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Abstract  

Background:  

Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms 

allowing integration of genetic and environmental factors to shape cellular function. While 

many studies have investigated either environmental or genetic contributions to DNAm, few 

have assessed their integrated effects. We examined the relative contributions of prenatal 

environmental factors and genotype on DNA methylation in neonatal blood at variably 

methylated regions (VMRs), defined as consecutive CpGs showing the highest variability of 

DNAm in 4 independent cohorts (PREDO, DCHS, UCI, MoBa, N=2,934).  

Results:  

We used Akaike’s information criterion to test which factors best explained variability of 

methylation in the cohort-specific VMRs: several prenatal environmental factors (E) 

including maternal demographic, psychosocial and metabolism related phenotypes, genotypes 

in cis (G), or their additive (G+E) or interaction (GxE) effects. G+E and GxE models 

consistently best explained variability in DNAm of VMRs across the cohorts, with G 

explaining the remaining sites best. VMRs best explained by G, GxE or G+E, as well as their 

associated functional genetic variants (predicted using deep learning algorithms), were 

located in distinct genomic regions, with different enrichments for transcription and enhancer 

marks. Genetic variants of not only G and G+E models, but also of variants in GxE models 

were significantly enriched in genome wide association studies (GWAS) for complex 

disorders. 

Conclusion: 

Genetic and environmental factors in combination best explain DNAm at VMRs. The CpGs 

best explained by G, G+E or GxE are functionally distinct. The enrichment of GxE variants in 

GWAS for complex disorders supports their importance for disease risk.   
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Introduction 

Fetal or prenatal programming describes the process by which environmental events during 

pregnancy influence the development of the embryo with on-going implications for future 

health and disease. Several studies have shown that the in utero environment is associated 

with disease risk, including coronary heart disease 1; 2, type 2 diabetes 3, childhood obesity 4; 5 

as well as psychiatric problems 6 and disorders 7-9. 

Environmental effects on the epigenome, for example via DNA methylation, could lead to 

sustained changes in gene transcription and thus provide a molecular mechanism for the 

enduring influences of the early environment on later health 10. Smoking during pregnancy 

influences widespread and highly reproducible, albeit modest in magnitude, differences in 

DNA methylation at birth 11. Less dramatic effects have been reported for maternal folate 

status 12, maternal body mass index (BMI) 13, pre-eclampsia, gestational diabetes 14; 15, toxins 

16 and also assisted reproductive technology 17.  Possible epigenetic changes as a consequence 

of prenatal stress are less well established 18. Some of these early differences in DNA 

methylation persist, although attenuated, through childhood 11; 19 and might be related to later 

symptoms and indicators of disease risk, including behavioral abnormalities 14, impaired lung 

function 19 and BMI during childhood 20; 21 or substance use in adolescence 22. These data 

emphasize the potential importance of the prenatal environment for the establishment of inter-

individual variation in the methylome as a predictor or even mediator of disease risk 

trajectories.  

In addition to the environment, the genome plays an important role in the regulation of DNA 

methylation. To this end, the impact of genetic variation, especially of single nucleotide 

polymorphisms (SNPs) on DNA methylation in different tissues, has resulted in the discovery 

of a large number of methylation quantitative trait loci (meQTLs, i.e., SNPs significantly 

associated with DNA methylation status 23). These variants are primarily in cis, i.e., at most 1 

million base pairs away from the DNA methylation site 23-25 and often co-occur with 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 17, 2018. ; https://doi.org/10.1101/436113doi: bioRxiv preprint 

https://doi.org/10.1101/436113


	 5	

expression QTLs or other regulatory QTLs 26-28. The association of meQTLs with DNA 

methylation is relatively stable throughout the life course 24 and meQTLs show some cross-

tissue correlation 27. In addition, SNPs within meQTLs are strongly enriched for genetic 

variants associated with common disease in large genome-wide association studies (GWAS) 

such as BMI, inflammatory bowel disease, type 2 diabetes or major depressive disorder 24; 26; 

27; 29. 

Environmental and genetic factors may act in an additive or multiplicative manner to shape 

the epigenome to modulate phenotype presentation and disease risk 30. However, very few 

studies have so far investigated the joint effects of environment and genotype on DNA 

methylation, especially in a genome-wide context. Klengel et al. 31 reported an interaction of 

the FK506 binding protein 5 gene (FKBP5) SNP genotype and childhood trauma on FKBP5 

methylation levels in peripheral blood cells, with trauma associated changes only observed in 

carriers of the rare allele.	Chen et al. 32 found that a variant in the brain derived neurotrophic 

factor gene (BDNF) strongly moderated the association between antenatal maternal anxiety 

and DNA methylation at birth.	Gonseth et al. 33 observed that three of the ten most significant 

maternal-smoking sensitive CpG-sites in newborns identified in large epigenome wide studies 

were also significantly associated with SNPs located proximal to each gene. The most 

comprehensive study of integrated genetic and environmental contributions to DNA 

methylation so far was performed by Teh et al. 34. This study examined variably methylated 

regions (VMRs), defined as regions of consecutive CpG-sites showing the highest variability 

across all methylation sites assessed on the Illumina Infinium HumanMethylation450 

BeadChip array. In a study of 237 neonate methylomes derived from umbilical cord tissue, 

the authors explored the proportions of the influence of genotype vs. prenatal environmental 

factors such as maternal BMI, maternal glucose tolerance and maternal smoking on DNA 

methylation at VMRs. They found that 75% of the VMRs were best explained by the 

interaction between genotype and environmental factors (GxE) whereas 25% were best 
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explained by SNP genotype and none by environmental factors alone.	After correction for 

ethnicity, which inflated the influence of genotype, 85% of VMRs were best explained by 

GxE.	Collectively,	these studies highlight the importance of investigating the combination of 

environmental and genetic contributions to DNA methylation and not only their individual 

contribution.  

The main objective of the present study was to further explore these combined effects on 

DNA methylation at VMRs and their potential functional and disease-related relevance. We 

investigated the influence of the prenatal environment and genotype on VMRs in the DNA of 

2,934 newborns within 4 different cohorts: Prediciton and Prevention of Pre-eclampsia and 

Intrauterine Growth Restrictions (PREDO, cordblood) 35, the UCI cohort (36-38, heel prick), 

the Drakenstein Child Health Study (DCHS, cordblood) 39; 40 and the Norwegian Mother and 

Child Cohort Study (MoBa, cordblood 41). Environmental factors in all cohorts were assessed 

during pregnancy and included metabolic risk factors, hypertension, betamethasone treatment, 

maternal smoking, demographic factors such as parity and maternal age as well as repeated 

psychometric evaluations of depression and anxiety.  

We focused on the association of these prenatal environmental factors with DNA methylation 

of VMRs together with genetic variability, exploring both additive (G+E) and interactive 

(GxE) models, in addition to main effects of genetic (G) and main environmental (E) 

variables. We also employed the machine-learning algorithm DeepSEA to predict SNP 

function with regards to regulatory elements 42 within the different models. Based on this 

annotation, we compared the predicted function of both the CpG regions and the SNPs 

involved in the different models with best prediction by either E, G, G+E or GxE and also 

tested for enrichment of the relevant SNPs in GWAS both for common psychiatric disorders 

such as major depressive disorder and schizophrenia and also for type 2 diabetes, 

inflammatory bowel disease and BMI. 
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Results   

A general overview of the workflow is depicted in Figure 1. 

 

Explaining variance in DNA methylation  

We analyzed 963 cord blood samples from the PREDO cohort with available genome-wide 

DNA methylation and genotype data. Of these samples, 817 had data on the Illumina 450k 

array (PREDO I) and 146 on the Illumina EPIC array (PREDO II). The main analyses are 

reported for PREDO I, and replication and extension of the results is shown for PREDO II as 

well as for three independent cohorts including 121 heel prick samples (UCI cohort, EPIC 

array) as well as 258 (Drakenstein, 450K and EPIC array) and 1,592 cord blood samples 

(MoBa, 450K array). Specifically, we tested ten different prenatal environmental factors 

covering a broad spectrum of prenatal phenotypes (see Table 1) (referred to as “E”), as well 

as cis SNP genotype (referred to as “G”), i.e., SNPs located in at most 1MB distance to the 

specific CpG, additive effects of cis SNP genotype and prenatal environment (“G+E”) and cis 

SNP x environment interactions (“GxE”) for association with DNA methylation levels (see 

Figure 1). We then assessed for each CpG independently which model described the variance 

of DNAm best using Akaike’s information criterion (AIC) 64. The AIC is based on a 

goodness-of-fit measure combined with a penalization term for the number of model 

parameters.  In all models, we corrected for child’s gender, ethnicity (using MDS-

components) as well as estimated cell proportions to account for cellular heterogeneity.  

 

Variably Methylated Regions  

We analyzed VMRs, defined as regions of CpG-sites showing the highest variability across 

all methylation sites. In PREDO I, we identified 10,452 variable CpGs that clustered into 

3,982 VMRs (see Table S1).  
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While overall methylation levels at CpGs are bimodally distributed with peaks at very low 

methylation (beta-value < 0.1) and very high methylation (beta-value > 0.8), the distribution 

of methylation at CpGs in VMRs is unimodal and VMRs presented with intermediate 

methylation levels (median beta-value=0.52, 25th-75th percentile = 0.39-0.62, see Figure 2A). 

As compared to all CpG-sites on the 450K array, VMRs in cord blood were enriched for 

OpenSea (p=2.70 x 10-03, Fisher-test) and Shores (p=9.39 x 10-91) and depleted for Islands 

(p=2.35 x 10-32). Furthermore, VMRs were enriched for distal intergenic regions (p=2.19 x 

10-31, Fisher-test) and depleted for introns (p=1.26 x 10-07).  Additionally, we checked if 

VMRs were enriched for transcription factor (TF) binding sites. Using the data of ReMap 65 

and ENCODE 66 we found significant enrichment for VMRs (p=6.25 x 10-61, Fisher-test) as 

compared to non-VMRs on the 450K array.  Here, 82% of all VMR-CpGs overlapped with at 

least one TF, with CTCF and NR3C3 being among the top enriched factors. 

VMRs have been associated with specific chromatin states 67. As compared to non-VMRs, 

VMRs in our dataset were depleted for active and flanking transcription start sites (TSS), for 

strong transcription and for transcription at 5’ and 3’. In contrast, VMRs were enriched for 

weak transcription, enhancers, ZNF genes and repeats, heterochromatin, bivalent/poised TSS, 

bivalent flanking TSS/enhancers, bivalent enhancers, repressed and weak repressed 

PolyComb sites (Figure S1). 

We used the publicly available eQTM results from Bonder et al. 68, who examined whether 

VMRs significantly overlapped with expression quantitative trait methylation sites (eQTMs), 

i.e., CpGs significantly associated with gene expression. As the analysis presented by Bonder 

et al. was based on CpGs located in proximity to the TSS of the specific transcript, we used 

only PREDO I VMRs also located within genes (n=5,905). The overlap between significantly 

associated eQTMs from Bonder et al. and VMRs in PREDO I was significantly higher than 

expected by chance (p=9.99x10-05, based on sampling of 10,000 random CpG-sets), revealing 
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that areas with high levels of inter-individual variation in DNA methylation overlap strongly 

with sites associated with gene expression.  

Additionally, 6,074 CpG-sites significantly associated with maternal smoking 11 and 104 

CpG-sites significantly associated with maternal BMI 13 significantly overlapped (p=0.009 for 

smoking and p=0.0009 for BMI, based on sampling of 1,000 random CpGs-sets) with VMR 

CpGs. Furthermore, CpG-sites reported in 11; 13 showed higher MAD-scores in PREDO I as 

compared to CpGs which were not significantly associated in either of these studies. 

Our results confirm those of previous studies showing VMRs are enriched in specific 

functional regions of the genome, correlate with differences in gene expression, and overlap 

with sites associated with specific prenatal environmental factors. 

We next examined the factors that best explained the variance in methylation in these 

functionally relevant sites. For each VMR, we chose the CpG-site with the highest MAD-

score as representative of the whole region. These CpGs are named tagCpGs. 

 

G, E, G+E or GxE? 

We compared the fit of four models for each of the 3,982 tagCpGs (see Figure 1): best SNP 

(G model), best environment (E model), SNP + environment (G+E model) and SNP x 

environment (GxE model). Top association results for each model are depicted in Tables S2-

S5. For each tagCpG, the model with the lowest AIC was chosen as the best model (see 

Methods section).  In total, 44 % of tagCpGs were best explained by G (n=1,759), followed 

by GxE (32%, n=1, 284) and G+E (24%, n=938) (Figure 2B). E explained most variance in 

one tag CpG. All tag CpGs and the respective SNPs and environments from the best model 

are listed in Tables S6-S9.  

With regard to environmental factors, 48.7% of tagCpGs best explained by the G+E model 

were associated with environmental factors related with stress or, in particular, 

glucocorticoids (i.e., maternal betamethasone treatment), 42.5% with general maternal factors 
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(mostly maternal age) and 8.8% with factors related to metabolism (pre-pregnancy BMI, 

hypertension). For best model GxE, the proportions were similar with 37.4%, 52.6% and 

10%, respectively (see Figure 2C). 

Finally, we looked into the delta AIC, i.e., the difference between the AIC of the best model 

to the AIC of the next best model.  If the best model was G (n=1,759), the next best model 

was G+E in 75% of the cases (n=1,313), and GxE for the remaining part (n=446).  For the 

1,248 tagCpGs where the best model was GxE, the next best model was mostly G (n=747) 

followed by the additive model (n=537).  In the case of the 938 tag CpGs with best model 

G+E, the next best model was mostly GxE (n=527), followed by G only (n=411). 

Interestingly, E never occurred as next best model.  For the one CpG with best model E, the 

next best model was G. The delta AIC for best model GxE to the next best model was 

significantly higher (mean delta AIC=2.16) as compared to CpGs with G as the best model 

(mean delta AIC=1.04, p= 6.48 x 10-40, Wilcoxon-test) or G+E as the best model (mean delta 

AIC=0.93, p=1.67 x 10-46, Figure 2D).  Furthermore, the delta AIC for best model G 

(mean=1.04) was significantly higher as compared to best model G+E (mean=0.93, p=2.56 x 

10-06). 

We conclude that GxE models are selected by larger margins while best G and best G+E 

models are selected with lower margins.  

 

Functional mapping – DeepSEA prediction 

The results presented so far are based on linkage disequilibrium (LD)- pruned SNP data, so it 

is not necessarily the functional SNP but any tag SNP that was likely selected in the models.  

Due to the nature of LD-structure, a functional SNP with a high correlation to the 

representative SNP can equally be favored for analysis. To better understand the contribution 

of functional SNPs to VMRs we restricted the analyses only to potentially functional relevant 

SNPs using DeepSEA 42. DeepSEA, a deep neural network pretrained with DNase-seq and 
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ChIP-seq data from the ENCODE 66 project, predicts the presence of histone marks, DNase 

hypersensitive regions (DHS) or TF binding for a given 1kb sequence. The likelihood that a 

specific genetic variant influences regulatory chromatin features is estimated by comparing 

predicted probabilities of two sequences where the bases at the central position are the 

reference and alternative alleles of a given variant.  We reran the four models restricting the 

cis-SNPs to those 36,241 predicted DeepSEA variants that were available in our imputed, 

quality-controlled genotype dataset. 

Top results for models including G, GxE and G+E are depicted in Tables S10-S12. 

Results were comparable to what we observed before:  1,796 (45.2%) of tagCpGs presented 

with best model G, 948 CpGs (23.9%) with best model G+E, 1,151 CpGs (24 %) with best 

model GxE and 77 CpGs (2%) with best model E (Figure 3A). Only 10 tagCpGs did not 

present with any DeepSEA variant within 1MB distance in cis and were therefore not 

considered further. All respective CpG-environment-DeepSea SNP-combinations are depicted 

in Tables S13-S16. 

In conclusion, also when we focus on functionally relevant SNPs, it is mainly the combination 

of genotype and environment which explains VMRs best. 

 

Are VMRs best explained by E alone, G alone, G+E or by GxE different from each other? 

Focusing on combinations between tagCpGs, environmental factors and DeepSEA variants, 

we functionally annotated both the SNPs as well as the tagCpGs within the different models. 

TagCpGs best explained by G and GxE were enriched for OpenSea (p=5.16 x 10-03), G+E 

tagCpGs were enriched for Islands (p= 1.04 x 10-05) and tagCpGs best explained by E were 

depleted for Islands (p= 3.10 x 10-03, Figure 3B). Furthermore, GxE and G+E tagCpGs were 

depleted for promoters (p=2.95 x 10-02, Figure 3C).  
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With regard to enrichment/depletion of specific histone marks based on the ENCODE data 66 

in comparison to all VMRs, E tagCpGs were nominal significantly depleted for active TSS 

(p=0.03), for bivalent enhancers (p=0.02) and repressed PolyComb (p=0.001). 

GxE tagCpGs were significantly depleted for flanking active TSS (p=0.02) and for flanking 

bivalent TSS/enhancers (p=0.006). G+E tagCpGs were significantly enriched for flanking 

bivalent TSS/enhancers (p=0.009), for bivalent enhancers (p=0.03) and for bivalent/poised 

TSS (p=0.004) and depleted for genic enhancers (p=0.03, see Figure 4A and 4B).  

Overall, tagCpGs with best model G, G+E or GxE were located in functionally distinct 

regions, with GxE tagCpGs being enriched for OpenSea positions and depleted for TSS 

markers. 

 

Are functional SNPs which are only involved in G models different from functional SNPs only 

involved in G+E/GxE models? 

Overall, 1,387 DeepSEA variants uniquely involved in best G models, 867 were uniquely in 

best GxE models and 706 uniquely in best G+E models. As a DeepSEA variant can be in 

multiple 1 MB-cis windows around the tagCpGs, several DeepSEA variants were involved in 

multiple best models: 147 DeepSEA variants overlapped between G and GxE, 137 between G 

and G+E and 94 between GxE and G+E VMRs. We observed no significant differences with 

regard to gene-centric location for DeepSEA variants involved only in G models, only in GxE 

models or in multiple models. However, DeepSEA variants involved only in G+E models 

were significantly enriched for promoter locations (p=1.06 x 10-03, see Figure S2A).   

Although no significant differences were present, DeepSEA SNPs involved in the G and G+E 

model were located in closer proximity to the specific CpG (model G: mean absolute 

distance=259.6 kb, sd=289.1 kb, model G+E: mean absolute distance =250.5 kb, sd=283.9 kb, 

Figure S2B) whereas DeepSEA SNPs involved in GxE models (mean absolute distance 

=363.9 kb, sd=309.3 kb) showed broader peaks around the CpGs.  
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We next evaluated if functionally relevant G, GxE and G+E SNPs differed with regard to 

enrichment for histone marks. As expected, DeepSEA variants in general were enriched 

across multiple histone marks indicative of active transcriptional regulation (Figure 4C).  

DeepSEA variants involved in best model G+E showed further enrichment for TSS marks as 

compared to all tested DeepSEA variants. In contrast, GxE DeepSEA variants were 

significantly depleted in such regions. G+E SNPs, but not the other SNP types were highly 

enriched for genic enhancers and heterochromatin while G SNPs were depleted for genic 

enhancers (Figure 4D). 

 

Is the proportion of best models dependent on the variability of CpG-sites? 

The power to detect meQTLs depends on the variance of DNA methylation at the specific 

CpG-site 69 and the allele frequency of SNPs mapped in close proximity to the most variably 

methylated sites 70. Therefore, VMRs, which by definition are restricted to CpG-sites with a 

high variability, might not only be biased for the identification of significant meQTLs but also 

have a higher proportion of the variance explained by G using the AIC. We investigated if 

this was true by re-running the E, G, G+E and GxE models on all CpGs-sites, regardless of 

whether they were located in VMRs or not. As maternal age was one of the most important 

predictors for methylation levels at VMRs in our analysis (see Figure 2C), we focused on this 

phenotype. We found that, across all CpG-sites and all variability levels (see Figure S3), the 

pattern of best models remained stable indicating that, at least in our sample, combined G and 

E effects are also present in sites not located in VMRs and in less variable sites. 

 

Replication of relative distribution of best models in independent cohorts 

To assess whether the relative distribution of the best models for VMRs and DeepSEA 

variants was stable, we assessed the relative distribution of these models in 3 additional 

samples with VMR data both from the Illumina 450K as well as the IlluminaHumanEPIC 
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arrays. These included the Drakenstein Child Health Study (DCHS), with DNA methylation 

assessed by the 450K array in 107 newborns (DCHS I) and with the EPIC array in 151 

newborns (DCHS II). The EPIC array was also used in the UCI cohort with 121 neonates as 

well as in PREDO II with 146 neonates. While major maternal factors overlapped among the 

cohorts - such as maternal age, delivery method, parity and depression during pregnancy - 

there were also differences, as the non-PREDO cohorts did not include betamethasone 

treatment but did include maternal smoking (see Table 1). VMRs differed between cohorts: 

overall 6,251 CpGs assessed on the 450K array were located within VMRs of PREDO I as 

well as in the VMRs of DCHS I. With regard to the EPIC array: 4,634 CpGs were located 

within VMRs of PREDO II as well as in the VMRs of DCHS II and the UCI cohort. 

Nevertheless, the overall pattern remained stable: in all 4 analyses, DCHS I, DCHS II, UCI 

and PREDO II, we replicated that E alone models almost never explained most of the 

variances, while G alone models explained the most variance in up to 15% of the VMRs; G+E 

in up to 29%; and GxE models in up to 59% (see Figure 5 and Table 1). We were also able to 

replicate our finding showing that GxE VMRs were enriched for OpenSea positions on the 

450K array (DCHS I, OR=1.11, p= 3.50x10-02).  This remained true in data from the EPIC 

array, which in itself contains more CpGs in the OpenSea regions as compared to the 450k as 

GxE were enriched in OpenSea regions over the EPIC content (PREDO II: OR=1.23, 

p=1.19x10-06, DCHS II: OR=1.13, p=1.00x10-04).  For all cohorts, the delta AIC for best 

model GxE to the next best model was also significantly higher as compared to CpGs with G, 

E or G+E as the best model.  The additional cohorts thus showed a consistent replication of 

the fact the GxE and G+E models best explained the variance of the majority of the VMRs; 

the VMRs explained by a combination of G and E were enriched in OpenSea regions; and that 

GxE models were always selected by a higher margin than other models.  

 

Association with smoking 
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As we did not observe significant main E effects on DNA methylation for most of the tested 

Es in our cohorts, we chose to rerun the analyses focusing on maternal smoking, described as 

one of the most highly replicated factors shaping the newborns’ methylome 11. This would 

allow an assessment of how inclusion of a validated E factor would influence the relative 

distribution of the best models. We first ran traditional epigenome-wide association analyses 

for maternal smoking in the cohorts where this exposure was included, namely the UCI, 

DCHS I and DCHS II. We observed that those CpG-sites where association with smoking 

was nominally significant in our samples, were significantly enriched for CpG-sites which 

had been reported to be associated with this exposure in the meta-analysis by Joubert et al. 11 

at an FDR corrected p-value cut-off of 0.05 (UCI, p=1.30x10-28, OR=1.80, DCHS I, 

p=2.77x10-32, OR=1.80, DCHS II p=1.35x10-15, OR=1.56). Next, we tested whether those 

CpGs that were associated with maternal smoking in Joubert et al. 11 at FDR 0.05, presented 

with best model E=smoking, or if the inclusion of genotype yielded a better model. For UCI 

5,362 CpGs out of the 6,073 reported CpGs were available. From these, 25 (<1 %) were best 

explained by smoking alone (E), whereas 5,001 (93.3%) were best explained by genotype 

(G), 139 (2.6%) by G+maternal smoking (G+E) and 197 (3.6%) by Gxmaternal smoking 

(GxE). In DCHS I, 5633 of the top CpGs were available, 4,773 (84.7%) presented with best 

model G, 603 (10.7%) with best model GxE and 257 (4.6 %) with best model G+E. In DCHS 

II, out of 5,405 CpGs, 2 (< 1%) presented with best model E, 3,058 (56.6%) with best model 

G, 1,654 (30.6%) with best model GxE and 691 (12.8%) with best model G+E.  This 

underscores the point that even for phenotypes, such as maternal smoking, with documented 

main E effects on cord blood methylation, genotypic information should be considered. 

 

Replication of GxE and G+E findings 

We focused on choosing the best model according to the AIC. Although we are likely 

underpowered to robustly detect significant GxE interactions, we examined if combined 
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effects of genotype and environment in the CpGs that were identified to be best explained by 

G+E and GxE in PREDO I, could be replicated in an independent sample. We evaluated 

whether specific G+E and GxE effects on cord blood methylation measured using the 

Illumina 450K array were also present in the MoBa cohort including 1,592 newborns. We 

restricted the analysis to those combinations of CpG-DeepSEA SNP and environments that 

were nominally significant for GxE or G+E and also presented with the lowest AIC for this 

specific model in PREDO I. Overall, 913 GxE and 372 G+E combinations fulfilled this 

criterion. Of these, 515 GxE and 178 G+E combinations were also available in the MoBa 

cohort. Overall, 268 GxE and 98 G+E combinations showed the same direction of effects in 

both cohorts and we found no significant difference between the direction of effects in both 

cohorts, neither for GxE (p=0.176, sign-test) nor for G+E combinations (p=0.88). Overall, 9 

GxE and 15 G+E combinations were nominally significant in MoBa and showed the same 

direction of effects as in PREDO I. Next, we combined both studies via random-effects-meta-

analyses where 6 GxE and 18 G+E combinations were significantly associated and survived 

multiple testing across all tested combinations (FDR 0.05), showing the same direction of 

effects in both cohorts and presenting with lower p-values in the meta-analysis as compared to 

PREDO I alone. These results are depicted in Table S17 and S18. Two of the tophits for GxE 

and G+E are presented in Figure 6A and B, respectively. 

 

Disease relevance 

Finally, we tested whether functional DeepSEA SNPs involved in only G, only GxE and only 

G+E models in PREDO I for their enrichment in GWAS hits. We used all functional SNPs 

and their LD proxies (defined as r2 of at least 0.8 in the PREDO cohort and in maximal 

distance of 1MB to the target SNP) and performed enrichment analysis with the overlap of 

nominal significant GWAS hits. We selected for a broad spectrum of GWAS, including 

GWAS for complex disorders for which differences in prenatal environment are established 
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as risk factors, but also including GWAS on other complex diseases. For psychiatric 

disorders, we used summary statistics of the Psychiatric Genomics Consortium (PGC) 

including association studies for autism 71, attention-deficit-hyperactivity disorder 72, bipolar 

disorder 73, major depressive disorder 74, schizophrenia 75 and the cross-disorder associations 

including all five of these disorders 76. Additionally, we included GWAS of inflammatory 

bowel disease 77, type 2 diabetes 78 and for BMI 79. Nominal significant GWAS findings were 

enriched for DeepSEA variants and their LD proxies per se across psychiatric as well as non-

psychiatric diseases (Figure 7A). However, G, GxE and G+E DeepSEA variants showed a 

differential enrichment pattern above all DeepSEA variants (Figure 7B), with strongest 

enrichments of GxE DeepSEA variants in GWAS of autism spectrum disorder (p=1.32x10-

12,OR=1.16 above DeepSEA), bipolar disorder (p=4.90x10-06, OR=1.16) and major depressive 

disorder (p=1.88x10-26, OR=1.16) and G+E DeepSEA variants in GWAS for schizophrenia 

(p=2.41x10-58, OR=1.27) and inflammatory bowel disease (p=9.14x10-124, OR=1.52). While 

SNPs with strong main meQTL effects such as those within G and G+E models have been 

reported to be enriched in GWAS for common disease, we now also show this for SNPs 

within GxE models that often have non-significant main G effects.  

 

Discussion 

 

We evaluated the effects of prenatal environmental factors and genotype on DNA methylation 

at VMRs identified in neonatal blood samples. We found that most variable methylation sites 

were best explained by either genotype and prenatal environment interactions (GxE) or 

additive effects (G+E) of these factors, followed by main genotype effects. This pattern was 

replicated in independent cohorts and underscores the need to consider genotype in the study 

of environmental effects on DNA methylation. This pattern held true when specifically 

examining the E of maternal smoking, which has the most robust environmental influence on 
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neonatal DNA methylation established to date 11. We observed that DNA methylation of CpG 

sites associated with maternal smoking were also best explained by a combination of G and E 

and not E alone in our cohorts. This finding is in agreement with a previous study of Gonseth 

et al. 33 who reported significant genetic contribution to CpG-sites that are sensitive to 

maternal smoking and hence advocated an adequate inclusion of genotype information in 

DNA methylation studies. Our results support that a more complete picture of factors 

influencing DNA methylation should include genotype information and could also help to 

detect environmental influences that may only be unmasked in the context of a specific 

genetic background. 

VMRs best explained by G, G+E or GxE and their associated functional genetic variants were 

located in distinct genomic regions, suggesting that different combinatorial effects of G and E 

may impact VMRs with distinct downstream regulatory effects. We also observed that 

functional variants with best models G, G+E or GxE, all showed significant enrichment 

within GWAS signals for complex disorders beyond the enrichment of the functional variants 

themselves. While this was expected for G and G+E models based on results from previous 

studies 24; 26; 27; 29, it was surprising for GxE SNPs, as these often do not have highly 

significant main genetic effects. Their specific enrichment in GWAS for common disorders 

supports the importance of these genetic variants that moderate environmental impact both at 

the level of DNA methylation but also, potentially, for disease risk. 

 

Interestingly, the best models with G+E or GxE, i.e. with the lowest AIC, were not 

necessarily the combination of the SNP with the lowest AIC with the environment with the 

lowest AIC.  While nearly 80% of all G+E models contained these specific SNP and 

environment combinations, this was only the case for half of the GxE models.  This suggests 

that testing only variables with significant main effects in multiplicative interaction or 
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additive models might be too restrictive and could lead to important combinations of 

genotype and phenotype not being captured.   

The fact that GxE and G+E best explained the majority of VMRs (see Figure 5) and that GxE 

models were selected by a larger margin than the other models (see Figure 2D) was 

consistently found across all tested cohorts. These findings are in line with a previous report 

by Teh et al. 34 who performed a similar analysis based on AIC in umbilical cord tissue and 

also support the hypothesis that E alone was only rarely the best model to explain variance in 

DNA methylation as well as that GxE models were selected by a larger margin as compared 

to G models. In the Teh et al study, 75% of all VMRs were best explained by GxE (the rest by 

G alone), while in our results this number was only 32%.  The most important difference 

between these two studies is that we additionally tested for additive models and that we took 

all combinations of cis SNP and environmental factors into account whereas Teh et al. 

focused on SNPs and phenotypes that presented with lowest AIC values in only G and only E 

models. Apart from that, several other factors might explain this discrepancy. First, our 

sample was larger and also ethnically more homogenous as compared to Teh at al. 34 who 

studied a mixed Asian population. Second, not all of the environmental factors that were 

tested in Teh et al. were available for our cohort. Third, we used imputed SNP genotypes 

whereas Teh et al. used only measured genotypes. In fact, 64% of the SNPs that are involved 

in best G models in our dataset were imputed. Fourth, as compared to Teh et al., we looked 

into a different set of CpGs as VMRs between the two studies only showed a slight overlap (n 

= 219 tagCpGs), likely due to differences in tissue and ethnicity.   

In addition to consistent findings using AIC-based approaches, we also saw some indication 

for replication of individual GxE and G+E combinations on selected VMRs using p-value 

based criteria, although we are underpowered to conduct a definitive analysis on this. Using 

data from PREDO and the even larger MoBa cohort, we observed that the direction of effects 

for the top G+E and GxE models in PREDO were similar in MoBa, indicating the same 
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directionality of effects across cohorts. This supports the possibility that our findings may be 

robust not only at the level of AIC for the best models, but also for specific combinations of G 

and E on VMRs. 

 

With the exclusion of maternal smoking as it was not present in the PREDO cohort, the 

environmental factors that were most included in the top G+E and GxE models were 

betamethasone treatment (in 49% of all best G+E and in 38% of all best GxE models) and 

maternal age (in 36% of all best G+E and in 47% of all best GxE models).  It has previously 

been shown that exogenous as well as endogenous glucocorticoids are associated with 

differences in DNA methylation with evidence from animal, human and in vitro studies 31; 80-

83. Effects of maternal age on newborn DNA methylation that may last into adulthood have 

already been reported and included data from the here used MoBa cohort 84.  Also in line with 

smaller or inconsistent effects on DNA methylation reported for maternal pregnancy stress 15, 

prenatal maternal anxiety or depression were not among the stronger environmental factors, in 

comparison with the other assessed environments that included pharmacologic and metabolic 

factors.  

While E alone was rarely the best model, it should be pointed out that main environmental 

effects on DNA methylation were observed (see Table S3), and consistent with previous large 

meta-analyses in the case of maternal smoking. However, the inclusion of genotypic effects in 

addition explained more of the variance. This supports the view that while main E effects on 

the newborn methylome are present, genotype is an important factor that, in combination with 

E, may explain even more of the variance in DNA methylation.  

VMRs best explained by either E, G, G+E or GxE and their associated functional SNPs were 

enriched for distinct genomics locations and chromatin states (see Figure 4). Overall, VMRs 

best explained by GxE were consistently enriched for regions annotated to the OpenSea, both 

against the VMRs derived from the Illumina 450K array as well as the EPIC array, the later 
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mainly adding content in OpenSea regions compared to the older array 85; 86. OpenSea regions 

describe regions that have lower CpG density and are located farthest from CpG Islands 87. 

Open Sea regions have been reported to be enriched for environmentally-associated CpGs 

with for example exposure to childhood trauma 88 and may harbor more long-range 

enhancers.  

In addition to their position relative to CpG islands and their CpG content, G, GxE and G+E 

VMRs and their associated functional SNPs also showed distinct enrichments for chromatin 

marks. Compared to 450K VMRs in general, that are enriched for enhancers (bivalent and 

not), VMRs with GxE as the best models were relatively depleted in regions surrounding the 

TSS, while VMRs with G+E were relatively enriched in these regions (see Figure 4), 

suggesting that GxE VMRs are located at more distance from the TSS than G+E and G 

VMRs. To better map the potential functional variants in these models and to compare 

methylation-associated SNPs from a regulatory perspective, we used DeepSEA 42, a machine 

learning algorithm that predicts SNP functionality from the sequence context based on 

sequencing data for different regulatory elements in different cell lines using ENCODE data 

66. We identified the SNPs with putatively functional consequences on regulatory marks by 

DeepSEA and compared putative regulatory effects of G, G+E and GxE hits. Relative to the 

imputed non-DeepSEA SNPs contained in our dataset, these predicted functional DeepSEA 

SNPs were enriched for TSS and enhancer regions and depleted for quiescent regions, 

supporting their relevance in regulatory processes (see Figure 4). Compared to DeepSEA 

SNPs overall, DeepSEA SNPs within the 3 different best models also showed distinct 

enrichment or depletion patterns. Likely functional GxE SNPs showed, similar to GxE 

VMRs, relative depletion in TSS regions while G+E SNPs showed enrichment in genic 

enhancers. Overall, both the VMRs as well as the associated functional SNPs appear to be in 

distinct regulatory regions, depending on their best model. In addition, GxE functional SNP 

and tagCpGs were located farther apart than SNP/tagCpG pairs within G or G+E models (see 
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Figure S2B), supporting a more long-range type of regulation in GxE interactions on 

molecular traits as compared to all genes; a similar relationship has been reported previously 

for GxE with regard to gene expression in C. elegans 89; 90.  

In addition, eQTMs 68 were also significantly enriched for VMRs selected in these study as 

compared to randomly selected CpGs, supporting that differential methylation of these sites, 

driven by genetic and environmental factors can correlate with gene expression. SNPs 

associated with differences in gene expression but also DNA methylation have consistently 

been shown to be enriched among SNPs associated with common disorders in GWAS 24; 27; 29; 

50. This is in line with the fact that functionally relevant SNPs chosen by DeepSEA, selected 

for their predicted effects on transcriptional and epigenetic regulation, are themselves 

significantly enriched in GWAS for all tested common disorders. On top of this baseline 

enrichment of all DeepSEA SNPs, the genetic variants that were within G, GxE or G+E 

models predicting variable DNA methylation were even further enriched in GWAS 

association results, but again with some differences in the pattern of enrichment. GxE 

DeepSEA SNPs were most enriched in GWAS association for three psychiatric disorders, i.e. 

autism spectrum disorders, bipolar disorder and major depressive disorder, while SNPs within 

G+E models were most enriched in GWAS for inflammatory bowel disease. The fact that the 

enrichment was observed for not only G and G+E SNPs, with strong main genetic effects, but 

also for GxE SNPs, with smaller to sometimes no main genetic effect on DNA methylation 

underscores the importance of also including SNPs within GxE models in the functional 

annotation of GWAS. A detailed catalogue of meQTLs that are responsive to prenatal 

environments could help support a better pathophysiological understanding of diseases for 

which risk is shaped by a combination of prenatal environment and genetic factors.  

Finally, we want to note the limitations of this study. First, we restricted our analyses to 

specific DNA methylation array contents that are inherently biased as compared to genome-

wide bisulfite sequencing, for example.  In addition, we restricted our analysis to VMRs. Ong 
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and Holbrooke 54 showed that this approach increases statistical power. Furthermore, VMRs 

are enriched for enhancers and transcription factor binding sites, overlap with GWAS hits 67 

and are associated with gene-expression of nearby genes at these sites 91. This is in line with 

our observation that identified VMRs presented with intermediate methylation levels which 

have been shown to be enriched in regions of regulatory function, like enhancers, exons and 

DNase I hypersensitivity sites 92.  Hence, the effects of genotypes on DNA methylation 

levels in VMRs might be higher as compared to less variable CpG-sites. In addition, 

genotypes are measured with much less error as compared to environmental factors which 

may also reduce the overall explained variance in large cohorts. 

Second, it has been reported that different cell types display different patterns of DNA 

methylation 67. Therefore, the most variable CpG-sites may also include those that reflect 

differences in cord blood cell type proportions. To address this issue, all analyses were 

corrected for estimated cell proportions to the best of our current availability, so that 

differences in cell type proportion likely do not account for all of the observed effects.  

However, only replication in specific cell types will be able to truly assess the proportion of 

VMRs influenced by this.  

Third, we used the AIC as main criterion for model fit 64 which is equivalent to a penalized 

likelihood-function. There are a variety of other model selection criteria 93 and choosing 

between these is an ongoing debate which also depends on the underlying research question.  

We decided to use the AIC as one of our main aims was to compare our results with the study 

of Teh et al. 34 in which this criterion was applied and as this method maybe more powerful 

for detecting GxE than for example model selection criteria based on lowest p-values.  

Finally, our analyses are restricted to DNA methylation in neonatal blood and to pregnancy 

environments. Whether similar conclusions can be drawn for methylation levels assessed at a 

later developmental stage needs to be investigated.   
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Conclusion 

We tested whether genotype, a combination of different prenatal environmental factors and 

the additive or the multiplicative interactive effects of both mainly influence VMRs in the 

newborn’s epigenome. Our results show that G in combination with E are the best predictors 

of variance in DNA methylation. This highlights the importance of including both individual 

genetic differences as well as environmental phenotypes into epigenetic studies and also the 

importance of improving our ability to identify environmental associations. Our data also 

support the disease relevance of variants predicting DNA methylation together with the 

environment beyond main meQTL effects, and the view that there are functional differences 

of additive and interactive effects of genes and environment on DNA methylation. Improved 

understanding of these functional differences may also yield novel insights into 

pathophysiological mechanisms of common non-communicable diseases, as risk for all of 

these disorders is driven by both genetic and environmental factors. 

 

Methods 

 

Availability of data and materials 

The datasets analyzed during the current study are not publicly available. However,  

an interested researcher can obtain a de-identified dataset after approval from the PREDO 

Study Board. Data requests may be subject to further review by the national register authority 

and by the ethical committees. Any requests for data use should be addressed to the PREDO 

Study Board (predo.study@helsinki.fi) or individual researchers. 

 

The PREDO cohort  

The Prediction and Prevention of Preeclampsia and Intrauterine Growth Restriction (PREDO) 

Study is a longitudinal multicenter pregnancy cohort study of Finnish women and their 
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singleton children born alive between 2006-2010 35. We recruited 1,079 pregnant women, of 

whom 969 had one or more and 110 had none of the known clinical risk factors for 

preeclampsia and intrauterine growth restriction. The recruitment took place when these 

women attended the first ultrasound screening at 12+0-13+6 weeks+days of gestation in one 

of the ten hospital maternity clinics participating in the study. The cohort profile 35 contains 

details of the study design and inclusion criteria. 

Ethics 

The study protocol was approved by the Ethical Committees of the Helsinki and Uusimaa 

Hospital District and by the participating hospitals. A written informed consent was obtained 

from all women.  

Maternal characteristics 

We tested 10 different maternal environments: 

Depressive symptoms 

Starting from 12+0-13+6 gestational weeks+days pregnant women filled in the 20 item 

Center for Epidemiological Studies Depression Scale (CES-D) 43 for depressive symptoms in 

the past 7 days. They filled in the CES-D scale biweekly until 38+0-39+6 weeks+days of 

gestation or delivery. We used the mean-value across all the CES-D measurements. 

Symptoms of anxiety 

At 12+0-13+6 weeks+days of gestation, women filled in the 20 item Spielberger's State Trait 

Anxiety Inventory (STAI) 44 for anxiety symptoms in the past 7 days. They filled in the STAI 

scale biweekly until 38+0-39+6 weeks+days of gestation or delivery. We used the mean-value 

across all these measurements. 

Betamethasone 

Antenatal betamethasone treatment (yes/no) was derived from the hospital records and the 

Finnish Medical Birth Register (MBR). 

Delivery method 
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Mode of delivery (vaginal delivery vs. caesarean section) was derived from patient records 

and MBR. 

Parity 

Parity (number of previous pregnancies leading to childbirth) at the start of present pregnancy 

was derived from the hospital records and the MBR. 

Maternal age 

Maternal age at delivery (years) was derived from the hospital records and the MBR. 

Pre-pregnancy BMI 

Maternal pre-pregnancy BMI (kg/m2), calculated from measurements weight and height 

verified at the first antenatal clinic visit at 8+4 (SD 1+3) gestational week was derived from 

the hospital records and the MBR. 

Hypertension 

Hypertension was defined as any hypertensive disorder including gestational hypertension, 

chronic hypertension and preeclampsia against normotension. Gestational hypertension was 

defined as systolic/diastolic blood pressure ≥140/90 mm Hg on ≥ 2 occasions at least 4 h apart 

in a woman who was normotensive before 20th week of gestation. Preeclampsia was defined 

as systolic/diastolic blood pressure ≥140/90 mm Hg on ≥2 occasions at least 4 h apart after 

20th week of gestation and proteinuria ≥300 mg/24 h. Chronic hypertension was defined as 

systolic/diastolic blood pressure ≥140/90 mm Hg on ≥2 occasions at least 4 h apart before 20th 

gestational week or medication for hypertension before 20 weeks of gestation.  

Gestational diabetes and oral glucose tolerance test (OGTT) 

Gestational diabetes was defined as fasting, 1h or 2h plasma glucose during a 75g oral 

glucose tolerance test ≥5.1, ≥10.0 and/or ≥8.5 mmol/L, respectively, that emerged or was first 

identified during pregnancy. We took the area under the curve from the three measurements 

as a single measure for the OGTT itself. 

Genotyping and Imputation 
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Genotyping was performed on Illumina Human Omni Express Exome Arrays containing 

964,193 SNPs.  Only markers with a call rate of at least 98%, a minor allele frequency of at 

least 1% and a p-value for deviation from Hardy-Weinberg-Equilibrium > 1.0 x 10-06 were 

kept in the analysis. After QC, 587,290 SNPs were available. 

In total, 996 cord blood samples were genotyped. Samples with a call rate below 98% (n=11) 

were removed.  

Any pair of samples with IBD estimates > 0.125 was checked for relatedness. As we 

corrected for admixture in our analyses, these samples were kept except for one pair which 

could not be resolved. From this pair we excluded one sample from further analysis. 

Individuals showing discrepancies between phenotypic and genotypic sex (n=1) were 

removed. We also checked for heterozygosity outliers but found none. 983 participants were 

available in the final dataset. 

Before imputation, AT and CG SNPs were removed. Imputation was performed using 

shapeit2 (https://mathgen.stats.ox.ac.uk./genetics_software/shapeit/shapeit.html) and impute2 

(https://mathgen.stats.ox.ac.uk/impute/impute_v2.html).  Chromosomal and base pair 

positions were updated to the 1000 Genomes Phase 3 reference set, allele strands were flipped 

where necessary.  

After imputation, we reran quality control, filtering out SNPs with an info score < 0.8, a 

minor allele frequency below 1% and a deviation from HWE with a p-value < 1.0x10 -06. 

This resulted in a dataset of 9,402,991 SNPs.  After conversion into best guessed genotypes 

using a probability threshold of 90%, we performed another round of QC (using SNP-call rate 

of least 98%, a MAF of at least 1% and a p-value threshold for HWE of 1.0x10-06), after 

which 7,314,737 SNPs remained for the analysis.  

For the evaluation of which model best explained the methylation sites, we pruned the dataset 

using a threshold of r2 of 0.2 and a window-size of 50 SNPs with an overlap of 5 SNPs. The 
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final, pruned dataset contained 788,156 SNPs. 36,241 of these variants were DeepSea variants 

(see Methods below). 

Methylation 

Cord blood samples were run on Illumina 450k Methylation arrays. The quality control 

pipeline was set up using the R-package minfi 45 (https://www.r-project.org). Three samples 

were excluded as they were outliers in the median intensities. Furthermore, 20 samples 

showed discordance between phenotypic sex and estimated sex and were excluded.  Nine 

samples were contaminated with maternal DNA according to the method suggested by Morin 

et al. 46 and were also removed.  

Methylation beta-values were normalized using the funnorm function 47. After normalization, 

two batches, i.e., slide and well, were significantly associated and were removed iteratively 

using the Combat function 48 in the sva package 49. 

We excluded any probes on chromosome X or Y, probes containing SNPs and cross-

hybridizing probes according to Chen et al. 50 and Price et al 51. Furthermore, any CpGs with a 

detection p-value > 0.01 in at least 25% of the samples were excluded.  

The final dataset contained 428,619 CpGs and 822 participants. For 817 of these, also 

genotypes were available. 

An additional 161 cord blood samples were run on Illumina EPIC Methylation arrays. 

Three samples were excluded as they were outliers in the median intensities. Three samples 

showed discordance between phenotypic sex and estimated sex and were excluded. Three 

samples were contaminated with maternal DNA and were also removed 46. 

Methylation beta-values were normalized using the funnorm function 47 in the R–package 

minfi 45. Three samples showed density artefacts after normalization and were removed from 

further analysis. We excluded any probes on chromosome X or Y, probes containing SNPs 

and cross-hybridizing probes according to Chen et al. 50, Price et al. 51 and McCartney et al. 52. 

Furthermore, any CpGs with a detection p-value > 0.01 in at least 25% of the samples were 
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excluded. The final dataset contains 812,987 CpGs and 149 samples. After normalization no 

significant batches were identified. For 146 of these samples, genotypic data was also 

available. 

Cord blood cell counts were estimated for seven cell types (nucleated red blood cells, 

granulocytes, monocytes, natural killer cells, B cells, CD4(+)T cells, and CD8(+)T cells) 

using the method of Bakulski et al. 53 which is incorporated in the R-package minfi 45. 

Identification of VMRs (variable methylated regions) 

The VMR approach was described by Ong and Holbrook 54. We chose all 42,862 CpGs with a 

MAD score greater than the 90th percentile. A VMR region was defined as at least two 

spatially contiguous probes which were at most 1kb apart of each other.  This resulted in 

3,982 VMRs in the 450K samples and in 8,547 VMRs in the EPIC sample. The CpG with the 

highest MAD scores was chosen as representative of the whole VMR in the statistical 

analysis.  

 

Drakenstein cohort  

Details on this cohort and the assessed phenotypes can be found in 39; 40. The birth cohort 

design recruits pregnant women attending one of two primary health care clinics in the 

Drakenstein sub-district of the Cape Winelands, Western Cape, South Africa – Mbekweni 

(serving a black African population) and TC Newman (serving a mixed ancestry population). 

Consenting mothers were enrolled during pregnancy, and mother–child dyads are followed 

longitudinally until children reach at least 5 years of age. Mothers are asked to request that the 

father of the index pregnancy attend a single antenatal study visit where possible. Follow-up 

visits for mother–child dyads take place at the two primary health care clinics and at Paarl 

Hospital.  

Pregnant women were eligible to participate if they were 18 years or older, were accessing 

one of the two primary health care clinics for antenatal care, had no intention to move out of 
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the district within the following year, and provided signed written informed consent. 

Participants were enrolled between 20 and 28 weeks’ gestation, upon presenting for antenatal 

care visit.  In addition, consenting fathers of the index pregnancy when available were 

enrolled in the study and attended a single antenatal study visit.  

Ethics 

The study was approved by the Faculty of Health Sciences, Human Research Ethics 

Committee, University of Cape Town (401/2009), by Stellenbosch University (N12/02/0002), 

and by the Western Cape Provincial Health Research committee (2011RP45). All participants 

provided written informed consent.                                                                                   

Maternal characteristics                                                                                                       

After providing consent, participants were asked to complete a battery of self-report and 

clinician-administered measures at a number of antenatal and postnatal study visits. All 

assessed phenotypes are described in detail in 39. Here, we give a short outline on the 

phenotypes which were used in our analysis. Maternal parity was obtained from the antenatal 

record; maternal age was from the date of birth as recorded on the mothers’ national identity 

document. The mode of delivery was ascertained by direct observation of the birth by a 

member of the study team as all births occurred at Paarl hospital. The SRQ-20 55 is a WHO-

endorsed measure of psychological distress consisting of 20 items which assess non-psychotic 

symptoms, including symptoms of depressive and anxiety disorders. Each item is scored 

according to whether the participant responds in the affirmative (scored as 1) or negative 

(scored as 0) to the presence of a symptom. Individual items are summed to generate a total 

score.  The Beck Depression Inventory (BDI-II) is a widely-used and reliable measure of 

depressive symptoms 56. The BDI-II comprises 21 items, each of which assesses the severity 

of a symptom of major depression. Each item is assessed on a severity scale ranging from 0 

(absence of symptoms) to 3 (severe, often with functional impairment). A total score is then 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 17, 2018. ; https://doi.org/10.1101/436113doi: bioRxiv preprint 

https://doi.org/10.1101/436113


	 31	

obtained by summing individual item responses, with a higher score indicative of more severe 

depressive symptoms.  

Smoking was assessed using The Alcohol, Smoking and Substance Involvement Screening 

Test (ASSIST) 57, a tool that was developed by the WHO to detect and manage substance use 

among people attending primary health care services. The tool assesses substance use and 

substance-related risk across 10 categories (tobacco, alcohol, cannabis, cocaine, 

amphetamine-type stimulants, inhalants, sedatives/sleeping pills, hallucinogens, opioids, and 

other substances), as well as enquiring about a history of intravenous drug use. Total scores 

are obtained for each substance by summing individual item responses, with a higher score 

indicative of greater risk for substance-related health problems.  

Hypertension was assessed by blood pressure measured antenatally. 

 

Genotyping and Imputation                                                                                                                  

Genotyping in DCHS was performed using the Illumina PsychArray for those samples with 

450k data, or the Illumina GSA for those samples with EPIC DNA methylation data 

(Illumina, San Diego, USA). For both array types, QC and imputation was the same; first, raw 

data was imported into Genome Studio and exported into R for QC. SNPs were filtered out if 

they had a tenth percentile GC score below 0.2 or an average GC score below 0.1, for a total 

of 140 SNPs removed. Phasing was performed using shapeit, and imputation was performed 

using impute2 with 1000 Genomes Phase 1 reference data. After imputation, we used qctool 

to filter out SNPs with an info score <0.8 or out of Hardy-Weinberg equilibrium.  

As after imputation, only 5,286 DeepSEA variants were available for those samples 

genotyped on the PsychArray and only 4,049 for those samples genotyped on the GSAchip , 

we performed LD-pruning based on a threshold of r2 of 0.2 and a window-size of 50 SNPs 

with an overlap of 5 SNPs. This resulted in 162,292 SNPs (PsychArray) and 176,553 SNPs 

(GSAchip). 
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Methylation                                                                                                                          

Details for DNA methylation measurements and quality control have been previously 

published 46. Briefly, we performed basic quality control on data generated by either the 450k 

or EPIC arrays using Illumina’s Genome Studio software for background subtraction and 

colour correction. Data was filtered to remove CpGs with high detection p values, those on 

the X or Y chromosome, or with previously identified poor performance. 450k data was 

normalized using SWAN and EPIC data using BMIQ, and both used ComBat to correct for 

chip (both), and row (450k only). The final analysis was performed with 107 samples with 

methylation levels from the 450k array and 151 with methylation levels assessed on the EPIC 

array and available genotypes. 

VMRs 

We identified 6,072 VMRs in DCHS I and 10,005 VMRs in DCHS II. 

 

The UCI cohort  

Mothers and children were part of an ongoing, longitudinal study, conducted at the University 

of California, Irvine (UCI), for which mothers were recruited during the first trimester of 

pregnancy 36-38. All women had singleton, intrauterine pregnancies. Women were not eligible 

for study participation if they met the following criteria: corticosteroids, or illicit drugs during 

pregnancy (verified by urinary cotinine and drug toxicology). Exclusion criteria for the 

newborn were preterm birth (i.e., less than 34 weeks of gestational age at birth), as well as 

any congenital, genetic, or neurologic disorders at birth.  

Ethics 

The UCI institutional review board approved all study procedures and all participants 

provided written informed consent. 

Maternal Characteristics 
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Maternal sociodemographic characteristics (age, parity) were obtained via a standardized 

structured interview at the first pregnancy visit. Maternal pre-pregnancy BMI (weight 

kg/height m2) was computed based on pre-pregnancy weight abstracted from the medical 

record, and maternal height was measured at the research laboratory during the first 

pregnancy visit. Obstetric risk conditions during pregnancy, including presence of gestational 

diabetes and hypertension, and delivery mode were abstracted from the medical record. At 

each pregnancy visit the Center for Epidemiological Studies Depression Scale 43 and the State 

scale from the State–Trait Anxiety Inventory 44 were administered. For individuals with <3 

missing items on any scale at any time point, the mean responses for that scale were 

calculated and then multiplied by the total number of items in the respective scale, to generate 

total scale scores that are comparable to those generated from participants without any 

missing data. We used the average depression and anxiety score throughout pregnancy in the 

calculations. Maternal smoking during pregnancy was determined by maternal self-report and 

verified by measurement of urinary cotinine concentration. Urinary cotinine was assayed in 

maternal samples collected at each trimester using the Nicotine/COT(Cotinine)/Tobacco Drug 

Test Urine Cassette (http://www.meditests.com/nicuintescas.html), which involves 

transferring 4 drops of room temperature urine into the well of the cassette, and employs a 

cutoff for COT presence of 200ng/ml. Endorsement of smoking or detection of urinary COT 

in any trimester was coded as 1, and absence of evidence for smoking in any trimester coded 

as 0.  

Genotyping 

Genomic DNA was extracted from heel prick blood samples and used for all genomic 

analysis. Genotyping was performed on Illumina Human Omni Express (24 v1.1) Arrays 

containing 713,014 SNPs. All samples had a high call rate (above 97%). SNPs with a minor 

allele frequency  >5% and a p-value for deviation from Hardy-Weinberg-Equilibrium > 1.0 x 

10-25 were retained for analysis. After QC, 602,807 SNPs were available. 
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Imputation 

Before imputation, chromosomal and base pair positions were updated to the Haplotype 

Reference Consortium (r1.1) reference set, allele strands were flipped where necessary. 

Phasing was performed using EAGLE2 (https://data.broadinstitute.org/alkesgroup/Eagle/) and 

imputation was performed using PBWT (https://github.com/VertebrateResequencing/pbwt). 

Imputed SNPs with an info score < 0.8, duplicates and ambiguous SNPs were removed 

resulting in 21,341,980 SNPs. Of these, 19,530 were DeepSEA variants. 

DNA Methylation 

DNAm analysis using the Infinium Illumina MethylationEPIC BeadChip (Illumina, Inc., San 

Diego, CA) was performed according to the manufacturer´s guidelines in using genomic 

DNA derived from neonatal heel prick samples. Quality Control carried out in minfi 45. No 

outliers were detected in the median intensities of methylated and unmethylated channels. All 

samples had a high call rate of at least 95% and their predicted sex was the same as the 

phenotypic sex. We removed CpGs with a high detection value (p<0.0001), probes missing 

>3 beads in >5% of the cohort, in addition to non-specific/cross-hybridizing and SNP probes 
51; 52. Methylation beta-values were normalized using functional normalization (funnorm) 47. 

We also iteratively adjusted the data for relevant technical factors, i.e. array row, 

experimental batch and sample plate, using Combat 48.  The final dataset contained 768,910 

CpGs. Neonatal blood cell counts were estimated for seven cell types: nucleated red blood 

cells, granulocytes, monocytes, natural killer cells, B cells, CD4(+)T cells, and CD8(+)T cells 
53. 

The final dataset contained 121 samples with available genotypes and methylation values. 
VMRs 

Applying the same procedure as for  PREDO I and PREDO II, we identified 9,525 VMRs in 

the ICU cohort. 

 

MoBa cohort 
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Participants represent two subsets of mother-offspring pairs from the national Norwegian 

Mother and Child Cohort Study (MoBa) 58. MoBa is a prospective population-based 

pregnancy cohort study conducted by the Norwegian Institute of Public Health. The years of 

birth for MoBa participants ranged from 1999-2009. MoBa mothers provided written 

informed consent. Each subset is referred to here as MoBa1 and MoBa2. MoBa1 is a subset of 

a larger study within MoBa that included a cohort random sample and cases of asthma at age 

three years 59. We previously reported an association between maternal smoking during 

pregnancy and differential DNA methylation in MoBa1 newborns 60. We subsequently 

measured DNA methylation in additional newborns (MoBa2) in the same laboratory 

(Illumina, San Diego, CA) 11. MoBa2 included cohort random sample plus cases of asthma at 

age seven years and non-asthmatic controls. Years of birth were 2002-2004 for children in 

MoBa1, 2000-2005 for MoBa2.  

Ethics 

The establishment and data collection in MoBa obtained a license from the Norwegian Data 

Inspectorate and approval from The Regional Committee for Medical Research Ethics.  Both 

studies were approved by the Regional Committee for Ethics in Medical Research, Norway. 

In addition, MoBa1 and MoBa2 were approved by the Institutional Review Board of the 

National Institute of Environmental Health Sciences, USA. 

Maternal characteristics 

To replicate specific GxE and G+E from PREDO I, we focused on those characteristics which 

were available in both cohorts: maternal age, pre-pregnancy BMI and hypertension. 

Within MoBa, the questionnaires at weeks 17 and 30 include general background information 

as well as details on previous and present health problems and exposures. The birth record 

from the Medical Birth Registry of Norway 61which includes maternal health during 

pregnancy as well as procedures around birth and pregnancy outcomes, is integrated in the 

MoBa database.  
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Genotyping and Imputation 

DNA was extracted from the MoBa biobank  and genotyped on the Illumina 

HumanExomeCore platform. The genotypes were called with GenomeStudio software. 

Phasing and imputation were done using shapeit2 

(https://mathgen.stats.ox.ac.uk./genetics_software/shapeit/shapeit.html) and impute2 

(https://mathgen.stats.ox.ac.uk/impute/impute_v2.html) with the thousand genomes phase 3 

reference panel for the European population. Variates with a imputation score of less than 0.8 

were filtered out.  

Methylation  

Details of the DNA methylation measurements and quality control for the MoBa1 participants 

were previously described 41 and the same protocol was implemented for the MoBa2 

participants. Briefly, at birth, umbilical cord blood samples were collected and frozen at birth 

at -80°C. All biological material was obtained from the Biobank of the MoBa study 41. 

Bisulfite conversion was performed using the EZ-96 DNA Methylation kit (Zymo Research 

Corporation, Irvine, CA) and DNA methylation was measured at 485,577 CpGs in cord blood 

using Illumina’s Infinium HumanMethylation450 BeadChip 62. Raw intensity (.idat) files 

were handled in R using the minfi package to calculate the methylation level at each CpG as 

the beta-value (β=intensity of the methylated allele (M)/(intensity of the unmethylated allele 

(U) + intensity of the methylated allele (M) + 100)) and the data was exported for quality 

control and processing. Control probes (N=65) and probes on X (N=11 230) and Y (N=416) 

chromosomes were excluded in both datasets. Remaining CpGs missing > 10% of 

methylation data were also removed (N=20 in MoBa1, none in MoBa2). Samples indicated by 

Illumina to have failed or have an average detection p value across all probes < 0.05 (N=49 

MoBa1, N=35 MoBa2) and samples with gender mismatch (N=13 MoBa1, N=8 MoBa2) 

were also removed. For MoBa1 and MoBa2, we accounted for the two different probe designs 

by applying the intra-array normalization strategy Beta Mixture Quantile dilation (BMIQ) 63. 
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The Empirical Bayes method via ComBat was applied separately in MoBa1 and MoBa2 for 

batch correction using the sva package in R 49. After quality control exclusions, the sample 

sizes were 1,068 for MoBa1 and 685 for MoBa2.   

After QC, the total number of samples was 1,732, with 1,592 overlapping with the 

methylation samples. 

 

Regression analysis 

Regression analysis was conducted using the lm function in R 3.3.1 (https://www.r-

project.org).  We included the child’s sex, seven estimated cell counts as well as the first two 

(PREDO I and PREDO II), first three (UCI) and first five (DCHS I and II) principal 

components of the MDS analysis on the genotypes in the model, the corresponding plot of the 

first ten MDS-components in PREDO is depicted in Figure S4. SNP genotypes were recoded 

into a count of 0, 1 or 2 representing the number of minor allele copies.  For each VMR site, 

we tested SNPs located in a 1MB window up- and downstream of the specific site. In PREDO 

and UCI, we restricted the analysis to DeepSEA variants while we used the pruned SNP-set in 

DCHS. 

For each VMR we tested four models: 

(1) Methylation ~ covariates + environment 

(2) Methylation ~ covariates + SNP 

(3) Methylation ~ covariates + SNP + environment 

(4) Methylation ~ covariates + SNP + environment + SNP x environment 

For each model, the AIC, Akaike’s information criterion 64 was calculated and the model with 

the lowest AIC was chosen as the best model.   

 

Enrichment analyses 
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With regard to enrichment for VMRs, CpG-site within VMRs were compared to all other 

CpG-sites on the 450K array located in non-VMR-regions. With regard to enrichment for 

VMRs best explained by G, G+E or GxE, tagCpGs best explained by the specific model were 

compared to tagCpGs best explained by any of the other models. For enrichment tests for 

DeepSEA SNPs, non-DeepSEA SNPs present in our dataset were used as comparison group. 

Enrichment tests were performed based on a hyper-geometric test, i.e. a Fisher-test. The 

significance levels was set at p<0.05. 

With regard to enrichment for GWAS hits, DeepSEA variants were matched to GWAs 

variants based on chromosome and position (hg19). To check for enrichment for nominal 

significant GWAS hits, the full summary statistics were derived from the respective 

publication.  

Histone ChiP-seq peaks from Roadmap Epigenomics project for blood and embryonic stem 

cells were downloaded from 

http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/broadPeak/. 

The pre-processed consolidated broad peaks from the uniform processing pipeline of the 

Roadmap project were used.   

 

Genomic annotation mapping 

CpG sites were mapped to the genome location according to Illumina’s annotation using the 

R-package minfi.   

 

DeepSEA Analysis 

Pretrained DeepSEA model was downloaded from: 

http://deepsea.princeton.edu/media/code/deepsea.v0.94.tar.gz and variant files in VCF format 

are used for producing e-values. VCF files were first split into smaller files each containing 
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one million variants and the model was run using the command line on a server with a 

NVIDIA Titan X GPU card. 

We reran our models using only DeepSEA variants which had been identified by the 

algorithm of Zhou and Troyanskaya 42. This method predicts functionality of a SNP based on 

the DNA-sequence. We included all 212,210 variants with a functional significance e-value 

below 5x10-05. The	e-values represent the significance of the regulatory impact of given 

variants compared to one million random variants.  

 

Random-effects meta-analysis 

GxE and G+E result for PREDO and for MoBa were meta-analysed using a random-effects 

model in the R-package rmeta. Replication was defined as DeepSEA-tagCpG-environment 

combinations showing the same effect direction in both cohorts, presenting with smaller p-

values as for PREDO alone and with a FDR-corrected p-value (across all combinations tested 

in the meta-analysis) below 0.05. 
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Figures and figure legends  
 
Figure 1 
 
Flow diagram of VMR analysis 
 
Figure 2 
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A: Histogram of median methylation levels of CpG-sites located in non-VMRs (above) and 
CpG-sites located in VMRs (below). 
 
B: Percentage of models (G, E, GxE or G+E) with the lowest AIC explaining variable DNA 
methylation using the PREDO I dataset with pruned SNPs. 
 
C: Distribution of the different types of prenatal environment included in the E model with 
the lowest AIC (right), in the combinations yielding the best model GxE (middle), or the best 
model G+E models (left). 
To increase readability all counts < 3% have been omitted. 
 
D: DeltaAIC, i.e , the difference in AIC, between best model and next best model, stratified 
by the best model. Y-axis denotes the delta AIC and the X-axis the different models. The 
median is depicted by a black line, the rectangle spans the first quartile to the third quartile, 
whiskers above and below the box show the location of minimum and maximum beta-values.  
 
 
Figure 3 
 
A: Percentage of models (G, E, GxE or G+E) with the lowest AIC explaining variable DNA 
methylation using the dataset with DeepSEA annotated SNPs. 
 
B: Distribution of the locations of all VMRs and tagVMRs with best model E, G, G+E and 
GxE on the 450k array using only DeepSEA variants in relationship to CpG-Islands based on 
the Illumina 450K annotation. 
 
C: Distribution of gene-centric locations of all VMRs and tagVMRs with best model E, G, 
G+E and GxE on the 450k array using only DeepSEA variants. 
 
 
Figure 4 
 
A: Histone mark enrichment for all VMRs. The Y-axis denotes the fold enrichment/depletion 
as compared to no-VMRs. Blue bars indicate significant enrichment/depletion, grey bars non-
significant differences. 
 
B: Histone mark enrichment for tagVMRs with best model E, G, G+E and GxE relative to all 
VMRs. Green color indicates depletion, red color indicates enrichment. Thick black lines 
around the rectangles indicate significant enrichment/depletion. 
 
C: Histone mark enrichment for all DeepSEA variants in the dataset. Blue bars indicate 
significant enrichment/depletion. 
 
D: Histone mark enrichment for all DeepSEA variants involved in models where either G, 
G+E or GxE is the best model as compared to all tested DeepSEA variants. Green color 
indicates depletion, red color indicates enrichment. Thick black lines around the rectangles 
indicate significant enrichment/depletion. 
 
 
Figure 5 
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Percentage of models (G, E, GxE or G+E) with the lowest AIC explaining variable DNA 
methylation in PREDO I (450K), DCHS I (450K), PREDO II (EPIC), MecTransGen (EPIC) 
and DCHS II (EPIC) 
 
 
Figure 6 
 
 
A: Illustration of one of the top G+E hits from the meta-analysis, including location of SNP 
rs34943122 and CpG cg03120555 relative to their genomic location and the following UCSC 
tracks (based on gh19): NCBI RefSeq genes, CpG Islands, GM12878 Methylation 450k 
BeadArray from ENCODE/HAIB, H1-hESC Methylation 450k BeadArray from 
ENCODE/HAIB, simple nucleotide polymorphism (db SNP147), genome segmentations 
based on ENCODE data for GM12878, genome segmentations based on ENCODE data for 
H1-hESC. 
In the lower part of the panel, boxplots are given for the results from PREDO (upper panels) 
and MoBa (lower panels) for main effects of E (hypertension no-yes), G and G+E). The Y-
axis denotes the respective beta-values and the X-axis the different environmental conditions 
or genotypes. The median is depicted by a black line, the rectangle spans the first quartile to 
the third quartile, whiskers above and below the box show the location of minimum and 
maximum beta-values.  
On the right side, a forest-plot for this G+E combination is given where the effect size 
estimate is depicted as black square and the grey line indicates the respective confidence 
interval on the X-axis. The Y-axis denotes the different studies and the meta-analysis. The 
result of the meta-analysis is depicted as a diamond: the center line of the diamond gives the 
effect size estimator from the meta-analysis while the lateral tips of the diamond indicated the 
lower and upper limits of the confidence interval. 
 
 
B: Illustration of one of the top GxE hits from the meta-analysis, including location of SNP 
rs112118092 and CpG cg26750002 relative to their genomic location and the following 
UCSC tracks (based on hg19): NCBI RefSeq genes, CpG Islands, GM12878 Methylation 
450k BeadArray from ENCODE/HAIB, H1-hESC Methylation 450k BeadArray from 
ENCODE/HAIB, simple nucleotide polymorphism (db SNP147), genome segmentations 
based on ENCODE data for GM12878, genome segmentations based on ENCODE data for 
H1-hESC. 
In the lower part of the panel, boxplots are given for the results from PREDO (upper panels) 
and MoBa (lower panels) for main effects of E (maternal age below the median, maternal age 
above the median), G and GxE. The Y-axis denotes the respective beta-values and the X-axis 
the different environmental conditions or genotypes. The median is depicted by a black line, 
the rectangle spans the first quartile to the third quartile, whisker above and below the box 
show the location of minimum and maximum beta-values. 
On the right side, a forest-plot for this GxE combination is given where the effect size 
estimate is depicted as black square and the grey line indicates the respective confidence 
interval on the X-axis. The Y-axis denotes the different studies and the meta-analysis The 
result of the meta-analysis is depicted as a diamond: the center line of the diamond gives the 
effect size estimator from the meta-analysis while the lateral tips of the diamond indicated the 
lower and upper limits of the confidence interval. 
 
Figure 7 
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A: Enrichment for nominal significant GWAS associations for all tested DeepSEA variants 
and their LD proxies for GWAS for ADHD (attention deficit hyperactivity disorder), ASD 
(autism spectrum disorder), BMI (body-mass index), BP (bipolar disorder), CrossDisorder, 
IBD (inflammatory bowel disease), MDD (major depressive disorder), SCZ (schizophrenia) 
and T2D (Type 2 diabetes). 
The Y-axis denotes the fold enrichment non-DeepSEAvariants. Blue bars indicate significant 
enrichment/depletion. 
 
B: Enrichment for nominal significant GWAS hits for DeepSEA variants and their LD 
proxies involved in best models with G, G+E or GxE as compared to all tested DeepSEA 
variants.  Green color indicates depletion, red color indicates enrichment. Thick black lines 
around the rectangles indicate significant enrichment/depletion. 
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Table1: overview of investigated cohorts 

cohort PREDO I PREDO II DCHS I DCHS II UCI 
sample-size 817 146 107 151 121 
methylation array Illumina 450K Illumina EPIC Illumina 450K Illumina EPIC Illumina EPIC 
# VMRs 3,982 8,547 6,072 10,005 9,525 
infant gender 
male 

433 (53.0%) 75 (51.4%) 63 (58.8%) 83 (55.0%) 65 (53.7%) 

maternal age mean (sd) 33.28 (5.79) 32.25 (4.92) 26.27 (5.87) 27.42 (5.93) 28.47 (4.91) 

partity mean (sd) 1,05 (1.02) 0.87 (1.03) 0.98 (1.12) 1.09 (1.07) 1.11 (1.15) 

Caesarian section  169 (20.7%) 36 (24.7%) 19 (17.6%) 35 (23.2%) 37 (30.6%) 
pre-pregnancy BMI mean (sd) 27.42 (6.40) 25.37 (5.79) not available not available 27.90 (6.44) 
maternal smoking yes exclusion 

criterion 
exclusion 
criterion 

7.40 (10.52) a) 4.94 (9.43) a) 10 (8.2%) 

gestational diabetes yes 183 (22.4%) 19 (13.0%) no cases 
available 

no cases 
available 

9 (7.4%) 

hypertension yes 275 (33.7%) 31 (21.2%) 2 (.19%) 2 (1.3%) 7 (5.8%) 
betamethasone treatment yes 35 (4.3%) 2 (1.5%) not available not available no cases 

available 
anxiety score mean (sd) 33.93 (7.90) b) 34.43 (8.38) b) 5.70 (4.15) c) 5.32 (3.91) c) 1.67 (0.41) d) 
depression score mean (sd) 11.34 (6.47) e) 11.53 (6.98) e) 17.64 (12.10) f)   12.52 (11.55) f)   0.68 (0.41) g)    
proportion: 
best model E 

2.0% <1% <1% <1% 4.1% 

best model G 45.1% 15.0% 15.8% 11.5% 12.8% 
best model G+E 23.9% 29.0% 29.8% 32.1% 24.1% 
best model GxE 29.0% 56.0% 54.3% 56.3% 59.0% 

a) based on ASSIST Tobacco Score  
b) STAI sum scores 
c) SRQ-20 
d)  STAI average scores 
e) CESD sum scores 
f)  BDI-II 
g) CESD average score 
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determine variably methylated regions (VMRs): CpG-sites with MAD-score > 
90th percentile and at least 2 consecutive CpGs with at most 1kb distance  

model E:  
tagCpG ~ environmental 
phenotypes 
 
keep model with lowest AIC across 
all E models 

tagCpG: choose CpG-site with highest MAD-
score within each VMR as representative 

model G:  
tagCpG  ~ cis DeepSEA variants 
 
 
keep model with lowest AIC 
across all G models 

model G+E:  
tagCpG ~ cis DeepSEA 
variants +environmental 
phenotypes  
 
keep model with lowest AIC 
across all G +E models 

model GxE:  
tagCpG ~ cis DeepSEA 
variants x environmental 
phenotypes  
 
keep model with lowest AIC 
across all G x E models 

determine model with lowest AIC across E, G, 
G+E and GxE models as best model for each 
tagCpG 

functional annotation of tagCpGs/DeepSEA 
variants stratified by best model E, G, G+E, GxE 

replication of partition in best model E, G, G+E 
and GxE in independent cohorts 

for each tagCpG 

for all DeepSEA SNPs in 1MB cis  
distance to tagCpGs for ten prenatal E for ten prenatal E x deepSEA SNPs in 1 MB cis of tag CpG 

Figure	1	
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