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Abstract. Computational models aiming at the spatio-temporal description of cancer evolution are a suit-
able framework for testing biological hypotheses from experimental data, and generating new ones. Build-
ing on our recent work [J Theor Biol 389, 146-158 (2016)] we develop a 3D agent-based model, capable of
tracking hundreds of thousands of interacting cells, over time scales ranging from seconds to years. Cell
dynamics is driven by a Monte Carlo solver, incorporating partial differential equations to describe chem-
ical pathways and the activation/repression of ”genes”, leading to the up- or down-regulation of specific
cell markers. Each cell-agent of different kind (stem, cancer, stromal etc.) runs through its cycle, under-
goes division, can exit to a dormant, senescent, necrotic state, or apoptosis, according to the inputs from
their systemic network. The basic network at this stage describes glucose/oxygen/ATP cycling, and can
be readily extended to cancer-cell specific markers. Eventual accumulation of chemical/radiation damage
to each cell’s DNA is described by a Markov chain of internal states, and by a damage-repair network,
whose evolution is linked to the cell systemic network. Aimed at a direct comparison with experiments
of tumorsphere growth from stem cells, the present model will allow to quantitatively study the role of
transcription factors involved in the reprogramming and variable radio-resistance of simulated cancer-stem
cells, evolving in a realistic computer simulation of a growing multicellular tumorsphere.
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1 Introduction

In the attempt to model tumor growth in vitro, sphere-
forming assays, or tumorspheres, are a peculiar culture
method that allows stem cells to grow in all directions,
within a hydrogel scaffold mimicking the natural extracel-
lular matrix structure [1–3]. Compared to ordinary 2D (or
”dish”) cultures, 3D-spheroidal cultures generate unique
spatial distributions of nutrients and oxygen in the cells,
mimicking much better the in vivo conditions [4]. Cell
lines grown in 3D display different expression profiles, es-
pecially for those genes that play a role in proliferation,
angiogenesis, migration, invasion, radio/chemosensitivity.
Because of their nature and structure, such bio-objects
can be (relatively) easily manipulated and characterized
by biological techniques, optical microscopy, and also by
micro-mechanical tools [5]. Tumor spheroids ideally rep-
resent an upper (macroscopic) level of definition of the
problem of detecting, following, and quantifying the local
and long-range outcomes of stem cell evolution, eventually
coupled to DNA chemical/radiation damage. It is worth
noting that, while the effects of ionizing radiation have
been studied in multicellular tumor spheroids already from
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the earliest applications of this method in the late ’70s [6],
nothing seems to have been published yet concerning irra-
diation of scaffold-grown cancer stem-cell spheroids, and
very little on tumor-explanted organotypic spheroids [5].

The subject of the present work is the development of
a 3D computer simulation model, to be ultimately coupled
with the experimental results from stem-cell spheroid cul-
tures. Such a close experiment-theory coupling has been
often advocated as a crucial ingredient to inform biological
hypothesis making and experimental design [7, 8]. How-
ever, the spatial and temporal evolution of a tumor mass,
starting from the smallest aggregate of cells (in princi-
ple, just one), up to arriving at a macroscopic cancer,
is a subject that still largely escapes the possibility of a
mathematically-grounded scientific prediction (see e.g. [9,
10]). The morphological growth and development of a tu-
mor results from many factors that are difficult to describe
in equations, within a coherent mathematical framework,
whether intracellular (such as the adhesion between cells
and with the matrix, individual genetics of apoptosis, necro-
sis, signalling and repair cycles, cell diversity), or extracel-
lular (such as the space-time distribution of oxygen and
nutrients, as well as the mechanical stresses on tissues).
On the other hand, the availability of mathematical mod-
els capable of such a predictive power is very desirable,
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both on the scale of laboratory research, as well as on
the preclinical, and even clinical scale (see e.g. [11–15]).
Such models, necessarily intended for the numerical sim-
ulation on very large computers, in addition to saving a
quantity of material resources, allow to carry out virtual
experiments that would be much more difficult, or even
impossible to implement in the laboratory.

The various phases of tumor growth have already been
the subject of numerous mathematical studies, through
the so-called ”continuous models” (see e.g. [16–18]), which
made it possible to generally formalize some common char-
acteristics, such as: (i) a rapid phase of avascular growth
(logistic or Gompertz equation), up to the limit of diffu-
sion; (ii) the phase of angiogenesis, characterized by the
diffusion and degradation of the TAF factors, as well as
the mobility of the cells attracted by chemo-taxis to the
growth region; and (iii) the metastatic phase, character-
ized (mathematically) by the spatial heterogeneity of cell
growth. However, it is practically impossible to take into
account the wide variety of conditions encountered by a
realistic population of cells within a spatially-continuous
model, by its own nature intended for modelling an aver-
age population of cells. The ambitious objective would be
predicting with mathematical rigor the tumor growth in
time and space, and the effect of chemo- and radiotherapy
treatments, on both cancerous and healthy cells, over time
scales ranging from a few hours or days up to long-term
follow-up, reaching even years after the treatment.

A practical response may come from discretized bio-
physical models, in which each cell is described individu-
ally with a set of characteristics (descriptors, or ”degrees
of freedom”) that evolve locally throughout the simula-
tion time, under the influence of internal constraints and
stresses coming from local neighbourhood (other cells),
or external ones (extracellular matrix, therapeutic treat-
ments, environment) [15, 19]. While obviously more ex-
pensive than continuous models in terms of computer re-
sources, a discretized model allows a detail in the descrip-
tion of biological functions, and calibration on experimen-
tal data, impossible to obtain by any other simulation
model. Moreover, in such a computer model it is rela-
tively affordable to extend the duration of the simulation
over very long time intervals, and to study very long-term
effects with a flexibility that is rarely accessible to exper-
imental studies. For example, one can repeat the same
virtual computer experiment several times, over and over,
by changing parameters each time according to the various
assumptions formulated by the biologist. The price to pay
may be a limited degree of realism, whose quality depends
importantly (but not only) on the level of refinement of
the initial model calibration phase on real cell lines.

The ”agent-based” model (ABM) developed in this
work aims at assembling the most relevant biological fea-
tures in a realistic platform, for the virtual modeling of the
long-term evolution of cell proliferation and damage, fol-
lowing various types of ”therapy-like” treatments. While
some work in this direction has been initiated in the chemo
therapy domain [20], it is worth noting that the coupling
of agent-based models with ionizing radiation and radio-

therapy, to simulate the action of external agents on can-
cer growth and/or arrest, is not much developed. Even the
most recent attempts in this direction (see e.g. [21,22]) did
not include explicit simulation of the radiation damage,
but rather assumed a pre-existing damage model (such as
the linear-quadratic, etc.). An original contribution of the
present ABM model (already present in its previous 2D
version [24]) is therefore the inclusion of explicit damage
accumulation and repair, at the single-cell level, coupled
to mathematical evolution of expression/repression mark-
ers in the cell cycle.

Spatio-temporal modeling of chemical concentration
evolution by partial differential. equations (PDEs) is one
of the established techniques in the field of cancer and tu-
mor growth modeling (see e.g. [23] and references therein).
The cell/agents of our extended ABM include intra-cell
metabolic networks described with this more classical tech-
nique, and the resulting space-time coupled (”reaction-
diffusion”) equations are solved numerically; cell-to-cell
communication is based on exchange of input and out-
put quantities issued from such intra-cell PDE networks,
which accumulate in the respective source terms.

2 Agent-based model of cell evolution

The 3D-ABM we are developing with the in-house code
MODLOG [24], already allows to consider many impor-
tant applications in the context of the simulation of the
tumor evolution, as well as the study of the effects of ra-
diation and chemical treatments on the whole of the cell
population (healthy, cancer, stem cells). The virtual cells
(”agents”) of the theoretical model have the possibility to
change their state following localized events, to exit in a
state of dormancy in which their activity is stopped, al-
though their presence continues to influence the evolution
of the neighbouring population, or undergo transforma-
tion, neoplastic and apoptosis.

The first published version of our ABM [24] allowed a
direct comparison with experimental results of 2D culture
growth, with a 1-to-1 correspondence both in time and
length scales. Real cell transformation events are thought
to follow a Poisson process [25], therefore it is justified
to model both cell evolution and induced damage as a
Markov chain [26, 27]. We assume that agent-cells can be
in any state n ∈ [0,m], with n=0 corresponding to a pris-
tine cell with zero accumulated damage, and n=m to a
cell with a maximum of accumulated damage. The time-
dependent behaviour of each cell c ∈ N from a population
of N agents is characterised by a number of descriptors
(phenotypes), collected in a state vector:

nc(t) = {i, tc, wc, φ, T, λ, zν , pν , rν , cµ, θµ} (1)

for the ν = 1, ..., k different types of lesions (e.g., single
and double strand break, mutation, abasic site, etc. ); i is
the lattice site occupied at time t; tc is the local clock of
each cell; wc the fictitious cell volume; φ is the cell phase,
running through G1, S, G2 and M; T is the cell type (ep-
ithelial, fibroblast, cancer, stem, etc.); λ=1,2,...7 is the cell
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Fig. 1. Scheme of the 3-dimensional cell simulation
space filled by Voronoi polyhedra. 2D projection of the
3D development on a fixed random grid of points generated
by a Bridson algorithm (green dots), which represent the ver-
tices of a Delaunay triangular tessellation (red thin lines). The
centers of the Delaunay triangles are the vertices of Voronoi
polyhedra (blue lines), these latter representing either filled or
empty cell voxels.

state, the increasing index values respectively indicating
a normal, senescent, quiescent (or G0), arrested, neoplas-
tic, stem, or dead cell; zν is the number of accumulated
damages of type ν; pν is the corresponding damage prob-
ability; rν the repair probability; cµ and θµ the concentra-
tion, and diffusion time, of each chemical species µ. The
reader is referred to our previous work, for the full details
of the basic mathematical features already included in the
model [24].

In the present 3D development, the simulation space is
filled by a continuous network of Voronoi polyhedra (VP,
Figure 1). A VP can be empty, or occupied by a cell.
The VP centers are generated by means of Bridson’s algo-
rithm [28], by placing points at random in a right-prism
or spherical-shaped volume; starting from the volume cen-
ter, each new point is added within a fixed radius R from
the previous ones, with the condition of not being closer
than 2R to any of the previously placed points. In this
way, the simulation space can be densely filled by a ran-
dom, but homogeneous ensemble of points. Subsequently,
the Delaunay tessellation around the set of points is ob-
tained, and the dual set of VPs is constructed. This con-
struction is completed only for the points lying within a
non-periodic volume inscribed within a concentric portion
of about 2/3 of the whole simulation space. In this way, we
can make sure that all the Voronoi polyhedra contained in
this sphere have a tightly controlled average size, and av-
erage connectivity to a mean number of nearest neighbors.
In practice, for an average cell size 2R '15 µm, about 3,5
million cells can be closely packed in a cubic simulation
volume of ∼2,0003 µm3, corresponding to a maximum en-
veloping spherical volume of about 1 mm radius. This size
is largely sufficient to simulate the time evolution of realis-

tic neurospheres, which typically contained less than a few
million cells in the earlier experiments [29, 30], while are
restricted to a few hundreds or thousands units in modern
experiments on stem cells [1, 3].

The ensemble of VP represents the ”world” in which
cells live, can multiplicate, evolve, and die. Empty VPs
make up the extracellular matrix. We took the approxima-
tion of a VP structure that does not change over time, but
rather represents a kind of fixed random lattice, in which
a cell can eventually move by jumping between neighbor
VPs. Such an approximation saves a large amount of com-
puting time, while having a minor impact on the sphere
evolution (it may be noted that this same approximation
would be entirely inappropriate for, e.g., morphogenesis
modelling). During migration, cells interact with all their
neighbors in direct contact, and even with remote sites by
the long-range diffusion of various chemical species. The
important notation is that cell properties are not bound to
the local site they are temporarily occupying, but follow
(i.e., are carried around) by each cell during its displace-
ments. Notably, one of the parameters in the cell state
vector (see above) corresponds to the fictitious volume at-
tributed to each given cell; subject to proper constraints,
this allows small changes in the cell-cell distance.

2.1 Coupled glucose/oxygen system network

Mathematical modeling of metabolism at the scale of the
single cell is a widely developed subject, which gained
in complexity in parallel to the increase of computing
power [31, 32]. Molecules and pathways involved in sig-
nal transduction have been identified and their function
understood. Identification and analysis of protein network
motifs led to understanding of how molecular interactions
function to suppress noise, amplify signals, or provide ro-
bustness (see e.g. [33] and references therein).

By comparison, the level of communication among cells
is rather poorly understood [34]. Inter-cell communica-
tion networks process input signals through intra-cell net-
works, to obtain an output representing a change in the
state of each cell, as well as an input signal to other cells.
In the words of Thurley et al., ”cell-to-cell communication
networks are networks of networks”, with many different
cell types. Whereas the well-known rules of chemical ki-
netics apply to the intra-cellular building blocks, it is still
unclear how best to model cell-to-cell communication net-
works.

In developing our multi-cellular model, we aim at the
objectives of: (i) establishing a basic connection between
oxygen and nutrients (glucose) consumption by the cells;
(ii) linking the evolution of these metabolites to the en-
ergetic cell cycles, and notably to the ATP/ADP ratios
measured in normal vs. cancer cells; (iii) linking these ba-
sic networks to other potential cancer markers, in order to
build computer simulations of multicellular growth com-
parable to experimental tumorsphere data. In the present
work we focus on items (i) and (ii), leaving the vastly com-
plex (iii) to forthcoming works. In this Section 2, we de-
scribe two mathematical models: an ”extended” model, in
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which cell-level glycolisis, carboxylic acids and respiratory
cycles are accounted; and a ”reduced” model, in which
most of the intermediate steps of the energetic cycles are
lumped into symbolic reaction paths, with only oxygen,
glucose, ATP and ADP being explicitly tracked. The two
models are, respectively, more complex and less complex
than the Casciari-Sotirchos-Sutherland model [29], which
is usually considered a reference in zero-dimensional mod-
eling of neurospheres. In particular, the ”reduced” model
does not explicitly track the pH of the cell, which may be
a considerable over-simplification in some problems. For
the sake of computational efficiency only the second, sim-
plified model is the one actually implemented in the ABM
applications that will be presented in Section 3 below.

In the ABM, each cell is fed with nutrients and oxy-
gen from the exterior matrix. A coupled system network
is set up at the single cell scale, to define the individual
viability condition for each cell. The variables in the cell
network are not meant to faithfully represent each indi-
vidual chemical component, but rather the main steps in
the chemical reaction paths, in a synthetic way. A graphic
summary of such a coupled glucose/oxygen system is rep-
resented in Fig 2. The consumed species are glucose [G]
and molecular oxygen [O], which enter the system by dif-
fusion with the respective coefficients DG and DO2 .

In this ”extended” model of cell respiration, either
completely aerobic (full lines in the figure), or anaerobic
(dashed) pathways can be taken by each cell, according to
its local conditions and food/oxygen supply. Our starting
system of 11 time-evolution equations is:

d[G]

dt
= DG∇2[G]− k1[G][K] + k−1[GK] (2a)

d[GK]

dt
= k1[G][K]− k−1[GK]− k̄2[GK] (2b)

d[P ]

dt
= k̄2[GK]− k3[D][P ] + k−3[DP ] (2c)

d[DP ]

dt
= k3[D][P ]− k−3[DP ]−

−k̄4[DP ]− k8[DP ][Z] + k−8[DPZ] (2d)

d[DPZ]

dt
= k8[DP ][Z]− k−8[DPZ]− k̄5[DPZ] (2e)

d[T ]

dt
= k̄4[DP ] + k̄7[NO]− µ[T ] (2f)

d[D]

dt
= µ[T ]− k3[D][P ] + k−3[DP ] (2g)

d[N ]

dt
= k̄5[DPZ]− k6[N ][O] + k−6[NO] (2h)

d[Z]

dt
= k̄7[NO]− k8[DP ][Z] + k−8[DPZ] (2i)

d[NO]

dt
= k6[N ][O]− k−6[NO]− k̄7[NO] (2j)

d[O]

dt
= DO2

∇2[O]− k6[N ][O] + k−6[NO] (2k)

The km/k−m indicate the rates of reversible reactions,
whereas irreversible ones are indicated with an overbar,

Fig. 2. ”Extended” model of the coupled glu-
cose/oxygen system network. One-letter symbols such as
[X] are the concentrations of individual species. Two- and
three-letter symbols such as [XY] indicate a bound complex.
Red arrows indicate the input of consumed species. Blue arrows
indicate enzymatic reactions; the dashed-blue arrow indicates
anaerobic pathway; the ’a’ symbol indicates a repressor feed-
back. The term µ represent fuel (ATP) consumption. (Color
online)

k̄n. The (2a) represents input of glucose minus a fraction
activated by PFK protein [K], plus a contribution from the
dissociation of the [GK] complex. The (2b) is formation/
dissociation of [GK] minus a fraction (proportional to the
concentration, by law of mass-action) going into the end-
product [P] (pyruvate). The (2c) represents [P] making a
complex with ADP,

[P] + [D]
k3

k–3
[PD]

while being supplied by the previous step (2b). The two
steps (2a)-(2b) make up the glycolysis.

The (2d) describes binding of the [PD] complex to
NAD+ or FAD2+ (both indicated by [Z]),

[PD] + [Z]
k8

k–8
[PDZ]

while a fraction of the complex gives off ATP at a rate
k̄4 (for the sake of simplicity, this effectively cumulates
also the ATP produced in glycolysis). The (2h) describes
the output of NADH (indicated by [N]) at a rate k̄5, for
simplicity including also FADH2 reduced from FAD2+).
This ends the Krebs’ cycle.

In the subsequent aerobic cycle, [N] combines with
molecular oxygen [O], Eq. (2j), supplied by diffusion (2k),
at a rate k6 (and dissociates at a rate k−6). The as-formed
[NO] complex is consumed in the respiration, Eq. (2h),
and gives off ATP at a rate k̄7, while the reduced co-
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enzymes are oxidised back to NAD+/FAD2+. If the anaer-
obic (dashed) pathway is selected, considerably less ATP
is produced at a rate k̄4 directly from the [DP] complex,
and no NAD/FAD are cycled. Either way, ATP is con-
sumed by cellular processes (see below) at some rate µ, to
be individually specified during the 3D cell evolution, and
turns back to ADP.

Since [K] is explicitly treated as an enzyme, no time
evolution equation is written correspondingly, however its
concentration is governed by the conservation condition:

[K] + [GK] = cK (3)

allowing to rewrite Eqs.(2a)-(2b) as:

d[G]

dt
= DG∇2[G]− k1cK [G] +

+(k1[G] + k−1)[GK] (4a)

d[GK]

dt
= k1cK [G]− (k1[G] + k−1 + k̄2)[GK] (4b)

The rate of glycolysis is back-regulated by the ratio
ATP/ADP (see the [T/D] repressor in the figure): a high
concentration of ATP reduces the glycolysis rate; con-
versely, when the ATP concentration falls, an increase in
glycolysis is activated. In practice, the [T/D] ratio governs
the value of the rate constant k̄2 as:

k̄2 = α

(
1− [T/D]2

β + [T/D]2

)
(5)

with α, β adjustable parameters.

The tests carried out with this extended model gave
rather complex results, since the PDE system is quite un-
stable; the range of parameters for which a physically mo-
tivated result appears is extremely narrow, and sensitive
to the smallest variations. However, our main objective
here is to control the glucose and oxygen consumption in
each cell, by linking it to the demand for ATP. Therefore,
many of the intermediate steps may become irrelevant, at
least to a coarse level of approximation.

2.2 Restricted model of glucose/oxygen metabolism

To simplify the complex network of coupled glycolytic,
citric acid and respiratory cycles, we drastically reduced
the steps to only two fictitious intermediates, namely:
a bound state, labelled [GD], of [G] (glucose) and [D]
(ADP); and a bound state of [GD] and [O] (oxygen); more-
over, all the reactions are taken as irreversible (Figure 3).
The PDE system is thus reduced to only 5 time-evolution
reaction-diffusion equations, as:

Fig. 3. ”Reduced” model of the coupled glu-
cose/oxygen system network. See Fig. 2 for the meaning
of symbols. (Color online)

d[G]

dt
= DG∇2[G]− k1[G][D] (6a)

d[GD]

dt
= k1[G][D]− k2[GD][O] (6b)

d[D]

dt
= −k1[G][D] + µ[T] (6c)

d[T]

dt
= k2[GD][O]− µ[T] (6d)

d[O]

dt
= DO2

∇2[O]− k2[GD][O] (6e)

The rate of glucose consumption is back-regulated,
between 0 and a maximum α, by the ATP/ADP ratio
([T]/[D]) as:

k1 = α exp (−β[T]/[D]) (7)

with α, β adjustable parameters. To a first approximation,
the conversion efficiency of ADP to ATP in the last step
is linearly related to the ADP concentration, as:

k2 = α′ − β′[D] (8)

The key quantity we are interested in controlling at
this stage is the ATP/ADP ratio, under different condi-
tions of oxygen and nutrients supply, as well as with differ-
ent conversion rates k1, k2, and variable ATP utilization
rate µ. The ATP/ADP ratio is one of the key parame-
ters in identifying the response of healthy vs. cancerous
cells [35, 36], the latter being often characterized by a re-
duced mitochondrial metabolism and lower ATP/ADP ra-
tio that favors enhanced glycolysis.

The simplest model situation is that of a steady-state
supply of glucose and oxygen, i.e. d[G]/dt = d[O]/dt = 0,
for which the condition:

d[D]

dt
+
d[T]

dt
= vO − vG (9)

is easily obtained, with vG and vO respectively the dif-
fusion terms in Eqs. (6a) and (6e); moreover, for vanish-
ing extra-cellular gradients the above condition becomes
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d[D]/dt = −d[T]/dt. Symmetric variations in ATP and
ADP could also imposed by adjusting the reaction rate k2
as:

k2 = k1
[G][D]

[GD][O]
(10)

a condition that automatically maintains constant the to-
tal [T]+[D] concentration, reducing the system to only
four independent equations. Notably, the two rates k1, k2,
with they back-regulation of glucose and oxygen implicitly
maintain the electrolyte equilibrium (lactate / pyruvate,
HCO−3 / H+). However, explicit tracking of the cell pH is
not possible in this approximation.

More interesting situations are obtained by imposing a
periodic supply of nutrients, which however requires a nu-
merical solution because of the strong non-linearity of the
system of equations. By numerical testing, it was possi-
ble to identify domains of stability of the system (6a)-(6e)
for which periodic solutions remain stable over sufficiently
long intervals of time. The time step for the explicit inte-
gration of the PDE system is 0.1 to 1 minutes, the stabil-
ity being verified over time intervals of the order of ∼105

min. The following results are presented for time intervals
of 2×104 min, corresponding to about two weeks, a typical
time for cell sphere growth experiments.

In Figure 4 we report examples for two different test
cases studied, for periodic glucose supply with time profile,
respectively, sinusoidal:

vG(t) = [G]0 + a sin(bt) (11)

and impulsive with a periodically-defined exponential re-
laxation time , t0 = mτ :

vG(t) = [G]0 + a exp[−b(t− t0)] (12)

The latter scheme may be representative of a periodic ad-
dition of a fixed amount nutrients to the culture, e.g. on
τ=24h basis. Table 1 provides ranges of parameters for
which stable solutions can be obtained. For all the ex-
amples reported we imposed a constant oxygen supply,
vO(t)=1 mM/min, and a constant ATP utilization rate
µ=1 mM/min. We used the initial concentration values (in
molar units) [G]0=0.01, [O]0=0.01, [GD]0=0.01, [T]0=0.5,
[D]0=0.5; given the non-linearity of the system, the depen-
dence on the choice of initial values is non negligible.

The sinusoidal supply of glucose is a condition that
gives stable solutions for a rather large interval of the
model parameters. Note that the oxygen concentration [O]
becomes periodically dependent on time, although its in-
put is strictly constant in these examples. The periodic
solutions show relatively little dependence on the rate k1,
while the response in terms of the ATP/ADP ratio is al-
most entirely contained in the variation of the rate k2.
The curves in Fig. 4a show results for the ATP/ADP ra-
tio, [G] and [O] concentration, for different values of the
parameter a (for the other model parameters, see Table
1). A parallel increase in the baseline level values of vO
and vG leads to increased ATP/ADP ratio.

From the curves reported in Fig. 4a it can be seen
that the [G] concentration at equilibrium is somewhat

Fig. 4. Time evolution of the ”reduced” glucose
metabolic model. (a) Example of the model with sinusoidal
glucose supply. [G] and [O] concentrations are reported on the
left ordinates, the ATP/ADP ratio on the right ordinate axis.
Black, red and blue curves correspond to (α′, β′)=(0.009,0.04),
(0.018,0.08), (0.036,0.08) in Eq.8. (b) Model with impulse sup-
ply of glucose, followed by exponential decay. Black, red and
blue curves correspond to α′=0.018, 0.052, 0.078, β′=0.08, in
Eq.8. (Color online)

distorted, compared to the input sinusoidal profile. This
modified response is more evident for the lowest ATP uti-
lization rates, µ ∼ 1 mM/min, while the profile remains
closer to sinusoidal for higher rates, µ ∼ 50 mM/min. The
PDE system of the ”reduced” model is quite stable against
variations in the ATP utilization rate. Figure 5 shows a
stable solution obtained with a random value of µ in the
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Table 1. Parameter ranges of the model (6a)-(6e) giving the stable solutions of Fig. 4 and 5. Oxygen supply is constant for all
variants, at vO(t)=1 mM/min. Note that these ranges would change for different initial values of the baseline model parameters.

[G] profile µ a b α β α′ β′

sinusoid [0.01 – 0.05] [0.001 – 0.008] 0.004 [0.1 – 5] [0.03 – 3] [0.01 – 0.2] [0.02 – 0.08]
pulse + exp [0.01 – 0.05] 0.00315 0.002 [0.1 – 5] [0.03 – 3] [0.01 – 0.2] [0.02 – 0.08]

Fig. 5. ”Reduced” metabolic model with random ATP
utilization rate. Glucose supply is sinusoidal and oxygen rate
is constant. The ATP utilization rate µ (black trace), [G] (blue)
and [O] (red) concentrations, are reported on the left ordinates;
the ATP/ADP ratio on the right ordinate axis. Simulation pa-
rameters: α′=0.018, β′=0.06, in Eq.8, vO(t)=3 mM/min, a=3
mM/min, µ randomly variable in the interval [0.001-0.04] with
frequency 1 min−1. (Color online)

interval [1-40] mM/min, fluctuating with a frequency of
1 min−1. The ATP/ADP ratio follows the glucose supply
rate in a stable periodic cycle, with random fluctuations
superimposed.

The case with an impulse supply of glucose followed
by exponential relaxation, shown in Fig. 4b with exam-
ples of stable solutions spanning ATP/ADP ratios from
below to well above 1, demands a more subtle definition of
the parameters. As for the sinusoidal case, we observe that
the [G] concentration at equilibrium differs from the input
signal, in that the profile becomes more ”rounded”, while
retaining the alternance of impulse and relaxation. In this
case, however, we often observed a tendency to drift of the
oxygen concentration, which tends to steadily increase or
decrease with time; only for a narrow window of values of
the parameter a we could obtain stable solutions, for the
chosen values of vO and µ. Within this parameter window,
we again observed that the key parameter in adjusting the
ATP/ADP ratio was α′, the decrease in the ratio corre-

sponding to the progressive increase in the average value
of the conversion rate k2.

3 Results of 3D simulations of cell spheroid
growth

A tumorsphere is a solid, spherical formation developed
from the proliferation of one cancer stem/progenitor cell.
Tumorspheres are easily distinguishable from single or ag-
gregated cells [2], as the cells appear to become fused to-
gether and individual cells cannot be identified. This as-
say can be used for example to estimate the percentage
of cancer stem/progenitor cells present in a population
of tumor cells. The size, which can vary from less than
50 to 250 micrometers, and the number of tumorspheres
formed in an experiment, are quantities that can be used
to characterize the cancer stem/progenitor cell population
within a population of in vitro cultured cancer cells, as
well within in vivo tumors [37,38]. This method also pro-
vides a reliable platform for screening potential anti-CSC
agents. The in vitro anti-proliferation activity of potential
agents selected from tumorsphere assay is more translat-
able into in vivo anti-tumorigenic activity compared with
general monolayer culture. Tumorsphere assay can also
measure the outcome of clinical trials for potential anti-
cancer agents [39]. In addition, tumorsphere assay may be
a promising strategy in the innovation of future cancer
therapeutics, and may help in the screening of anti-cancer
small-molecule chemicals [40].

In this Section we present examples of the 3D-growth
simulations of multicellular spheroids with the ABM in-
cluding local cell metabolism. The simulation typically
starts from a small aggregate of a few 100 or 1000 cells,
occupying the sites of a Voronoi polyhedra (VP) network
as described above. Cells are aggregated in a spheroidal
or prismatic starting mass, surrounded by a large space of
empty VP, representing the extracellular matrix (ECM).
Initial values of metabolite concentrations ([G], [O], [ATP],
[ADP]) are provided in each occupied VP, either homoge-
neously or randomly distributed. At the start of the simu-
lation, the extracellular matrix provides a external inflow
of [G] and [O], the diffusion between ECM and cell mem-
brane being considered instantaneous compared to cell-cell
diffusion times. In this way, only the outer cells directly in
contact with the ECM receive the initial metabolite input,
which is passed down to the inner spheroid volume only
by diffusion. (Glucose facilitated diffusion is assimilated
to spontaneous diffusion; other modes of active transport
will be subsequently introduced in the model, for channel-
regulated input and output of more complex metabolites.)
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Fig. 6. ”Reduced” metabolic model with random ATP
utilization rate. Glucose supply is sinusoidal and oxygen rate
is constant. The ATP utilization rate µ (black trace), [G] (blue)
and [O] (red) concentrations, are reported on the left ordinates;
the ATP/ADP ratio on the right ordinate axis. Simulation pa-
rameters: α′=0.018, β′=0.06, in Eq.8, vO(t)=3 mM/min, a=3
mM/min, µ randomly variable in the interval [0.001-0.04] with
frequency 1 min−1. (Color online)

In practice, the Laplacian term in Eq. (6a) and (6e) is cal-
culated numerically, by accumulating the concentration
differences between each cell and its neighbors in imme-
diate contact, weighted by a coefficient proportional to
the distance between each pair of cells (see [24] for de-
tails). Diffusion coefficients are given in units of δ = a2/τ ,
a reduced unit based on the average cell-cell distance in
the VP lattice a=15 µm, and the (adjustable) cell dupli-
cation timescale τ ; for a typical value of τ=100 min−1,
it is δ=3.75 ×10−6 cm2/s. Note that such diffusion co-
efficients do not refer just to the permeability of the cell
membrane, but to some effective combination of cell prop-
erties and cell density, which overall determine the ability
of nutrients to penetrate the volume of interest.

3.1 Simplified tests on diffusion-driven growth

In the foregoing examples, we describe generic cells, with
24h cycle and mitosis allowed in the last ∼1h of the cycle.
Cells are not synchronized at start, i.e. a random value of
the starting phase (G1, S, G2, M) is assigned to each cell.
For mitosis to occur, we impose that its [G] and [O] must
be above prescribed threshold levels; eventually, the more
strict condition that the cell must have adjacent free space
(non-confluent), may be added. For a test of the general
response of the 3D cell growth model these first simula-
tion examples will not use the full metabolic network, but

Fig. 7. Oxygen concentration profiles. Equilibrium radial
distribution of oxygen concentration in a 250 µm cell spheroid.
for different values of the oxygen diffusion constant (expressed
in reduced units of 3.75×10−8 cm2/s).

only glucose/oxygen supply from the ECM, followed by
ordinary diffusion, with fixed consumption rates equal for
all cells. Constant or periodic glucose supply is simulated,
while oxygen supply is always kept constant in the outer
matrix.

Different types of tumors are found to display quite
variable growth-laws and growth rates, ranging from ex-
ponential, to linear, to sigmoidal (Gompertz) with satura-
tion, to power-law [41]. In our study we monitor the time
dependence of the spheroid radius as a function of basic
parameters. We find that one key parameter influencing
the growth mode is the threshold for glucose viability, that
is the value of concentration [G]V above or below which
a cell can, or cannot, duplicate. For a given concentration
[G]0 in the ECM, it was observed that [G]V . 0.7[G]0 re-
sults in nearly all cells in the mass proliferating, leading to
exponential volume growth; increasing [G]V to ∼ 0.9[G]0
results in a linear growth of the sphere radius R(t), an
obvious effect of limiting proliferation only to cells lying
on the outer surface of the spheroid, in contact with the
ECM (same results are obtained with the non-confluence
condition); and restricting the proliferation to just a few
cells on the surface, [G]V > 0.95[G]0, leads to ”atypical”
power-law growth of the sphere volume.

In Figure 6 we report the radial profiles of [G] and [O]
concentration for a simulation starting from N0=10,000
cells, with initial spheroid radius R0=168 µm. Glucose is
supplied at baseline value [G]0=16.5 mM, instantaneously
at time t=0 of each day, and its concentration in the
ECM follows an exponential decay, going to 1/e in 500
min; oxygen in the ECM is constantly maintained at the
baseline value [O]0=3 mM (see e.g. [30]). The simula-
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tion time extends for about six days, and the profiles in
the Figure are taken at t=0 and 12h of each day. It can
be noticed the alternance of glucose concentration, be-
tween times t=0 (when new glucose is supplied) and 12h.
The [O] concentration in the cells at the outer surface
of the spheroid remains approximately constantly around
the baseline value; the [G] concentration is slightly lower
than the baseline value for the cells at the surface, and
has its maximum a few µm below surface.

Hypoxia is a major hallmark of cancer cells, increasing
the radioresistance compared to well oxygenated tissues.
Real tumors have a heterogeneous oxygen distribution,
and the same is true for artificial tumorspheres that usu-
ally include a viable (oxygenated) outer rim, an hypoxic
concentric region, and a central anoxic, necrotic core [42].
Therefore, an important quantity to monitor also in the
model is the oxygen radial profile. The dependence of the
oxygen profile on the value of the diffusion constant is
shown in Figure 7, for DO2

=0.001, 0.01, 0.1 in reduced
δ units. This simulation involves only a constant supply
of oxygen on the outer surface of a spheroidal aggregate
of cells, therefore the concentration profile could be com-
puted analytically for an average cell representative of the
growing mass, neglecting the correlations arising in the
dynamic effect of the multicellular spheroid growth. In-
deed, the results of Fig. 7 closely follow the known laws of
purely diffusive behavior (see e.g. Fig. 6.1 of Ref. [43], de-
scribing the inward diffusion from the surface of a sphere),
which represent a good check of the basic model.

3.2 Tests including the reduced model of metabolism

In this batch of simulations, each cell will also include the
”reduced” model of correlated [G] and [O] consumption,
resulting in variable [ATP]/[ADP] ratios. Such a signal
is interesting per se, in that it allows to check the self-
regulation of the system; moreover, it could be further
linked to cell viability, e.g. by introducing a ”necrosis”
factor depending on the ATP availability, and in subse-
quent developments to a number of other cascade signals.

The next two examples use the same parametrization
of the metabolic model, with the following values: α=1,
β=1, α′=0.04, β′=0.06; a and b are not used, since the glu-
cose and oxygen input rates for each cell are dynamically
given by the diffusion terms coming from the neighbor-
ing cells; the diffusion coefficients are respectively fixed at
DG=δ and DO2=δ/25. The ATP utilization rate is ran-
domly sampled in the interval µ ∈ [0.001−0.03] min−1. In
both cases, the oxygen baseline concentration is [O]0=0.6
mM. The two examples differ only in the glucose baseline
concentration, which is taken to be just slightly above the
glucose viability threshold in the first one, and as large
as 5 times the threshold in the second one. For a typi-
cal threshold [G]V =5 mM [30], we set [G]0=5.7 mM in
the first case, and [G]0=25 mM in the second. This dif-
ference is enough to give rise to definitely distinct growth
patterns.

Figure 8 reports the results for the first run, with
[G]0=5.7 mM. In this case, only a few cells at the sur-

face will be at [G] values above the proliferation thresh-
old, therefore the growth pattern is surface-limited with
linear radius growth rate, R(t) ∝ t. Fig. 8a shows that, af-
ter an initial stasis, followed by rapid, nearly-exponential
rise, from t ∼ 8d the spheroid radius starts to increase lin-
early, as does the cube root of the cell number (N(t))1/3.
Fig. 8b compares the [G] concentration profiles at t=6d
(red trace), that is in the middle of the rapid growth,
and at t=10d (black trace), that is well into the linear
growth regime. It can be seen that the ”viable rim” of the
spheroid, i.e. the fraction of the spheroid in which cells
can proliferate with [G]>[G]V , remains around 0.8Rmax;
however, the increasingly larger Rmax implies that the ac-
tual rim thickness is increasing over time. Fig. 8c shows
the same data for the [O] concentration; it may be noted
that the profile is not purely diffusive, and displays a ten-
dency to approach towards the baseline value in the rim
region, for increasing spheroid size. The [ATP]/[ADP] ra-
tio instead, reported in Fig. 8d, does not show appreciable
differences during the entire growth time, remaining con-
stantly above 1 with just a little overshoot at the spheroid
surface.

Figure 9 reports the results for the second run, with
[G]0=25 mM. In this case, most cells in the system will
be constantly at [G] values well above the proliferation
threshold [G]V . The exponential growth regime is clearly
demonstrated in Fig. 9a, in which the cell number is lin-
ear with time, in log-scale, while the radius increases ex-
ponentially as well. The [G] profile at the beginning of
the simulation (time t=0.25d, red trace in Fig. 9b), sees
about half of the radius (corresponding to 7/8 of the to-
tal volume) above [G]V ; however, during the exponential
growth all cells have [G] way above the threshold con-
centration (time t=4d, black trace in the figure) with a
nearly diffusive profile, a behavior that moreover does not
depend on the value of the diffusion constant DG at long
times. The [O] profile in this exponential growth regime
is rather different from the previous example: as shown
in Fig. 9c, it remains purely diffusional in shape (that is,
similar to the results of Fig. 7 above), at all times. The ra-
dial distribution of the [ATP]/[ADP] ratio develops from
an initial profile closely following the [G] distribution (red
trace in Fig. 9d) into a flat distribution, with a much more
peaked overshoot to high values close to the spheroid sur-
face, compared to the case of surface-limited growth.

Taken together, the results of these two examples show
that the 3D ABM retains the variety of responses that
can be obtained with the simplified model, moreover with
the added flexibility of active feedbacks linking the inter-
cellular response to intra-cellular metabolite evolution. No-
tably, the examples above were limited to relatively small
spheroids, containing up to about 60,000 cells. At such
sizes, either the surface-limited, or the rapid exponential
growth is observed in real spheroids. However, at larger
sizes nearly all tumorsphere assay experiments demon-
strate a saturation and eventually arrested growth [29,
30, 44], a behavior that is customarily described in sim-
pler mathematical models by a capacity-limited growth
function (Gompertzian or logistic). In the next Section
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Fig. 8. Simulation of 3D spheroid growth in the surface-controlled regime. (a) Growth rate of the cell number (full,
left ordinates) and of the spheroid radius (dashed, right ordinates), as a function of time. The linear regime starts around
t '8 days. (b) Glucose concentration ratio (units of the baseline concentration [G]0=5.7 mM) at times t=6 days (red) and 10
days (black), as a function of spheroid radius (normalized to the respective Rmax for each data set). The horizontal dashed
line indicates the glucose viability threshold, [G]V , in this case set at 0.88 [G]0. (c) Same as (b), for the oxygen ratio (with
[O]0=0.6 mM). The vertical grey band indicates the range of R values at which [G] cross the value [G]V . (d) Same as (b), for
the [ATP]/[ADP] ratio. (Color online)

3.2 we will introduce additional features in the model, to
account for the experimental observation of saturation at
increasing sizes.

3.3 Simulation of spheroid growth saturation

The expansion of tumorspheres beyond a radius of 3-400
µm brings about a number of changes in the cell response
[29,30,44]. At this size, the central core first shows traces of
necrosis. The size of the necrotic zone increases, until close
to the arrest it would cover a large fraction of the total
volume. Already a small fraction of necrotic core induces
a reduction in glucose and oxygen utilization rates; in par-
allel, the average cell size may be reduced, the cell radius
decreasing by as much as 5-10% of the initial value; at the

same time, as the spheroids grow, the outer rim of prolif-
erating cells shows a slight decrease in thickness [30]. It
may be noticed that in these experiments it is usually dif-
ficult to separate between quiescent (G0) and proliferating
cells, therefore the rim thickness is determined simply by
difference with the size of the necrotic core, which in turn
can be clearly observed e.g. by staining techniques [45]. A
relevant observation from Freyer’s work is that spheroid
size at equilibrium appears to be correlated with the size
of the spheroid at the onset of necrosis.

Several tumor growth models have already proposed
to include the release of a ”necrosis factor” from the inner
cells (see [46] and references therein). However, the phe-
nomena relative to growth arrest seem to occur starting
from the spheroid surface [29,30], namely the drop in glu-
cose and oxygen consumption and reduction in cell size,
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Fig. 9. Simulation of 3D spheroid growth in the exponential regime. (a) Growth rate of the cell number (full, left
ordinates) and of the spheroid radius (dashed, right ordinates), as a function of time. The linear rate of the cell number in log
scale signifies exponential growth. (b) Glucose concentration ratio (units of the baseline concentration [G]0=25 mM) at times
t=0.25 days (red) and 4 days (black), as a function of spheroid radius (normalized to the respective Rmax for each data set).
The horizontal dashed line indicates the glucose viability threshold, [G]V , here equal to 0.2 [G]0. (c) Same as (b), for the oxygen
ratio (with [O]0=0.6 mM). (d) Same as (b), for the [ATP]/[ADP] ratio. (Color online)

which altogether point to a modification of the cell home-
ostasis, once the necrosis starts somewhere in the volume.
Such an effect could not be accounted only by the diffu-
sion of such a ”necrotic factor”, which necessarily would
start from the inside of the sphere volume. Therefore, a
feedback action involving some kind of cell-cell signaling
(e.g., some ”growth inhibitor” released from viable rim
cells, such as lactate or other pH modifiers [47]) should be
implicated in the process of arrested growth.

In the simulations reported in this last Section, we in-
troduce two key elements in the ABM. The first element
is the explicit distinction between necrotic, quiescent and
viable cells. All definitions are based on the local levels of
oxygen and glucose, implying respectively the stop (necro-
sis) or a reduction (quiescence) in the glycolysis, and con-
sequently in the regeneration of ATP. The second element

is the experimentally observed shedding of cells from the
surface of tumor spheroids [5,48,49], similar to what hap-
pens in a real tumoral mass disseminating circulating can-
cer cells [50].

There are several methods to induce a quiescent (G0)
cell status in experimental cultures, such as nutrient star-
vation for several days, culture to confluence, use of kinase
inhibitors, each with different mechanisms by which they
inhibit cell growth [51,52]. In our ABM model, the distinc-
tion among cell status is introduced based on probabilis-
tic criteria, leading to Boolean variables to be set to ’on’
or ’off’. Tolerance times tC , tO and tG are introduced, by
counting the time each cell is, respectively, found confluent
(i.e., surrounded by at least two filled shells of neighbors),
in low oxygen, or low glucose conditions. If a cell remains
under such conditions for a continuous duration of time
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Fig. 10. Simulation of long-term 3D spheroid growth
including cell differentiation. Above: Total cell number
(continuous) and number of cells in the necrotic core (dashed).
Below: radius of the spheroid (continuous) and of the necrotic
core (dashed).

t larger than at least two combined tolerance times, it is
switched to G0; moreover, if a cell remains continuously
under low oxygen for a time t > 2tO, it becomes necrotic.
The concentration thresholds for oxygen and glucose via-
bility are fixed at the already cited values [O]V =0.3 mM
and [G]V =5 mM. For tO and tG, we independently tested
a range of values comprised between a few hours and 2
days. Figure 10 shows a simulation over 24 days of growth,
for a spheroid starting with just 10 cells; the parameters
allow to attain a doubling time-scale comparable to ex-
perimental observations, e.g. in EMT6 cells [29,30]. From
the upper panel, showing the number of cells, it can be
seen that the growth starts with exponential regime, then
starts saturating around t=5-6 days; however, at a later
time (t '12 days) a second exponential regime takes over.
This points at the fact that inclusion of cell differentia-
tion (normal, quiescent, necrotic) is a necessary but not
sufficient condition to induce saturation of the growth.
Necrosis sets is some time after the initial growth, around
t=3 days (dashed curves), and it is likely responsible for
the initial apparent saturation. By looking at the volume
growth rate (radius of the spheroid, shown in the lower
panel) it is seen that the difference between outer and
necrotic core becomes constant, i.e. the radius of the ac-
tive cell rim is constant. This observation is in agreement
with experimental observations [29,30], although with the
present set of parameters the size of the active rim is in
the range 40-50 µm, against experimental values about 2-4

Fig. 11. Simulation of long-term 3D spheroid growth
including cell differentiation and cell shedding from
the outer surface. Simulation parameters as given in the
legend; experimental data from [12]. (Color online)

times as large, for similar growth conditions (low-oxygen
and [G]∼2-20 mM) and doubling times.

Cell shedding from the surface of spheroids has been
already included in some growth models [11,12,29,53], as
it has been considered a crucial element to attain equilib-
rium conditions. We include this possibility in the form of
a continuous probability function depending on the dis-
crete variable ncs = nempty/ntot, that is the ratio between
the number of unoccupied and total neighbour sites of
each cell c. The probability function has the simple form:

P cs = (ncs)
α

(13)

In this way, the shedding rate automatically depends
on the spheroid surface (since the number of surface cells
having nempty < ntot is itself proportional to the surface),
via the empirically adjustable parameter α. Moreover, as
well according to experimental indications, shedding was
started only after the spheroid attains a minimum size Rs.

In Figure 11 we show the results of simulation runs
using the same parameters as in Fig. 10, with and with-
out cell shedding, with different values of α=8,10,12, and
Rs=50,100,200 µm. The data points are from two differ-
ent experiments on EMT6/Ro mouse mammary tumor
cells [12]. After the initial exponential regime, a beginning
of growth saturation effect is observed, leading to a sublin-
ear growth rate. A correlation between the two parameters
is observed, namely the larger Rs, the larger is the smallest
α for which growth starts saturating. The closest approx-
imation to the experimental data is obtained for Rs=125
µm and α = 10.3. However, we also notice that growth
saturation it is extremely sensitive to the numerical pa-
rameters, even a few per-cent variation of α changing the
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saturation behavior. Biological processes are instead ro-
bust and tolerant with respect to fluctuations, therefore
such a saturation may rather arise as an artifact of the
mathematical model; more effective mechanisms should
be at work in the real spheroids, and be included in fu-
ture developments of the model, such as the above cited
controlled release of ”growth inhibitors” by the cells.

A further possibility that could be considered adding
to the model is the role of mechanical stress originating
from the external matrix, which is reported to be among
the possible factors inhibiting growth when the matrix
is made increasingly rigid, e.g. by controlled addition of
agarose gel [54].

4 Conclusions

A multi-scale agent-based model (ABM) combined with a
description of relevant signalling pathways has the poten-
tial of addressing basic research questions, and possibly
identifying novel molecular targets [40,55]. Mathematical
modeling of the effects of biomedical treatments on tumor-
sphere growth, such as chemo- and radiotheraphy, could
be a game changer for the development of new, efficient
therapies. In this work we extended to fully-3D the ca-
pabilities of our multicellular evolution ABM [24], with
the aim of supporting the analysis of experiments of arti-
ficial growth of multicellular cancer spheroids, or ”tumor-
spheres”. The most important qualitative advance of the
model is the inclusion of a local metabolic network, which
allows each cell to independently regulate its ATP/ADP
levels in response to the glucose/oxygen supply from the
exterior, and to the ATP utilization rate for the cellular
functions.

By filling a random 3D lattice of irregular polyhedra,
the current model can mimic the growing tumorsphere,
including cells with different phenotypes. Discrete vari-
ables with Boolean logic represent the switching off/on
of specific ”genes”, leading to probabilistic outcomes, em-
pirically representing the de/activation of a given protein
pathway. In our approach, the space- and time-dependent
concentrations of the biochemical constituents, and gene
activation/repression factors are computed numerically by
non-linear partial differential equations (PDEs) describ-
ing the linked evolution of the various factors, such as
the glycolysis/oxygen/ATP cycle. Overall, the model was
designed so as to work with a relatively small number
of adjustable parameters. The objective is to produce a
working model especially aimed at guiding and interpret-
ing selective experiments of stem-cell spheroid growth. At
this stage, we did not yet attempt a strict comparison with
experimental data on real cell lines. However, already at
this level, some qualitative experiment/simulation com-
parison is demonstrated, based on empirical adjustment
of the various parameters and rate constants. The results
on both short-term and long-term growth of multicellular
spheroids are very promising, for the future applications
of the model to realistic conditions of biological relevance.
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