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Abstract 
H3K27ac is associated with regulatory active enhancers, but its exact role in 
enhancer function remains elusive. Using mass spectrometry-based interaction 
proteomics, we identified the Super Elongation Complex (SEC) and GBAF, a non-
canonical GLTSCR1L- and BRD9-containing SWI/SNF chromatin remodeling 
complex, to be major interactors of H3K27ac. We systematically characterized the 
composition of GBAF and the conserved GLTSCR1/1L ‘GiBAF’-domain, which we 
found to be responsible for GBAF complex formation and GLTSCR1L nuclear 
localization. Inhibition of the bromodomain of BRD9 revealed interaction between 
GLTSCR1L and H3K27ac to be BRD9-dependent and led to GLTSCR1L dislocation 
from its preferred binding sites at H3K27ac-associated enhancers. GLTSCR1L 
disassociation from chromatin resulted in genome-wide downregulation of enhancer 
transcription while leaving most mRNA expression levels unchanged, except for 
reduced mRNA levels from loci topologically linked to affected enhancers. Our 
results indicate that GBAF is an enhancer-associated chromatin remodeler important 
for transcriptional and regulatory activity of enhancers. 
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Regulatory events at gene promoters and transcriptional enhancers modulate cell-

type specific gene activities and allow cells to respond to external cues (Heinz et al. 

2015; Beagrie & Pombo 2016; Lenhard et al. 2012). Several processes take part in 

these actions, including ATP-dependent chromatin remodeling, transcription factor 

(TF) and co-activator binding, and the recruitment of general transcription factors 5 

(GTF) and RNA polymerase II (Pol II) (Vernimmen & Bickmore 2015). Integral to the 

activation of gene transcription is a favorable chromatin environment. Gene 

transcriptional activity is associated with permissive histone post-translational 

modifications (PTMs) (Li et al. 2007) and a three-dimensional folding of the genome 

that brings enhancers in close proximity with gene promoters (Sanyal et al. 2012; 10 

Rao et al. 2014), thereby allowing the regulation of target genes.  

 

Genome-wide charting of histone PTMs has identified chromatin signatures 

associated with repressive and transcriptionally permissive states as well as 

enhancer activity (Jenuwein 2001; Heintzman et al. 2009; Kundaje et al. 2015). 15 

However, the mechanisms by which many histone PTMs exert their putative 

functions are elusive. These may include the modulation of nucleosome-DNA 

interaction strength or recruitment of protein complexes that execute specific 

functions (Kouzarides, 2007). Among many potential histone PTMs, acetylation of 

histone H3 at lysine 27 (H3K27ac) is associated with regulatory activity of both gene 20 

promoters and enhancers (Creyghton et al., 2010, Ernst et al., 2011, Rajagopal et 

al., 2014, Rada-Iglesias et al., 2011). H3K27ac is deposited by acetyltransferases 

CBP and P300 (Tie et al. 2009). Targeting of P300 fused with nuclease-null dCas9 

has been reported to elevate H3K27ac levels and activate transcription from 

promoter-proximal as well as distal regulatory regions (Hilton et al. 2015). 25 

  

Although the association of H3K27ac with active regulatory elements is known, its 

potential role in enhancer function is still unclear. Given its recognition by acetyl-

lysine reader domains, such as BROMO and YEATS, it is possible that H3K27ac 

attracts effector proteins to enhancers. Previous work to identify H3K27ac-interacting 30 

proteins has relied on chromatin immunoprecipitation followed by identification of co-

purified proteins by mass-spectrometry (ChIP-MS) (Engelen et al. 2015; Ji et al. 

2015). Unfortunately, due to experimental setup (purification of sheared, crosslinked 

chromatin with pre-existing protein complexes), it is hard to discern the contribution 
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of H3K27ac to enhancer function from DNA-dependent activities, such as TF 

binding. 

 

Here, we applied a SILAC-based histone-peptide pulldown approach to identify 

proteins interacting with H3K27ac in mouse embryonic stem cells and HeLa cells, 5 

also in combination with H3K23ac. These experiments revealed Super Elongation 

Complex (SEC) and BRM/BRG1 Associated Factors (BAF) as major interactors of 

H3K27ac. Furthermore, we identified GLTSCR1L protein to be a part of a H3K27ac-

specific BAF complex, recently identified as GBAF (Alpsoy & Dykhuizen 2018), and 

we characterized the interaction partners of the GLTSCR1L protein and its 10 

conserved protein-interaction domain. Our findings led us to further investigate the 

function of the GLTSCR1L-BRD9 containing GBAF complex in transcription. Upon 

treatment with a BRD9 bromodomain inhibitor, we observed enhancer-specific 

transcriptional abnormalities, indicating an important role for GBAF in enhancer 

transcription and regulatory activity. 15 

Results 

SWI/SNF and Super Elongation Complex are major acetyl-
lysine interacting complexes  
We applied an established SILAC histone peptide pulldown approach (Vermeulen et 

al. 2007) to identify proteins that specifically bind to H3K27ac (Methods). To 20 

discriminate proteins that bind specifically to H3K27ac from proteins with a general 

affinity for acetyl-lysine-containing histone peptides, we performed the same 

experiment with peptides associated with the highly abundant (Sidoli et al. 2015; 

Tvardovskiy et al. 2015) H3K23ac mark (Fig. 1a,b). In addition, we included an 

experiment with histone peptides diacetylated at both H3K23 and H3K27 residues 25 

(Fig. 1e,f), since these acetylations frequently colocalize and are associated with 

active transcription (Wang et al. 2008). To understand how the recognition of 

H3K27ac compares across mammals and whether there are any differences 

between pluripotent and terminally differentiated states, we used both HeLa cells 

and mouse embryonic stem cells (mESCs) as sources of nuclear extracts for the 30 

pulldown experiments. Each peptide pulldown experiment resulted in the 
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identification of more than 2,000 proteins, of which 10 to 30 showed significant 

acetyl-lysine specific binding (Fig. 1a-c, Supplementary Fig. 1a-c, Supplementary 

Data 1). Our experimental design allowed us not only to identify acetyl-lysine binding 

complexes, but also to estimate their binding preferences (H3K27ac versus 

H3K23ac). We averaged forward and reverse SILAC ratios of each individual 5 

pulldown separately and applied hierarchical clustering. Proteins from the same 

complexes were found to cluster together (Fig. 1d, Supplementary Fig. 1d). The 

majority of identified histone H3 acetyl-lysine interacting proteins are members of two 

distinct protein complexes: the SEC and the SWI/SNF family of chromatin 

remodeling complexes (Wang et al. 1996; Lin et al. 2010). In addition, we detected 10 

NuA4 complex components DMAP1 and YEATS4 (Doyon et al. 2004) and 

components of the general transcription factor TFIID (Dynlacht et al. 1991).  

 

The SEC complex is important for the activation of transcription by release of paused 

Pol II (Lin et al 2010; Luo et al, 2012). Although many SEC complex components 15 

were identified in pulldowns with all acetylated histone peptides, we observed 

differences in SILAC ratios between nuclear extracts. The highest SILAC ratio for the 

SEC complex subunits was observed with monoacetylated H3K27ac histone peptide 

with HeLa and diacetylated H3K23acK27ac peptide with mESC nuclear extracts. In 

HeLa cells, we were able to detect the presence of AF9, AFF4, AFF1 and ENL, but 20 

not ELL family proteins nor P-TEFb (Fig. 1b), important mediators of SEC and Pol II 

interaction (Luo et al, 2012; Knutson et al, 2016). In mESCs, we detected nearly all 

SEC complex subunits, including AF9, AFF4, ELL3 and CDK9 (Supplementary Fig. 

1c). AF9 contains a YEATS-domain that is able to recognize histone modifications 

and has previously been found to bind H3K9ac and H3K27ac (Li et al, 2014). 25 
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Figure 1. SILAC histone peptide pulldowns identify SEC and SWI/SNF complexes as 
major interactors of H3K23ac and H3K27ac. a-c Scatter plots of forward (horizontal axes) 
versus reverse (vertical axes) SILAC ratios from histone peptide pulldowns using (a) 
H3K23ac, (b) H3K27ac, or (c) diacetylated H3K23acK27ac baits with HeLa cell nuclear 5 
extracts (n=2 pulldowns for each bait). The lower and upper hinges of boxes correspond to 
the first and third quartiles of data, respectively, and the whiskers extend to the largest and 
smallest data points no further away than 1.5 times the interquartile range. d Heatmap of 
average forward and reverse SILAC ratios (log2). The ordering of rows in the heatmap and 
the associated dendrogram were derived from agglomerative hierarchical clustering of the 10 
H3K23- and K27-interacting proteins identified in the histone peptide pulldowns (a-c), using 
Euclidean distances. e Visual summary of the most enriched interactors of H3K23ac (left), 
H3K27ac (middle), and H3K23acK27ac (right) peptide pulldowns. Subunits are colored 
according to the log2 value of their enrichment in the pulldowns. 
 15 

Mammalian SWI/SNF (or BAF) complexes are ATP-dependent chromatin 

remodelers implicated in a wide variety of processes in the cell nucleus (Hargreaves 

& Crabtree 2011). Different combinations of SWI/SNF subunits generate a diversity 

of functionally distinct complexes, including two canonical subfamilies (BAF, PBAF), 

their subcomplexes, and GBAF, a recently described non-canonical SWI/SNF 20 

complex (Phelan et al. 1999; Hohmann & Vakoc 2014; Alpsoy & Dykhuizen 2018). 

We observed known core SWI/SNF subunits (SMARCA2/4, SMARCC1, SMARCC2) 

and shared subunits (SMARCB1, SMARCE1, SMARCD1/2/3, ACTL6A, BCL7A/C) in 

pulldowns with each of the acetylated histone peptide baits, with both HeLa and 
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mESC nuclear extracts. The complete PBAF complex, represented by ARID2 

(BAF200), PHF10 (BAF45A), PBRM1 (BAF180) and BRD7, was found to prefer 

interaction with H3K23ac-containing peptides (both mono-acetylated H3K23ac and 

di-acetylated H3K23acK27ac peptides) (Fig. 1a,c, Supplementary Fig. 1a,c). 

However, known BAF complex specific subunits (ARID1A/1B (BAF250A/B), 5 

DPF1/2/3 (BAF45B/C/D)) were absent from these pulldowns. Instead, we observed 

BRD9 and GLTSCR1L (BICRAL)1 proteins, subunits of the GBAF complex (Alpsoy & 

Dykhuizen 2018). These proteins predominantly interact with H3K27ac-containing 

peptides. GLTSCR1L was the most enriched interactor of monoacetylated H3K27ac 

in mESCs and one of the most enriched H3K23acK27ac interactors in HeLa cells 10 

(Fig.1c, Supplementary Fig. 1b). 

 

Taken together, mass spectrometry-based interaction proteomics experiments 

identified SWI/SNF and SEC as major acetyl-lysine readers, which is consistent with 

earlier findings (Li et al. 2014; Chandrasekaran & Thompson 2007; Chandy et al. 15 

2006). Additionally, we identified GBAF components GLTSCR1L and BRD9 as 

prominent H3K27ac-interacting proteins. 

GLTSCR1L is a subunit of a distinct non-canonical BAF 
complex 
Due to the observed preferential binding of the GLTSCR1L protein to H3K27ac-20 

containing histone peptides, we decided to identify GLTSCR1L-interacting proteins 

by quantitative interaction proteomic methods. We generated a HeLa cell line stably 

expressing doxycycline-inducible GFP-tagged GLTSCR1L and performed label-free 

GFP pulldowns followed by liquid chromatography-MS (LC-MS/MS, Methods) (Smits 

et al. 2013). The full length GFP-GLTSCR1L protein interacted with core SWI/SNF 25 

subunits including SMARCD1 (BAF60a), SMARCC1 (BAF155), SMARCA4 (BRG1), 

and BAF-specific subunit SS18 (Fig. 2a). One of the strongest GFP-GLTSCR1L 

interactors was BRD9, which also clustered together with GLTSCR1L in our histone 

peptide pulldown analysis (Fig. 1d, Supplementary Fig. 1d). Additionally, BCL7C was 

                                                
1 GLTSCR1L and GLTSCR are paralogs of a group of proteins found in vertebrates. They are also 
known by the names BICRAL and BICRA (UniProt IDs Q6AI39 and Q9NZM4, respectively). 
GLTSCR1L and GLTSCR contain a highly conserved domain, which we refer to as ‘GiBAF’ 
(GLTSCR1/1L domain interacting with BAF complex; Supplementary Fig. 2). 
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identified as a novel interactor of GLTSCR1L, while other canonical BAF complex 

subunits, such as ARID1A, DPF1/2/3 (BAF45B/C/D), and SMARCE1 (BAF57), were 

absent in the pulldowns. 

 

 5 
Figure 2. Quantitative MS analysis reveals the interacting proteins of GLTSCR1L 
protein and its GiBAF-domain. a-d Volcano plots displaying fold enrichments (log2 GFP 
fusion protein over mock, horizontal axes) versus t-test P values (-log10, vertical axes) of 
identified interactors of affinity-purified GFP-GLTSCR1L (a), GFP-BRD9 (b), GFP-BAF60a 
(SMARCD1) (c) and GFP-GiBAF-domain of GLTSCR1L (d) isolated from HeLa whole cell 10 
extracts (a-c) or nuclear extracts (d). Each volcano plot represents three independent 
pulldowns. e Schematic representation of the GBAF complex. Proteins in green have been 
used as baits, proteins in yellow represent identified interactors. f Stoichiometry of GFP-
BAF60a interactors. The intensity-based absolute quantification (iBAQ) value of each protein 
is divided by the iBAQ value of the bait and plotted relative to a bait value of 1. Data are 15 
shown as mean ± s.d. (n = 3 pulldowns). 
 

In order to validate GLTSCR1L as a bona fide interactor of SWI/SNF complexes, we 

performed reciprocal label-free GFP pulldowns. We generated three doxycycline-

inducible HeLa cell lines expressing GFP-tagged baits of identified GLTSCR1L-20 

interacting proteins: BRD9 (Fig. 2b), SMARCD1 (BAF60a) (Fig. 2c) and SMARCC1 

(BAF155) (Supplementary Fig. 3a). As expected, we observed an enrichment of 

SWI/SNF complex subunits in all pulldowns. The highest number of identified 

SWI/SNF subunits was observed in pulldowns with SMARCC1 (BAF155) as a bait, 
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followed by SMARCD1 (BAF60a) and BRD9 pulldowns (Supplementary Table 1). 

Additionally, GLTSCR1L was detected as an interactor of each of these three bait 

proteins (Fig. 2b,c, Supplementary Fig. 3a). We also observed a nearly complete 

overlap of interactors in the GFP-BRD9 and GFP-GLTSCR1L pulldowns (Fig. 2a,b), 

suggesting that these two proteins frequently co-occur in the same sub-complex. 5 

Interestingly, the homologous protein GLTSCR1 also appeared in all reciprocal 

pulldown experiments but not in pulldowns with GLTSCR1L, indicating that 

GLTSCR1 and GLTSCR1L proteins bind to SWI/SNF complexes in a mutually 

exclusive manner. 

 10 

The observed binding of both GLTSCR1 and GLTSCR1L to SWI/SNF complexes led 

us to investigate the role of their shared, conserved domain in mediating the 

interaction with SWI/SNF family members. We refer to the domain as ‘GiBAF’, for 

GLTSCR1/1L domain interacting with BAF complex. First, we produced a TY1-

tagged GLTSCR1L protein containing an in-frame deletion of the GiBAF-domain. By 15 

means of immunofluorescence microscopy (IF) with FL and domain deletion mutant 

proteins, we found that the GiBAF-domain is responsible for the nuclear localization 

of GLTSCR1L (Supplementary Fig. 3b). Next, we generated two other HeLa cell 

lines with doxycycline-inducible GFP-tagged GLTSCR1L protein mutants expressing 

only the GiBAF-domain or the full-length protein lacking the domain (▲GiBAF-20 

domain). In pulldowns with the GiBAF-domain only, we observed all full length GFP-

GLTSCR1L protein interactors in addition to some other BAF complex components 

(BCL7A/B/C, ACTL6A, SMARCA2, SS18/L1/L2) (Fig. 2d). GiBAF-domain interaction 

with BAF155, BAF60a and BRD9 was also confirmed by immunoblotting 

(Supplementary Fig. 3g) (Alpsoy & Dykhuizen 2018). Additionally, we detected an 25 

interaction between the GiBAF-domain from GLTSCR1L protein and BRD4, in line 

with previous work demonstrating an interaction between GLTSCR1 and the BRD4 

ET-domain, which contributes to transcriptional regulation of BRD4 target genes 

(Rahman et al. 2011). We also observed interaction with INO80E (Chen et al. 2011) 

from the INO80 (Jin et al. 2005) chromatin remodeling complex, which has 30 

previously been shown to interact with SWI/SNF complex components (Cai et al. 

2007; Yao et al. 2008). AFF1, a SEC complex subunit, was also found to interact 

with the GiBAF-domain of GLTSCR1L. Similar analysis performed with the GiBAF-

domain deletion mutant of GLTSCR1L protein (▲GiBAF-domain) resulted in no 
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significant interactions with BAF complex subunits (Supplementary Fig. 3c), further 

supporting a role for the GiBAF-domain in mediating interactions with other SWI/SNF 

subunits. Instead, we observed a significant enrichment of TAF6 and TAF4 TFIID 

components co-purified with ▲GiBAF-domain, indicating that other parts of the 

GLTSCR1L protein may be responsible for non-SWI/SNF protein interactions.  5 

 

Label-free GFP pulldowns allowed to use the intensity-based absolute quantification 

(iBAQ) algorithm (Schwanhäusser et al. 2011) to calculate the relative abundance 

(stoichiometry) of observed proteins. Stoichiometry values from the FL GLTSCR1L 

and GiBAF-domain pulldowns (Supplementary Fig. 3d-e) confirmed a strong 10 

association between GLTSCR1L and BRD9. Interestingly, analyses of reciprocal 

pulldown-MS with BAF complex components SMARCD1 and SMARCC1 revealed 

very low levels of GLTSCR1L protein abundance (Fig. 2f, Supplementary Fig. 3f; 

~1,6% of SMARCD1 and 0,066% of SMARCC1 are found together with 

GLTSCR1/1L), indicating that GLTSCR1L is either a transient interactor or a 15 

component of a rare BAF complex in HeLa cells. Taken together, these results 

suggest that GLTSCR1L is a subunit of a distinct SWI/SNF chromatin remodeling 

subcomplex, whose interactions with SWI/SNF subunits and its nuclear localization 

is mediated by the GiBAF-domain. 

Selective inhibition of the BRD9 bromodomain leads to 20 

disassembly of GLTSCR1L but not BRD9 from chromatin 
Since the GLTSCR1L protein does not contain any known DNA/chromatin-binding 

domain, we hypothesized that, due to the interaction between GLTSCR1L and 

BRD9, the latter might facilitate targeting of GBAF to chromatin. In order to validate 

the association between GLTSCR1L, BRD9 and H3K27ac, we performed histone-25 

peptide pulldown assays using I-BRD9 (Theodoulou et al. 2016), a specific inhibitor 

of the BRD9 bromodomain. I-BRD9 does not impair any other function of BRD9 

beyond its acetyl-lysine recognition, making it a suitable tool to investigate the role of 

H3K27ac binding by the BRD9 bromodomain with limited secondary effects. Both 

GLTSCR1L and BRD9 were found to follow the trend of acetyl-lysine recognition 30 

observed in histone-peptide pulldown MS (H3K23ac<H3K27ac<H3K23acK27ac) 

(Fig. 1d). After treatment with I-BRD9, we detected a loss of specificity of BRD9 
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binding to H3K27ac-containing peptides. Although BRD9 still showed interaction with 

histone peptides while its bromodomain was blocked by I-BRD9, GLTSCR1L binding 

to H3K27ac-containing histone peptides was completely abrogated (Fig 3a).  

 

 5 
Figure 3. Inhibition of the bromodomain of BRD9 leads to disassembly of GLTSCR1L 
from chromatin. a Histone peptide pulldown assay using biotinylated histone H3 peptides 
(aa 15-36) and nuclear extract from HeLa-FRT-GFP-GLTSCR1L cells in the absence and 
presence of BRD9 bromodomain inhibitor I-BRD9. Unmodified (H3) and modified peptides 
were used. Input and affinity purified fractions were analyzed after SDS-PAGE by 10 
immunoblotting. PBRM1 and CBX4 serve as controls for I-BRD9 specificity. M: protein 
molecular weight standard. b Histogram attribute (upset) plot of ChIP-seq peak intersections 
between GLTSCR1L and BRD9 with and without I-BRD9. Vertical axis gives the frequency 
of overlaps between combinations of peak calls specified on the horizontal axis. c Heatmap 
of the overlap percentages between GLTSCR1L and BRD9 ChIP-seq peaks (bold) and 15 
ENCODE-called peaks of factors and chromatin marks associated with transcription. Each 
cell shows the percentage of ChIP-seq peaks for factors and marks in rows overlapping with 
ChIP-seq peaks for factors and marks in columns. d Genomic annotation of GLTSCR1L and 
BRD9 ChIP-seq peaks based on GENCODE-inferred (v19) genomic annotation biotypes.  
 20 

To validate our histone-peptide pulldown results and to investigate whether 

GLTSCR1L, BRD9 and H3K27ac colocalize on chromatin, we performed chromatin 

IP of GLTSCR1L and BRD9 followed by high-throughput sequencing (ChIP-seq). We 

used a HeLa FRT cell-line expressing GFP-tagged GLTSCR1L and antibodies to 

GFP and wtBRD9, due to the unavailability of a ChIP-seq grade GLTSCR1L 25 
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antibody. In parallel, we conducted similar ChIP-seq experiments with I-BRD9 

treated cells. A total of 22,559 and 9,155 peaks were called (Irreproducible 

Discovery Rate < 0.05) for BRD9 and GFP-GLTSCR1L, respectively. We observed a 

strong colocalization between BRD9, GLTSCR1L, and H3K27ac (Supplementary 

Fig. 4a; permutation test, P < 1x10-4 for BRD9 and GLTSCR1L). In agreement with 5 

the histone-peptide binding assay, selective inhibition of the BRD9 bromodomain 

with I-BRD9 led to only a mild reduction of BRD9 binding to chromatin (22,559 

versus 17,366 peaks for DMSO and I-BRD9, respectively), but severely abrogated 

GLTSCR1L chromatin binding (9,115 vs 1,639 peaks for DMSO and I-BRD9, 

respectively) (Fig 3b). 10 

 

We observed a large degree of overlap of BRD9 and GLTSCR1L binding sites with 

ChIP-seq peaks of cohesin (SMC3ab) and active chromatin marks, especially 

H3K4me1/2, H3K27ac, and H3K9ac (Fig. 3c, 70-85% of GLTSCR1L and BRD9 

peaks). GLTSCR1L and BRD9 was also associated with Pol II, with 70% of Pol II 15 

peaks overlapping with those of BRD9 and 35% with GLTSCR1L, suggesting a role 

for GBAF in the control of Pol II activity. Reassuringly, we detected chromatin 

colocalizations of both GLTSCR1L and BRD9 with core SWI/SNF subunits (~32% of 

BAF155 and SMARCA4 peaks overlapped with GLTSCR1L peaks and ~65% with 

BRD9). A small degree of colocalization was also observed between AF9 protein (a 20 

H3K9/K27ac reader), GLTSCR1L, and BRD9 (~20% of peaks for both proteins). 

However, only ~14% of GLTSCR1L and BRD9 peaks were found to overlap with 

H3K27me3 peaks compared to 41% for AF9, further pointing to a role of GBAF in 

transcriptionally active chromatin. Specifically, GLTSCR1L and BRD9 peaks were 

primarily located in intronic or intergenic regions and, to a lesser extent, at gene 25 

promoters. Upon I-BRD9 treatment, BRD9 largely remained at intronic/intergenic 

regions, whereas the greatly reduced binding sites of GLTSCR1L were mostly found 

at active gene TSSs (Fig. 3c,d). Taken together, our results indicate that GBAF binds 

active chromatin and that the bromodomain of BRD9 is responsible for GLTSCR1L 

binding to putative enhancers. 30 
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BRD9 inhibition globally reduces enhancer transcription 
To assess the role of GLTSCR1L and the GBAF complex in transcription, we 

examined I-BRD9 treated HeLa cells stimulated with epidermal growth factor (EGF) 

to induce a rapid transcriptional response. First, we inspected GLTSCR1L and BRD9 

binding as well as RNA expression levels of the EGF-inducible gene NR4A1 and its 5 

known enhancer 80 kb downstream of the NR4A1 gene locus (Lai et al. 2015) by 

qPCR. EGF treatment increased binding of both GFP-GLTSCR1L and BRD9 

proteins at the enhancer, but no increase was observed in I-BRD9 treated cells 

(Supplementary Fig. 5a). I-BRD9 did not affect the induction of NR4A1 gene 

expression by EGF, in line with a non-significant enrichment of GFP-GLTSCR1L and 10 

BRD9 proteins at the NR4A1 gene promoter, but almost completely abrogated 

expression of the enhancer RNA (Supplementary Fig. 5b).  

  

We next performed 5’ end sequencing of capped RNAs, using Cap Analysis of Gene 

Expression (CAGE (Takahashi et al. 2012)), to assess the effect of EGF-induced 15 

transcription initiation events and enhancer activities (Andersson et al. 2014) 

genome-wide. CAGE experiments were performed in parallel with ATAC-seq across 

the EGF-response time course to focus on transcription initiation events at open 

chromatin loci such as enhancers and gene promoters. Using CAGE data in 

combination with ATAC-seq data, we were able to dissect the NR4A1 super-20 

enhancer into a set of five bidirectionally transcribed enhancers in open chromatin 

with similar transcriptional EGF-response patterns, and found all of them to be 

downregulated by I-BRD9 (Fig. 4a, focusing on three enhancer constituents). 

Genome-wide, we next focused on all transcribed nucleosome-free regions (NFRs), 

inferred from ATAC-seq peaks associated with CAGE expression above estimated 25 

background noise level (Methods). Transcribed NFRs corresponded to ~11% 

(23,639 out of 213,017) of all detected open chromatin loci and displayed clear 

differences in expression patterns between I-BRD9 and DMSO-treated samples 

(52% of variance explained) as well as between time points (Supplementary Fig. 5c). 

Time points 30 and 60 minutes displayed different transcriptional activities than time 30 

points 0 and 240 minutes after treatment, indicating that at 240 minutes after EGF 

induction most transcriptional activities had returned to baseline levels. 
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Figure 4. Inhibition of the bromodomain of BRD9 globally inhibits enhancer 
transcription. a Genome browser view (left) of the NR4A1 super-enhancer locus, showing 
tracks with pile-up signal from H3K27ac (ENCODE, HeLa S3), GLTSCR1L and BRD9 ChIP-
seq, ATAC-seq, and CAGE data. Differences in ChIP-seq signal (except for H3K27ac), 5 
ATAC-seq signal, and CAGE expression between control (DMSO) and I-BRD9 treated cells 
are observable at three highlighted super-enhancer constituents before EGF stimulus. 
CAGE expression levels (TPM normalized) are shown (right) for the three enhancers across 
the HeLa EGF stimulation time course, comparing control (DMSO) and I-BRD9 treated cells. 
b Violin plots depicting densities of aggregated fold changes of expressed NFRs across the 10 
EGF treatment time course, broken up by genomic annotation biotype inferred from 
GENCODE (v19). c Volcano plots of NFR expression fold changes (horizontal axes) and 
adjusted P-values of differential expression (vertical axes, Methods), comparing I-BRD9 
treated cells with non-treated (DMSO), broken by biotype and time point after EGF 
stimulation. d Box-and-whisker plot (as in Fig. 1) of expression fold changes (log2) 15 
comparing control (DMSO) and I-BRD9 inhibited cells at GLTSCR1L-bound expressed 
NFRs (before EGF stimulus) that lose or keep GLTSCR1L binding upon I-BRD9 treatment. e 
Box-and-whisker plot (as in Fig. 1) of fold changes (I-BRD9 versus control) of gene 
promoters within TADs that contain or do not contain down-regulated enhancers.  
 20 
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To investigate the effect of I-BRD9 on transcriptional responses, we compared the 

aggregated fold change of NFR expression levels in I-BRD9 treated cells and control 

cells across all EGF time points. Similar to our observation at the NR4A1 enhancer 

locus, the EGF responses of putative enhancers, as indicated by transcribed 

intergenic and intronic loci (75% and 25% of expressed intergenic and intronic 5 

regions overlap with FANTOM5 enhancers (Andersson et al. 2014), respectively), 

were significantly downregulated upon BRD9 inhibition (Wilcoxon signed-rank Test, 

lower tail, P < 2.2x10-16) in contrast to the responses of mRNA promoters, which 

were largely not affected (Fig. 4b). We further compared transcriptional events 

measured at each time point in control and I-BRD9 treated cells (Fig. 4c). Most 10 

downregulated events (log2 FC < -1, FDR adjusted P < 0.05) were detected at one 

hour after EGF induction (Supplementary Fig. 5d) and occurred mostly at intronic or 

intergenic regions (894 out of 1,335 NFRs compared to 336 mRNA promoters). 

Thus, I-BRD9 treatment leads to a preferential downregulation of enhancer 

transcription throughout the HeLa EGF induction time course. Notably, 86% of 15 

downregulated FANTOM5 enhancers were depleted of GFP-GLTSCR1L by I-BRD9. 

Reciprocally, GFP-GLTSCR1L depleted intergenic/intronic NFRs in general 

(Wilcoxon signed-rank test, P = 8.9x10-5 and P = 2.1x10-4 for intergenic and intronic 

NFRs, respectively, Fig. 4d) and FANTOM5 enhancers in particular (Wilcoxon 

signed-rank test, P = 3.7x10-9) were associated with downregulated expression. 20 

These results indicate that transcription of enhancers, but not mRNA genes, is 

affected by H3K27ac-recognition by GBAF through the bromodomain of BRD9. 

 

Although mRNA expression levels were, to a large extent, not affected by BRD9 

inhibition, we hypothesized that downregulation of enhancer expression levels 25 

reflects reduced enhancer regulatory activities. To test this hypothesis, we compared 

expression levels of putative enhancer-promoter pairs contained within the same 

topologically associating domains (TADs) of HeLa cells (Rao et al. 2014). Indeed, 

promoters within TADs containing at least one differentially downregulated enhancer 

showed significantly larger downregulation upon I-BRD9 treatment in all time points 30 

when compared to promoters in TADs not containing any downregulated enhancer 

(Fig. 4e). These results indicate that GBAF is important not only for enhancer 

transcription but also for enhancer regulatory activities. 
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We posited that GBAF may have a role in forming or maintaining permissive 

chromatin at enhancers. At putative intronic/intergenic enhancers associated with 

transcriptional downregulation and GFP-GLTSCR1L depletion by I-BRD9, we noted 

a significant reduction in chromatin accessibility (Wilcoxon signed-rank paired test, P 

= 5.9x10-9, Supplementary Fig. 5e). Taken together, our data indicate that I-BRD9 5 

leads to a reduced rate of eRNA transcription at GLTSCR1L-depleted enhancers 

and a downregulation of their target genes. We hypothesize that this is the 

consequence of reduced GBAF chromatin remodeling activity at enhancers caused 

by disrupted recognition of H3K27ac by BRD9 through inhibition of its bromodomain. 

Discussion 10 

Although H3K27ac is frequently associated with active enhancers, its role in 

enhancer activity and its protein interaction environment have remained elusive. In 

this study, we applied a SILAC histone-peptide pulldown MS approach to identify 

protein complexes that interact with H3K27ac alone and in combination with 

H3K23ac. This approach allowed us to assess acetyl-lysine interaction preferences 15 

and to identify the SEC and GBAF complexes as major interactors of H3K27ac. 

Specifically, we identified H3K27ac interactions with both BRD9 and GLTSCR1L, 

definitive subunits of the GBAF complex (Alpsoy & Dykhuizen 2018), indicating a 

H3K27ac-associated function of GBAF.  

 20 

Our systematic investigation of the subunits of GBAF revealed insights into their 

putative functions. Our data refines the composition of GBAF (Alpsoy & Dykhuizen 

2018) by adding BCL7A/B/C as an additional subunit. Interestingly, none of the 

subunits of the GBAF complex contains known DNA binding domains, unlike those 

of canonical BAF/PBAF complexes (e.g. ARID2/ARID1/1a, PBRM1, SMARCE1, 25 

SMARCB1, PHF10 (Supplementary Table 1)). Hence, the GBAF complex has only 

two functional chromatin interaction domains, the bromodomains of SMARCA2/4 and 

BRD9. Due to this specific feature, we hypothesize that targeting of GBAF to 

chromatin is more sensitive to the recognition of acetylated histones (H3K27ac), than 

the canonical SWI/SNF complexes that contain sequence-independent DNA-binding 30 

subunits. Investigation of the function of the GiBAF-domain of GLTSCR1L revealed 

that it is capable of binding all inferred GLTSCR1L- and BRD9-interacting proteins as 
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well as BRD4 and AFF1. We also found that the GiBAF-domain is responsible for the 

nuclear localization of GLTSCR1L. Other parts of the GLTSCR1L protein may be 

involved in Pol II interactions or pre-initiation complex formation, as indicated by the 

enrichment of TFIID components in GFP pulldown MS results of a GiBAF-domain 

deletion mutant. 5 

 

To investigate the role of acetyl-lysine recognition by BRD9, we made use of I-

BRD9, a selective inhibitor of the BRD9 bromodomain. I-BRD9 is a useful tool since 

it doesn't impair any function of BRD9 beyond its acetyl-lysine recognition 

(Theodoulou et al. 2016). Our histone-peptide pulldown immunoblot experiments 10 

with I-BRD9 revealed that GLTSCR1L chromatin interaction is mediated by the 

bromodomain of BRD9 and is H3K27/23ac dependent. Upon I-BRD9 treatment, 

BRD9 lost specificity in acetyl-lysine recognition but remained bound to histone 

peptides. This is likely due to its participation in several BAF subcomplexes, where 

binding is mediated by acetyl-lysine recognition modules of other BAF subunits, such 15 

as the bromodomain of SMARCA2/4. Concomitantly with these proteomic interaction 

results, GLTSCR1L and BRD9 colocalized at NFRs flanked by H3K27ac. We 

observed an enrichment of BRD9 and GLTSCR1L binding at intronic and intergenic 

NFRs and to a lesser extent at gene promoters, and used I-BRD9 to verify the role of 

the BRD9 bromodomain in the targeting of GBAF complex to chromatin. Upon I-20 

BRD9 treatment, in agreement with our histone peptide pulldown immunoblot results, 

GFP-GLTSCR1L was observed to dislocate from H3K27ac-associated 

intronic/intergenic chromatin and, in particular, from enhancers. 

 

The observed loss of GLTSCR1L from enhancers upon BRD9 inhibition indicates 25 

that GBAF has a specific role at enhancers. This hypothesis is supported by a 

decrease in chromatin accessibility at GLTSCR1L-depleted enhancers and an 

overall downregulation of enhancer transcription initiation events in I-BRD9-treated 

HeLa cells stimulated with EGF. While overall mRNA expression levels were not 

affected by I-BRD9, genes residing within the same TADs as downregulated 30 

enhancers tended to follow the same trend. Therefore, we propose that GBAF is 

important for both enhancer transcription and enhancer regulatory activity. However, 

no downregulation was observed for NR4A1 mRNA expression levels upon 

downregulation of eRNAs from its cognate enhancers by I-BRD9. This may be a 
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consequence of enhancer-independent EGF stimulation of NR4A1 gene expression 

by promoter-proximal events. Nevertheless, as the timing of events in the 

communication between enhancers and promoters are poorly understood, we do not 

rule out that the NR4A1 locus is in an alternative mode of regulation. 

 5 

While several of our experiments point at an enhancer-associated function of GBAF, 

further investigations are needed to assess its exact role and the associated 

mechanisms. Although we observed a minor but significant decrease in chromatin 

accessibility at GLTSCR1L-depleted downregulated enhancers, we cannot rule out 

that this is a consequence of reduced Pol II activity. Precise nucleosome positioning 10 

methods are needed to verify abnormalities in the maintenance of the enhancer NFR 

and nucleosomal occupancy at sites of transcriptional enhancers in the absence of a 

functional GBAF complex. Numerous studies have observed enhancer-specific 

effects of different SWI/SNF complexes, which are mostly related to chromatin 

accessibility (Yu et al. 2013; Hodges et al. 2018; Nakayama et al. 2017; Alver et al. 15 

2017; Wang et al. 2016). Given that GBAF is recruited to H3K27ac-marked 

enhancers, which are frequently associated with open chromatin, it is therefore 

possible that GBAF activity is secondary to chromatin opening and maintenance by 

other remodeling complexes. In line with its association with eRNA transcription, it is 

conceivable that GBAF has a role in the positioning of enhancer TSS-proximal 20 

nucleosomes. The interactions of GBAF with transcriptional regulators (such as 

SEC, BRD4, and TFIID) indicate that GBAF may have additional roles at enhancer 

TSSs in Pol II pre-initiation complex formation or in the recruitment or assembly of 

factors needed for pause release and transcriptional elongation. Due to the critical 

importance of correct enhancer activities in development and tissue homeostasis, we 25 

anticipate that dysfunction of GBAF or its targeting to chromatin may be connected 

with developmental abnormalities or complex diseases such as cancer. 
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Methods 
Cell culture and inducible cell-line generation 
For histone peptide pulldowns, HeLa S3 cells (ATCC) and IB10 mESCs (ATCC) 

were grown in DMEM SILAC medium without Lys and Arg (Silantes, 280001300), 

with dialyzed FBS (Silantes, 281000900) and supplemented either with light (R0K0) 5 

or heavy (R10K8) isotopes of lysine and arginine (Silantes, 282986440 Lys-0:HCl, 

211604102 Lys-8:HCl, 282986444 Arg-0:HCl, 201604102 Arg-10:HCl). Additionally, 

IB10 mouse embryonic stem cells were cultured in the presence of 2i compounds as 

described (Kloet et al. 2016). For GFP pulldowns, ChIP-seq, and CAGE 

experiments, HeLa S3 cells were cultured in DMEM with 10% FBS, supplemented 10 

with glutamine and Pen-Strep. For induction and inhibition experiments, hEGF 

(Sigma-Aldrich, E9644; PeproTech, AF-100-15) was added to the culture medium at 

a concentration of 100 ng/ml and I-BRD9 (Tocris Bioscience, 5591) was added at a 

concentration of 10 μM. 
 15 

To generate inducible cell lines, 3*10^5 HeLa S3 cells containing an integrated FRT 

site (van Nuland et al. 2013) were seeded on 6-well plates and transfected after 24 h 

with two vectors: 1) pOG44 expressing FLP recombinase under the control of human 

cytomegalovirus (CMV) promoter and carrying blasticidin selection marker; 2) 

pcDNA5/FRT containing a hygromycin selection marker, FRT recognition sites, and 20 

an N-terminal GFP fusion protein in frame with the gene of interest (GLTSCR1L, 

BRD9, BAF60a, BAF155, GLTSCR1L GiBAF-domain, or GLTSCR1L with GiBAF- 

deleted under the control of a doxycycline-inducible (TET-ON) CMV promoter. 16 h 

after transfection, selection media supplemented with 3 μg/ml blasticidin (Sigma) and 

100 μg/ml hygromycin (Invitrogen) was applied to cells. Single colonies that 25 

remained after 10 days of selection were picked and propagated in single 30 mm 

plates and subsequently tested for the expression of desired proteins after induction 

with doxycycline (1 μg/ml). 
 

  30 
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Nuclear extract and whole cell lysate preparation 
Nuclear extracts were prepared according to (Dignam et al., 1983). Cells were 

trypsinized, harvested, washed twice with PBS, and centrifuged at 400 g for 5 min at 

4 °C. Resuspended cell pellets were incubated for 10 min at 4 °C in five volumes of 

buffer A (10 mM HEPES-KOH, pH 7.9, 1.5 mM MgCl2, and 10 mM KCl), then 5 

pelleted at 400 g for 5 min at 4 °C. Cells were resuspended in two volumes of buffer 

A supplemented with protease inhibitors and 0.15% NP-40. Cells were homogenized 

by 30–40 strokes with a type B pestle in Dounce homogenizer. After 

homogenization, lysates were spun at 3,200 g for 15 min at 4 °C. Nuclear pellet was 

washed once with PBS and spun at 3,200 g for 5 min at 4 °C. Pellet was 10 

resuspended in two volumes of buffer C (420 mM NaCl, 20 mM HEPES-KOH, pH 

7.9, 20% (v/v) glycerol, 2 mM MgCl2, and 0.2 mM EDTA) with 0.1% NP-40, protease 

inhibitors, and 0.5 mM dithiothreitol and incubated with rotation for 1 h at 4 °C, then 

spun at 20 000 g for 30 min at 4 °C. The supernatant (nuclear extract) was aliquoted 

and stored at −80 °C until further use.  15 

 

Whole cell extracts were prepared by adding 5 cell pellet volumes of lysis buffer 

(0.5% NP40, 150 mM NaCl, 50 mM Tris pH 8.0, 10% Glycerol and 1 × Complete 

Protease Inhibitors). Cells were vortexed for 30 s and then incubated for 2 hr on a 

rotation wheel. Samples were then centrifuged at 4,000 g in a swinging bucket rotor 20 

for 30 min, after which soluble whole extracts were aliquoted and stored at -80 °C 

until further use. 

 

Histone-peptide pulldowns 
Histone peptide pulldowns were performed as described in (Vermeulen 2012), with 25 

minor modifications. Briefly, biotinylated (modified and non-modified) histone H3 

peptides (aa 15-36) were purchased from BIOSYNTAN GmbH. 50 μg of histone 

peptide per pull-down was incubated with 75 μl of MyOne Streptavidin C1 

Dynabeads (Thermo Fisher, 65002) for 20 min at RT in peptide binding buffer (150 

mM NaCl, 50 mM Tris–HCl, pH 8.0, 0.1% (v/v) NP40). Beads were washed three 30 

times with 1 ml protein binding buffer [150 mM NaCl, 50 mM Tris-HCl pH 8.0, 1% 

NP40, 0.5 mM DTT, 10 mM ZnCl2 and complete protease inhibitors – EDTA free 

(Roche)]. 350-700 μg of nuclear extract (diluted to 0.6 mg/ml) was incubated with 
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immobilized histone peptides in protein binding buffer for two hours at 4 °C on a 

rotation wheel. Beads were washed five times with 1 ml of protein binding buffer 

containing 400 mM NaCl and finally twice with 1 ml of protein binding buffer. Beads 

from both pull-downs (with non-modified and modified peptide) were pooled, and 

bound proteins were eluted and visualized on 4 %–12 % SDS-PAA gradient gels 5 

(Invitrogen) by colloidal blue staining (Invitrogen). Lanes corresponding to Forward 

(heavy - modified peptide pulldown; light - non-modified peptide pulldown) and 

Reverse (light - modified peptide pulldown, heavy - non-modified peptide pulldown) 

experiments were divided into 6-8 pieces, sliced into small (~ 1 mm) fragments and 

then subjected to in-gel trypsin digestion essentially as described in (Shevchenko et 10 

al. 2007). Antibodies used for detection of histone peptide binding proteins from 

HeLa-FRT-GFP-GLTSCR1L nuclear extracts after SDS-PAAG using immunoblotting 

(Fig 3a; cells grown in non-SILAC medium) are listed in Supplementary Table 2.  
 
Mass spectrometry and data analysis of histone peptide pulldowns 15 

After trypsin digestion of gel slices, peptides were extracted, desalted using 

StageTips (Rappsilber et al., 2003), and separated using an EASY-nLC (Proxeon) 

connected online to a LTQ-Orbitrap Fusion Tribrid mass spectrometer (Thermo 

Fisher Scientific). Scans were collected in data-dependent top speed mode with 

dynamic exclusion set at 60 seconds. Raw data were analyzed using MaxQuant 20 

version 1.5.1.0 with default settings and searched against the Uniprot mouse and 

human proteomes, release 2015_12. Analysis was performed using Perseus 1.5.5.3. 

After filtering, the mean value was calculated on the ratios from both forward and 

reverse experiments. Missing values were imputed with a normal distribution 

(settings: downshift = 1, window = 0) and scatter plots were made using R. 25 

Hierarchical clustering was used to generate heatmaps based on Euclidean distance 

(settings: linkage = average, number of clusters = 300, processing = k-means, 

iterations = 10, restarts = 1). 

 

  30 
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GFP affinity purification mass spectrometry (AP MS-MS) 
Nuclear extracts (NE) or whole cell extracts (WCE) from doxycycline-induced (for 16 

hours) and non-induced cells were subjected to GFP-affinity enrichment using GFP 

nanotrap beads (Chromotek) in triplicate. For each pull-down, 1 mg of NE or 3 mg of 

WCE was incubated with 7.5 μl beads in incubation buffer (300 mM NaCl, 0.1 % NP-5 

40, 0.5 mM DDT, 20 mM HEPES–KOH pH 7.9, 50 μg/ml ethidium bromide) in a total 

volume of 400 μl. Beads were washed twice with incubation buffer containing 0.5 % 

NP-40, twice with 1X PBS containing 0.5 % NP-40 and finally twice with 1X PBS. 

Affinity purified proteins were subject to on-bead trypsin digestion as described 

previously (Baymaz et al. 2014). Tryptic peptides were acidified and desalted using 10 

StageTips (Rappsilber et al. 2007) and separated with an online Easy-nLC 1000 

(Thermo Scientific). Mass spectra were recorded on an LTQ-Orbitrap QExactive 

mass spectrometer (Thermo Fisher Scientific), selecting the top 10 most intense 

precursor ions for fragmentation, or on an LTQ-Orbitrap Fusion Tribrid mass 

spectrometer (Thermo Fisher Scientific). Scans were collected in data-dependent top 15 

speed mode with dynamic exclusion set at 60 seconds. 

 

LFQ peptide analysis and identification 
Thermo RAW files from LFQ AP MS-MS were analyzed with MaxQuant version 

1.5.1.0 using default settings and searching against the UniProt human proteome, 20 

release 2015_12. Additional options for match between runs, LFQ, and iBAQ were 

selected. The msVolcano Shiny application was used to produce volcano plots for 

GFP-affinity purification experiments (Singh et al. 2016). Stoichiometry calculations 

were produced essentially as described (Smits et al. 2013) using Perseus version 

1.4.0.8 and in-house R scripts.  25 

 
Chromatin preparation 
Attached HeLa cells were double cross-linked, first with DSG (ThermoFisher) for 40 

min, then washed with PBS followed by treatment with 1% formaldehyde in PBS for 

10 min at room temperature with gentle shaking. Crosslinking was quenched with the 30 

addition of 1/10 volume 1.25 M glycine. Cells were washed with PBS, then harvested 

by scraping in buffer B (20 mM HEPES, 0.25 % Triton X-100, 10 mM EDTA, and 0.5 

mM EGTA). Cells were pelleted by centrifugation at 600 g for 5 min at 4 °C. Cell 

pellets were resuspended in buffer C (150 mM NaCl, 50 mM HEPES, 1 mM EDTA, 
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and 0.5 mM EGTA) and rotated for 10 min at 4 °C. Cells were pelleted by 

centrifugation at 600 g for 5 min at 4 °C. The cell pellet was then resuspended in 1X 

incubation buffer (0.15% SDS, 1% Triton X-100, 150 mM NaCl, 1 mM EDTA, 0.5 mM 

EGTA, and 20 mM HEPES) at 15 million cells/mL. Cells were sheared in a Bioruptor 

Pico sonicator (Diagenode) at 4 °C with 7 cycles of 30 s on, 30 s off. Sonicated 5 

material was spun at 18,000 g for 10 min at 4 °C, then divided into aliquots and 

stored at −80 °C.  

 

Chromatin immunoprecipitation 
10 million cells were used as an input material. Chromatin was incubated overnight 10 

at 4 °C in 1X incubation buffer (0.15 % SDS, 1 % Triton X-100, 150 mM NaCl, 1 mM 

EDTA, 0.5 mM EGTA, and 20 mM HEPES) supplemented with protease inhibitors 

and 0.1 % BSA. Antibody amounts and catalog numbers are listed in Supplementary 

Table 2. A 50:50 mix of Protein A and G Dynabeads (Invitrogen) were added the 

next day and incubated for 90 min. The beads were washed twice with wash buffer 1 15 

(0.1 % SDS, 0.1 % sodium deoxycholate, 1 % Triton X-100, 150 mM NaCl, 1 mM 

EDTA, 0.5 mM EGTA, and 20 mM HEPES), once with wash buffer 2 (wash buffer 1 

with 500 mM NaCl), once with wash buffer 3 (250 mM LiCl, 0.5% sodium 

deoxycholate, 0.5 % NP-40, 1 mM EDTA, 0.5 mM EGTA, and 20 mM HEPES), and 

twice with wash buffer 4 (1 mM EDTA, 0.5 mM EGTA, and 20 mM HEPES). After 20 

washing steps, beads were rotated for 20 min at room temperature in elution buffer 

(1 % SDS and 0.1 M NaHCO3). The supernatant was de-crosslinked with 200 mM 

NaCl and 100 µg/mL proteinase K for 4 h at 65 °C. De-crosslinked DNA was purified 

with MinElute PCR Purification columns (Qiagen). DNA amounts were determined 

with Qubit fluorometric quantification (ThermoFisher Scientific). 25 

 
Chromatin immunoprecipitation sequencing and data analysis 
Libraries were prepared with a Kapa Hyper Prep Kit for Illumina sequencing (Kapa 

Biosystems) according to the manufacturer's protocol with the following 

modifications. 5 ng DNA was used as input, with NEXTflex adapters (Bioo Scientific) 30 

and ten cycles of PCR amplification. Post-amplification cleanup was performed with 

QIAquick MinElute columns (Qiagen), and size selection was performed with an E-

gel (300-bp fragments) (ThermoFisher Scientific). Size-selected samples were 

analyzed for purity with a High Sensitivity DNA Chip on a Bioanalyzer 2100 system 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 17, 2018. ; https://doi.org/10.1101/445148doi: bioRxiv preprint 

https://doi.org/10.1101/445148
http://creativecommons.org/licenses/by/4.0/


24 

(Agilent). Samples were sequenced on an Illumina HiSeq2000 or NextSeq500. 

Reads were mapped to the reference human genome hg19 with the Burrows–

Wheeler Alignment tool (BWA), allowing one mismatch. Only uniquely mapped reads 

were used for data analysis and visualization. Each ChIP-seq bam file was first 

converted to tag align files using gawk and bedtools and peak calling was performed 5 

using MACS (version 2.1.0). Afterwards, to get a set of confident peaks, only peaks 

with Irreproducible Discovery Rate (IDR) < 0.05 were kept. 

 
CAGE library preparation, sequencing and mapping 
HeLa S3 cells were grown on 60 mm plates and treated with DMSO or I-BRD9 (10 10 

μM ) 6 h prior to induction with EGF (100 ng/ml) for 30 min. Total RNA was isolated 

using TRI Reagent® (Ambion) according to manufacturer’s recommendations. RNA 

from each of the biological triplicates were quality controlled using a Bioanalyzer. 

RIN scores were between 9.6 and 10. CAGE libraries were prepared using the 

protocol by (Takahashi et al. 2012) with an input of 3 μg of total RNA. Prior to 15 

sequencing, four CAGE libraries with different barcodes were pooled and applied to 

the same sequencing lane. Libraries were sequenced on a Illumina HiSeq 2000 at 

the National High-Throughput DNA Sequencing Centre, University of Copenhagen. 

To compensate for the low complexity of 5′ ends in the CAGE libraries, 30% Phi-X 

spike-ins were added to each sequencing lane, as recommended by Illumina. CAGE 20 

reads were assigned to their respective originating sample according to identically 

matching barcodes. Using the FASTX Toolkit, assigned reads were 5′-end trimmed 

to remove linker sequences (9+2 bp to account for the CAGE protocol G-bias), 3′-

end trimmed to a length of 25 bp, and filtered for a minimum sequencing quality of 

Q30 in 50% of the bases. Reads matching to reference rRNA sequences were 25 

discarded using rRNAdust. Mapping to the human genome (hg19) was performed 

using BWA (version 0.7.10). Only the 5’ ends of mapped reads were considered in 

subsequent analyses. 

 

ATAC-seq library preparation and processing 30 

ATAC-seq was performed on approximately 50,000 cells as described in (Buenrostro 

et al. 2015) with three modifications. First, the total volume of the tagmentation 

reaction with in-house made Tn5 enzyme was halved. Second, the tagmentation 

reaction was stopped with 44 mM EDTA, 131 mM NaCl, 0.3% SDS, and 600 μg/ml 
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proteinase K. Lastly, a reverse-phase 0.65× SPRI beads (Ampure) DNA purification 

was done after the first PCR. Libraries were sequenced on an Illumina HiSeq 2000. 

Paired-end 50-bp sequencing reads were aligned to hg19 with BWA (version 0.7.10) 

allowing one mismatch. To produce a consensus set of ATAC-seq peaks, bam files 

were first converted to tag align files using gawk and bedtools and peak calling was 5 

performed on all the samples (pooled and individually) using MACS (version 2.1.0) 

after shifting tag alignments (+4 bp for plus strand and -5bp for minus strand) to 

account for TN5 insertion. Afterwards, narrow peaks were identified from the pooled 

list overlapping at least two individual peak lists by at least 50% of bps (FDR < 1%). 

This resulted in a preliminary list of 229,091 peaks.  10 

 

Open chromatin loci as focus points for transcription initiation and expression 
quantification 
Open chromatin loci (also referred to as NFRs) were used as focus points for 

characterizing transcription initiation events as described elsewhere (Andersson et 15 

al. 2014), with minor modifications. Instead of focusing on DNase-seq signal 

summits, center points were defined from ATAC-seq peak signal summits. Open 

chromatin loci were filtered to not overlap any other open chromatin loci strand-

specifically with respect to these windows. This resulted in a final set of 213,017 

well-defined open chromatin loci. NFR-associated expression were quantified by 20 

counting of CAGE tags in genomic windows of 300 bp immediately flanking ATAC-

seq peak summits. An average of 79% of all CAGE tags were covered by the filtered 

set of open chromatin loci.  

 

For robust assessment of lowly expressed loci, CAGE genomic background noise 25 

levels were estimated as described elsewhere (Rennie et al. 2018). First, the CAGE 

mappability of the hg19 reference genome was calculated by mapping each 25-sized 

subsequence of the reference genome back to itself, using the same mapping 

approach as for real CAGE data. Then, the number of CAGE 5’ ends from each 

CAGE library mapping to each of two strand-specific genomic windows genomic 30 

regions of size 300 bp was quantified, similarly to the expression quantification of 

NFRs (above). Genomic windows were required to be uniquely mappable (as 

determined by the mappability track) in at least 50% of its potential TSS positions 

(unique bps). Regions that were proximal (within 500bp) of GENCODE (v19) gene 
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TSSs, transcript ends, or midpoints of ENCODE DHSs (ENCODE January 2011 

integration data), or overlapping GENCODE gene exons were discarded. Based on 

the empirical distribution of CAGE expression noise from annotation-distal genomic 

regions, the 99th percentile for each library was used as a threshold to call regions 

significantly expressed in subsequent analyses, if fulfilled in at least 2 out of 3 5 

replicates. This resulted in a set of 20,303 and 22,771 open chromatin loci 

expressed in the I-BRD9 and DMSO time courses respectively. 

 

Differential expression analysis was performed on all expressed open chromatin loci 

using DESeq2. To find differential dynamic open chromatin, comparisons were made 10 

between all time points T>0 and T=0. This resulted in a total of 1,709 differentially 

dynamic open chromatin loci (FDR<5%, |log2 FC| > 1) in I-BRD9 and 1,922 in DMSO 

(control) time course. Differential expression analysis was also performed between 

conditions on the same time points, resulting in 5,633 open chromatin loci with 

expression differences in at least one time point, of which 710 were also differentially 15 

dynamic. 

Data availability 
Sequencing data (ChIP-seq, ATAC-seq, CAGE) generated in this study have been 

deposited in GEO under accession number GSE121351. Proteomics data generated 

in this study have been deposited in the PRIDE archive of the ProteomeXchange 20 

consortium under accession number PXD011376. 
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