dihedral angle of ligand 44 (blue circles) and 45 (purple 
crosses) as indicated in (b) and (c) as well as probability distribution of dihedrals over the 
trajectory. (b) Snapshot of the conformation of ligand 44 taken from a l = 0 trajectory at t=0 ns 
indicating dihedral conformation monitored in (a) highlighted by spheres. (c) Snapshot of the 
conformation of ligand 44 taken from the same trajectory after 3 ns, showing an intramolecular 
hydrogen bond. 

Protocols C and D, follow the same trends already explained for batch 1, pointing to an 
improvement in the results when a water molecule is included in the ATP-binding pocket (Figure 
4a). An encouraging R2 of 0.76 ± 0.02 and an improvement in the underestimation of relative 
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binding energies (slope 0.8) is obtained, though there is still room for improvements for affinity 
predictions for 44 and 16. 

Thermodynamic cycle closures analysis 

Hysteresis, being defined as the difference in binding energy between the forward and reverse 
perturbation[38,52,53], has been proposed as useful metric to identify problematic 
perturbations[54,55]. Cycle closures for both batch 1 and batch 2 were computed to determine 
whether incorrectly predicted binding poses could be detected in the absence of experimental 
binding affinity data. Results are shown in Table 2.  

Table 2. Calculated thermodynamic cycle closures. Cycle closures that exceed or equal a 
threshold of 0.8 kcal mol-1 are highlighted in bold. 

  Cycle closure (kcal mol-1) 

 Protocol A B C D E 

Cycle 3-2-5-6 0.6 ± 0.3 0.0 ± 0.3 0.6 ± 0.6 0.2 ± 0.4 0.8 ± 0.3 

 3-2-5 0.2 ± 0.2 -0.4 ± 0.2 0.7 ± 0.5 0.0 ± 0.1 0.5 ± 0.3 

 2-6-5 -0.8 ± 0.4 0.0 ± 0.3 0.0 ± 0.3 -0.2 ± 0.3 -0.7 ± 0.8 

 3-5-6 0.4 ± 0.2 0.4 ± 0.2 -0.1 ± 0.4 0.2 ± 0.4 0.4 ± 0.1 

 3-6-2 0.2 ± 0.4 0.1 ± 0.3 -0.6 ± 0.5 0.0 ± 0.2 -0.1 ± 0.9 

 3-4-7-6 1.0 ± 0.4 0.3 ± 0.4 1.6 ± 0.4 0.2 ± 0.4 0.3 ± 0.7 

 3-7-6 0.2 ± 0.4 0.1 ± 0.3 0.9 ± 0.7 0.2 ± 0.3 -0.2 ± 0.9 

 4-6-7 0.9 ± 0.6 0.0 ± 0.3 -1.1 ± 0.5 0.2 ± 0.3 -0.2 ± 0.8 

 3-4-7 0.8 ± 0.4 0.2 ± 0.4 0.7 ± 0.7 0.0 ± 0.2 0.5 ± 0.5 

 3-4-6 1.9 ± 0.4 0.3 ± 0.2 0.5 ± 0.5 0.2 ± 0.4 0.1 ± 0.4 

 45-16-44 -2 ± 1 -3 ± 1 -2 ± 1 -1.8 ± 0.9 N/A 

 38-39-35-36 0.6 ± 0.5 0.6 ± 0.5 0.2 ± 0.3 0.2 ± 0.3 N/A 

 

As could be expected, similar conclusions can be obtained when analyzing ring cycle closures or 
comparing forward and reverse perturbations, although there are some cases with high deviations 
between experimental and calculated relative binding energies, while exhibiting almost null 
hysteresis for the forward and reverse perturbations (i.e. the perturbations between ligands 2 and 
5 in batch 1 and those between ligands 44 and 45 in batch 2).  

Overall it appears that a threshold of ± 0.8 kcal mol-1 for cycle closure errors is useful to flag 
poses that need further attention even without prior knowledge of the experimental binding 
affinities. Thus, for protocol A, 3-4-7-6, 3-4-6, 3-4-7, 4-6-7, 2-6-5 and 45-16-44 thermodynamic 
cycle closures are indicative of problematic ligands. According to this metric, a significant 
improvement when using protocol B (only one thermodynamic cycle closure above the threshold) 
is seen, while a comparison between protocols A (6 cycles with hysteresis above the threshold) 
and C (4 cycles) suggest a modest improvement. Results for batch 2 clearly indicate that ligands 
44, 45 and 16 (hysteresis of -2 ± 1 kcal mol-1 in their thermodynamic cycle for protocol A) are 
much more problematic than ligands 35, 36, 38 and 39 (hysteresis of 0.2 ± 0.3 kcal mol-1 for 
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protocol A). The best performing protocol D is unable to improve the hysteresis for the 45-16-44 
thermodynamic cycle. 

 

DISCUSSION 

This work has explored the viability of using alchemical free energy methods as a final filter in a 
cascade of computational methods for hit-to-lead virtual screens in the context of a dataset of 
ACK1 inhibitors. The two major limitations of AFE methods are the quality of the potential 
energy function used, and the extent to which the configurational sampling performed has 
captured relevant protein-ligand conformations[54,55] In principle sufficient long simulations 
will relax a protein-ligand complex to the ligand pose and protein conformation preferred by the 
force field used. However, because computing time is limited in practical scenarios, AFE 
simulations typically afford only a few ns per window, which can make the calculated binding 
affinities sensitive to the selection of the starting conformations. This work indicates that use of 
experimental data to bias the selection of poses and setup of binding site water content could lead 
to significant performance improvements. While the dataset studied here is small, the lessons 
from this study are likely applicable to other binding sites. Of course, as illustrated with ligand 4, 
even in cases where the MD simulations relax a previously modelled binding pose to one that 
closely resembles a pose inferred from X-ray data, the free energy calculations may still fail to 
reproduce the experimental binding affinities.  

Careful analysis of literature structural data[47,56,57] was key to identify a conserved hydration 
site that was not modelled in the prior docking calculations. This knowledge was important to 
realize upon inspection of putative poses for some ligands in batch 1 the feasibility of a hydrogen 
bonding interaction via a bridging water molecule. Gratifyingly modelling of this hydration site 
leads to significant accuracy improvements for several perturbations.  

In principle, assuming an accurate potential energy function, these sampling issues could be dealt 
with by simply increasing the sampling time of the MD simulations. For the present dataset, we 
find that a one order of magnitude increase in sampling time was insufficient to bring about 
improvements in binding poses accuracy and binding site water content. Thus, at present it seems 
wise to pay attention to the starting conditions of the free energy calculations to maximize cost 
effectiveness. Where experimental data is lacking, a number of molecular modelling protocols 
have been proposed to determine location and energetics of important binding site water 
molecules[58-67].  
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