
Brian2GeNN: a system for accelerating a
large variety of spiking neural networks

with graphics hardware

Marcel Stimberg,1 Dan F. M. Goodman,2 Thomas Nowotny,3∗

October 19, 2018
1Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.

2Department of Electrical and Electronic Engineering, Imperial College London, London, UK.
3Centre for Computational Neuroscience and Robotics, Sussex Neuroscience, School of Engineering and

Informatics, University of Sussex, Brighton, UK.
∗To whom correspondence should be addressed; E-mail: t.nowotny@sussex.ac.uk.

“Brian” is a popular Python-based simulator for spiking neural networks, commonly
used in computational neuroscience. GeNN is a C++-based meta-compiler for ac-
celerating spiking neural network simulations using consumer or high performance
grade graphics processing units (GPUs). Here we introduce a new software package,
Brian2GeNN, that connects the two systems so that users can make use of GeNN GPU
acceleration when developing their models in Brian, without requiring any technical
knowledge about GPUs, C++ or GeNN. The new Brian2GeNN software uses a pipeline
of code generation to translate Brian scripts into C++ code that can be used as input
to GeNN, and subsequently can be run on suitable NVIDIA GPU accelerators. From
the user’s perspective, the entire pipeline is invoked by adding two simple lines to their
Brian scripts. We have shown that using Brian2GeNN, typical models can run tens to
hundreds of times faster than on CPU.

Introduction
GPU acceleration emerged when creative academics discovered that modern graphics processing
units (GPUs) could be used to execute general purpose algorithms, e.g. for neural network simula-
tions (Oh and Jung, 2004; Rolfes, 2004). The real revolution occurred when NVIDIA corporation
embraced the idea of GPUs as general purpose computing accelerators and developed the CUDA
application programming interface (NVIDIA R© Corporation, 2018) in 2006. Since then, GPU ac-
celeration has become a major factor in high performance computing and has fueled much of the
recent renaissance in artificial intelligence. One of the remaining challenges when using GPU ac-
celeration is the high degree of insight into GPU computing architecture and careful optimizations
needed in order to achieve good acceleration, in spite of the abstractions that CUDA offers. Since
2010 we have been developing the GPU enhanced neuronal networks (GeNN) framework (Yavuz
et al., 2016) that uses code generation techniques to simplify the efficient use of GPU accelerators
for the simulation of spiking neuronal networks.
Brian is a general purpose simulator for spiking neural networks written in Python, with the

aim of simplifying the process of developing models (Goodman and Brette, 2008, 2009). Version
2 of Brian (Stimberg et al., 2014) introduced a code generation framework (Goodman, 2010) to
allow for higher performance than was possible in pure Python. The design separates the Brian
front-end (written in Python) from the back-end computational engine (multiple possibilities in

.CC-BY-NC 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/448050doi: bioRxiv preprint first posted online Oct. 20, 2018;

http://dx.doi.org/10.1101/448050
http://creativecommons.org/licenses/by-nc/4.0/

different languages, including C++), and allows for the development of third party packages to
add new back-ends.
Here, we introduce the Brian2GeNN software interface we have developed to allow running

Brian models on a GPU via GeNN. We analysed the performance for some typical models and
find that – depending on the CPU and GPU used – performance can be tens to hundreds of times
faster.

Results
We benchmarked Brian2GeNN on two model networks we will name “COBAHH" and “Mbody" in
the remainder of this paper. COBAHH is an implementation of a benchmark network described
in Brette et al. (2007). Essentially, this benchmark model consists of N Hodgkin-Huxley-type
neurons, modified from the model in Traub and Miles (1991), 80% of which form excitatory
synapses and 20% inhibitory synapses. All neurons were connected to all other neurons randomly
with a connection probability chosen such that each neuron received on average 1000 connections
for large models, or connections from all other neurons if the number of neurons was less than
1000.
Mbody is an implementation of the mushroom body model of Nowotny et al. (2005) but unlike

in the original publication also with a similar neuron model to the one used for the COBAHH
benchmark. The model was used with 100 input neurons, 100 output neurons and varying numbers
N of Kenyon cells (hidden layer). Projection neurons in the input layer are connected with fixed
probability of 15% to Kenyon cells. Up to N = 10, 000 Kenyon cells they are connected all-to-all
to the output neurons, and for N > 10, 000, they are connected randomly with probability chosen
such that the output neurons receive input from on average 10, 000 Kenyon cells.
Both models were integrated with an exponential Euler algorithm at 0.1ms time steps. The

benchmarks presented here were obtained using the GeNN sparse matrix representation for synap-
tic connections.
We benchmarked the models on different systems and with different backends. The GeNN

backend through the Brian2GeNN interface presented here was compared to the “C++ standalone”
backend included with the Brian simulator which runs on the CPU with either a single thread
or with multiple threads via the OpenMP interface. Benchmarks were performed for both, single
precision (32 bit) and double precision (64 bit) floating point. This is particularly relevant for
GPUs because different GPU models have a different number of 64 bit cores, which in addition
may be run at reduced clock frequencies for thermal management, and, therefore, can be between
only 2× but up to 32× slower in double precision simulations than in single precision (see table 2).
We recorded the overall wall clock time for the simulation including all stages from code gen-

eration and initialization in Python to C++ compilation and execution of the binary (“overall
runtime”). We also took more fine-grained measurements of the time for code generation and
compilation, the time spent for synapse creation and initialization, the time spent for the actual
simulation and the overhead, including, e.g., time spent on reformatting data structures between
Brian 2 and GeNN formats, copying to and from the GPU and writing results to disk.

Simulation time
The results for the net simulation time for the two models on CPU and the TITAN Xp and V100
GPUs are shown in figure 1 as a function of the size of the models, indicated by the total number
of neurons. GeNN offers two different strategies for parallelising the spike propagation logic, along
pre-synaptic inputs (looping over post-synaptic targets) or along post-synaptic targets, looping
over pre-synaptic sources. We benchmarked both algorithms for each of the models.
As is often the case, the single thread CPU solution scales essentially linearly with the size of

the two models, expressed in terms of the number of simulated neurons (figure 1). This reflects the
linear scaling of processing time with the number of operations required and that both models are
essentially neuron-bound on the CPU due to their computationally expensive neuron model, their

2

.CC-BY-NC 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/448050doi: bioRxiv preprint first posted online Oct. 20, 2018;

http://dx.doi.org/10.1101/448050
http://creativecommons.org/licenses/by-nc/4.0/

32
5

82
5

27
00

10
20

0
40

20
0

16
02

00

64
02

00

25
60

20
0

10
24

02
00

Model size (# neurons)

10 1

100

101

102

103

Si
m

ul
at

io
n

tim
e

(re
la

tiv
e

to
 b

io
lo

gi
ca

l t
im

e) Mbody single precision
CPU / 1 thread
CPU / 24 threads
TITAN Xp
Tesla V100

20
0

10
00

40
00

16
00

0
64

00
0

25
60

00

10
24

00
0

Model size (# neurons)

Si
m

ul
at

io
n

tim
e

(re
la

tiv
e

to
 b

io
lo

gi
ca

l t
im

e) COBAHH single precision
pre strategy
post strategy

best strategy

Figure 1: Benchmark of the net simulation time on a 12 core CPU with a single thread (dark
gray) or using OpenMP with 24 threads (light gray), compared to a consumer GPU (TITAN
Xp) and an HPC model (V100). For the GPUs, simulation times are displayed separately for a
pre-synaptic parallelisation strategy (dotted) or post-synaptic strategy (dashed). The better of
the two strategies is highlighted by a solid line.

chosen connectivity and the observed number of spikes. The 24-thread OpenMP simulations take
initially the same time for very small models but we found that the simulations ran about 13–14
times faster than on a single CPU core for the largest MBody model tested on single CPU core
(160,200 neurons) and 8–11 times faster for the largest COBAHH model testes on single CPU core
(256,000 neurons). Larger models were only tested on 24-thread OpenMP and GPUs due to the
prohibitively long runtime on a single CPU core. For models larger than 40,200 neurons (Mbody)
and 8000 neurons (COBAHH), the 24 thread OpenMP solution also scales approximately linearly
with the number of neurons.
The simulations run on the GPU via Brian2GeNN (green and purple lines in figure 1) were

significantly faster than the 24 thread OpenMP (light gray), for instance, 40–54 times faster in
the Mbody model for 10,240,200 neurons and up to 24–26 times faster in the COBAHH model
for 1,024,000 neurons when using the V100 GPU. We have summarised the observed speed-ups
achieved for the simulation time in table 1. Overall the GPU runs always faster than a single
threaded CPU version, up to a factor of 400, but when compared against the 24 thread OpenMP
version, acceleration can vary from 2× slower than the CPU to about 50× faster.
Interestingly, the different parallelisation methods for spike propagation available in GeNN

(dashed and dotted lines in figure 1) perform differently as a function of size and of the two
models being simulated. The post-synaptic method is always faster for small models while the
pre-synaptic method wins for very large models. However, for the Mbody example, the swap
occurs at moderate model sizes of about 40,200 neurons, whereas for the COBAHH model, it is
for much larger models (128,000 neurons for the TITAN Xp and 512,000 neurons for the V100).
Also, while the differences of the two methods are not that pronounced for the large Mbody
models, the post-synaptic method in the COBAHH model scales very poorly with size at large
model sizes, leading to quite low performance of Brian2GeNN in this mode. The pre-synaptic
method, on the contrary, is not particularly fast for smaller to medium sized COBAHH models
(even slower than the 24 thread OpenMP version), but scales excellently for the largest models,
leading to significant speedups over OpenMP.

3

.CC-BY-NC 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/448050doi: bioRxiv preprint first posted online Oct. 20, 2018;

http://dx.doi.org/10.1101/448050
http://creativecommons.org/licenses/by-nc/4.0/

Table 1: Acceleration over simulation on CPU. This only considers simulation time. Numbers are
relative to simulations on the host of the Titan Xp GPU (see table 2) and compare to a single-
thread simulation (left) or a 24-thread OpenMP simulation (right). The two numbers shown are
for single precision (gray background) and double precision (white background).

Mbody benchmark
compared to CPU 1 thread compared to CPU 24 thread

neurons 40,200 80,200 160,200 40,200 160,200 10,240,200
Quadro K2200 39.2 6.5 52.0 6.7 60.7 7.0 3.3 0.6 4.3 0.5 4.3 0.5
Tesla K40c 34.7 25.6 58.8 39.8 80.9 53.8 2.9 2.4 5.7 4.2 7.1 5.8
Titan Xp 101.9 39.4 190.3 51.4 300.3 60.9 8.5 3.7 21.1 4.8 31.0 5.0
Tesla V100 124.3 105.9 235.5 191.7 401.6 251.7 10.4 9.9 28.3 19.7 53.9 40.4

COBAHH benchmark
neurons 64,000 128,000 256,000 64,000 256,000 1,024,000

Quadro K2200 18.0 4.9 24.2 4.5 13.6 4.1 1.7 0.6 1.3 0.5 – –
Tesla K40c 20.6 16.3 11.7 9.4 16.7 8.6 1.9 1.9 1.6 1.1 1.0 –
Titan Xp 57.7 29.1 40.3 22.2 73.8 33.7 5.4 3.4 7.2 4.1 16.9 6.5
Tesla V100 207.7 155.7 196.5 134.4 154.1 113.5 19.6 18.3 15.0 13.9 26.3 24.2

The simulation times for a larger variety of different GPU hardwares are shown in figure 2. Note
that we here display the results for the better of the two parallelisation strategies for each model
run. We benchmarked four different graphics cards (see table 2). The results show consistent
trends given the specifications of the hardware (table 2), even though some may not be as obvious
as others. The V100 is almost always fastest, typically followed by the TITAN Xp, K40 and
Quadro card in this order. Note however, the marked difference in double precision performance
for the consumer cards (Quadro and TITAN Xp), compared to the high performance computing
cards (K40c and V100). This is expected because the consumer cards have NVIDIA GPU archi-
tectures (Maxwell respectively Pascal) that have fewer double precision cores and double precision
operations are hence up to 32 times slower than single precision, while the HPC cards used here
are Kepler and Volta architecture and have only a factor 2 performance difference between double
precision and single precision operations. Accordingly, while in single precision, the presumably
less powerful but more recent Quadro card performs at the level of or even better than the older
but larger K40c accelerator, it does not compare favourably for double precision.
Comparing the two models, it is clear that the performance gains of Brian2GeNN on the different

GPU platforms is more marked for the Mbody model than for the COBAHH model. This would
be expected for the spike propagation code because the mainly feedforward structure of the Mbody
model lends itself better to parallelisation on GPUs with GeNN than the randomly recurrently
connected COBAHH model. Inspection of the computation time used for neuron and synapse
updates and synapse updates (spike propagation) revealed that for both models, but contrary to
the CPU situation, a large percentage of computing time is typically spent for spike propagation
when using a GPU.

Time for other tasks
So far we have presented results for the core simulation time. As explained in the methods,
Brian2GeNN has a substantial pipeline of tasks before and after the main simulation takes place.
Figure 3 illustrates the essence of how the computation times necessary along this pipeline stack up.
We defined four main phases of a Brian2GeNN run: "code generation and compilation", "synapse
creation", "main simulation" and "overheads", which bundles smaller tasks such as transforming
data formats between Brian 2 format and GeNN format, copying from and to the GPU and writing
results to disk. For illustration we have used the data from the TITAN Xp card. The data in the

4

.CC-BY-NC 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/448050doi: bioRxiv preprint first posted online Oct. 20, 2018;

http://dx.doi.org/10.1101/448050
http://creativecommons.org/licenses/by-nc/4.0/

32
5

82
5

27
00

10
20

0
40

20
0

16
02

00

64
02

00

25
60

20
0

10
24

02
00

Model size (# neurons)

100

101

102

103

Si
m

ul
at

io
n

tim
e

(re
la

tiv
e

to
 b

io
lo

gi
ca

l t
im

e) Mbody double precision

32
5

82
5

27
00

10
20

0
40

20
0

16
02

00

64
02

00

25
60

20
0

10
24

02
00

Model size (# neurons)

Si
m

ul
at

io
n

tim
e

(re
la

tiv
e

to
 b

io
lo

gi
ca

l t
im

e) Mbody single precision

20
0

10
00

40
00

16
00

0
64

00
0

25
60

00

10
24

00
0

Model size (# neurons)

10 1

100

101

102

103

Si
m

ul
at

io
n

tim
e

(re
la

tiv
e

to
 b

io
lo

gi
ca

l t
im

e) COBAHH double precision

20
0

10
00

40
00

16
00

0
64

00
0

25
60

00

10
24

00
0

Model size (# neurons)

Si
m

ul
at

io
n

tim
e

(re
la

tiv
e

to
 b

io
lo

gi
ca

l t
im

e) COBAHH single precision
CPU / 1 thread
CPU / 24 threads
Quadro K2200
Tesla K40c
TITAN Xp
Tesla V100

Figure 2: Benchmarking of the net simulation time for different GPU models. Measurements were
taken separately for the MBody model (top) and COBAHH model (bottom) for double precision
floating point (left) and single precision (right). Simulation time is shown relative to the simulated
biological time. CPU performance was measured on the host of the TITAN Xp GPU (see table 2).
For the GPUs, the better (smaller) of the simulation times for either pre-synaptic or post-synaptic
parallelisation strategy are shown. See figure 1 and main text for more in-depth explanation.

5

.CC-BY-NC 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/448050doi: bioRxiv preprint first posted online Oct. 20, 2018;

http://dx.doi.org/10.1101/448050
http://creativecommons.org/licenses/by-nc/4.0/

100
101
102
103
104
105

simulation
 1s

 10s

 100s
Mbody single precision

 1s
 10s
 100s

COBAHH single precision

45
0

14
50

52
00

20
20

0
80

20
0

32
02

00

12
80

20
0

51
20

20
0

20
48

02
00

Model size (# neurons)

0
10 2

10 1

100

101

102

W
al

l c
lo

ck
 ti

m
e

(s
)

code gen & compile

overhead

synapse creation & initialization

20
0

10
00

40
00

16
00

0
64

00
0

25
60

00

10
24

00
0

Model size (# neurons)

W
al

l c
lo

ck
 ti

m
e

(s
)

Figure 3: Overview of the components that make up the total runtime of a simulation for the
Mbody (left) and the COBAHH benchmark (right). The top panels show the time spent in the
simulation itself which scales with the biological runtime of the model (shown at the right) and
dominates the overall runtime for big networks and/or long simulations. The bottom panels show
the time spent for code generation and compilation (blue), general overhead such as copying data
between the CPU and the GPU (orange), and the time for synapse creation and the initialization
of state variables before the start of the simulation (green). The details shown here are for single-
precision simulations run on the Titan Xp GPU.

top two panels in figure 3 repeats the results for the simulation time but also shows extrapolations
for shorter and longer runs, where computation times are strictly proportional to the length of
simulated biological time. The bottom two panels show the compute time spent on the other three
phases. Code generation and compilation is a fixed cost that is completely independent of the
model size. On the contrary, computation time for synapse creation and initialisation increases
linearly with model size in terms of the number of neurons. The other overheads are initially
almost independent of model size but then also start increasing with the number of neurons. In
the balance, for small to mid-sized models and short simulation runs (1s biological time), code
generation and compilation dominates the overall runtime whereas for large models and longer
runs, the time for the main simulation dominates.
To give a rough guide at which amount of biological time for any given model size it becomes

viable to use Brian2GeNN we have calculated the minimum simulated biological time for which
the overall runtime for Brian2GeNN is smaller than a 24 thread OpenMP solution (figure 4). For
simulated biological time of 100s or more it is always faster to use Brian2GeNN, regardless of
model size or employed GPU accelerator. For shorter simulated time it depends on the simulated
model and the GPU. For example, simulating 10s biological time is perfectly viable on a V100 for
the Mbody model at size 40,200 but would be slower on a K40c; or, simulating 10s biological time
would not be viable for any of the tested GPUs for the COBAHH model at size 8,000 but viable

6

.CC-BY-NC 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/448050doi: bioRxiv preprint first posted online Oct. 20, 2018;

http://dx.doi.org/10.1101/448050
http://creativecommons.org/licenses/by-nc/4.0/

45
0

14
50

52
00

20
20

0
80

20
0

32
02

00

12
80

20
0

51
20

20
0

20
48

02
00

Model size (# neurons)

10 1

100

101

102

ne
ce

ss
ar

y
bi

ol
og

ica
l r

un
tim

e
(s

)

Mbody

20
0

10
00

40
00

16
00

0
64

00
0

25
60

00

10
24

00
0

Model size (# neurons)

ne
ce

ss
ar

y
bi

ol
og

ica
l r

un
tim

e
(s

)

COBAHH

Quadro K2200 (single)
Tesla K40c (double)
TITAN Xp (single)
Tesla V100 (double)

Figure 4: Minimal biological runtime after which the total simulation time, including preparations
such as code generation and compilation (cf. figure 3), is smaller when using a GPU compared to
24 threads on a CPU, for networks of different sizes. The CPU comparison is the host of the Titan
Xp GPU (see table 2). Results for the Mbody benchmark (left) and the COBAHH benchmark
(right). The calculations are based on single precision performance for the Quadro GPU (blue)
and Titan Xp GPU (green), and on double precision performance for the Tesla K40c (orange) and
the Tesla V100 GPU (purple).

on all of them at size 64,000.

Discussion
In designing software for computational neuroscience, there are two seemingly conflicting require-
ments: for high performance and for flexibility. The ability to create new types of models is
essential for research that goes beyond what is already known at the time that a simulator pack-
age is created. However, hand written code that implements particular models can be much more
computationally efficient. This is particularly true in the case of GPU simulations, as it is difficult
to make maximally efficient use of GPU resources. Consequently, almost all GPU-based simula-
tors for spiking neural networks have not made it possible to easily create new user-defined neuron
models (Nageswaran et al., 2009; Fidjeland and Shanahan, 2010; Mutch et al., 2010; Hoang et al.,
2013; Bekolay et al., 2014). The exceptions are GeNN, the package Brian2CUDA (Augustin et al.,
2018) currently under development, and ANNarchy (Vitay et al., 2015), which is discussed below.
The technique of code generation allows us to solve this apparent conflict, and has been used

by both the GeNN and Brian simulators (Goodman, 2010; Yavuz et al., 2016; Stimberg et al.,
2014). In the case of GeNN, when writing a new model users need to write only a very small
section of generic C++ code that defines how the variables of a neuron model are updated, and
this is then inserted into a detailed template that allows that model to be simulated efficiently on
a GPU. Brian meanwhile allows users to write their model definition at an even higher level, as
standard mathematical equations in a Python script. These are then automatically converted into
low-level C++ code to be compiled and executed on a CPU. In both cases, users write high level
code (short snippets of C++ in the case of GeNN, or Python/mathematics in the case of Brian)
and efficient low level code is automatically generated.

7

.CC-BY-NC 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/448050doi: bioRxiv preprint first posted online Oct. 20, 2018;

http://dx.doi.org/10.1101/448050
http://creativecommons.org/licenses/by-nc/4.0/

Linking Brian and GeNN accomplishes two tasks. Firstly, it allows existing Brian users to make
use of a GPU to run their simulations without any technical knowledge of GPUs (via GeNN).
Secondly, it gives GeNN users a high level and feature packed interface (Brian and Python)
to manage their simulations. GeNN was originally designed to be used at the C++ level, with
network setup and simulation management handled by the user in C++, but not all computational
neuroscientists are comfortable working at this level and there can be considerable savings in
development time working at a higher level.

Related work
The only other spiking neural network simulation package to allow for flexible model definition in a
high level language, and for code to run on GPUs, is ANNarchy (Vitay et al., 2015). This simulator
was originally designed to adapt a model definition syntax similar to Brian’s to rate-coded networks
(rather than spiking neural networks), and to make use of GPUs for high performance. It has
subsequently been updated to allow for the definition of spiking neural networks as well as hybrid
networks, and simulating spiking networks on the GPU is now provided as an experimental feature.
In contrast to Brian2GeNN which supports all major operating systems, ANNarchy only supports
running simulations on the GPU on Linux.
As noted in Brette and Goodman (2012), on GPUs it is unlikely that there is a single best

algorithm for spiking neural network simulation, but rather the best algorithm will depend on the
model. A diversity of GPU spiking neural network simulator packages is therefore desirable.

Limitations
Brian’s framework for defining models of neurons, synapses, networks and computational exper-
iments is designed to be as expressive and flexible as possible. Consequently, not all features
of Brian are available in GeNN, and not all simulations that can be run in GeNN will run ef-
ficiently. Among the most important currently unsupported features are continuous, i.e. not
spike-based, connections (used for example to implement electrical synapses); heterogeneous, i.e.
synapse-specific, synaptic delays; arbitrary, time-varying continuous stimuli; and complex sim-
ulation schedules (for example, multiple simulation runs or different simulation time steps for
individual groups of neurons/synapses). Attempting to use an unsupported Brian feature with
Brian2GeNN will simply raise an error.
However, some features that are supported may also lead to slow code on the GPU. This is

because efficient use of the GPU requires appropriate paralellisation strategies and specific memory
access patterns, and for some features (particularly relating to backpropagation of information in
synapses) it is very difficult to arrange data in memory so that it can be accessed efficiently
for both, forward and backward propagation on the GPU (Brette and Goodman, 2012). The
very different scaling of runtimes in the COBA example for pre- and post-synaptic parallelisation
strategies for synaptic updates in large model instances, as seen in figure 1, is a very typical
example of such phenomena. However, it is not straightforward to predict when problems of this
kind will be significant. The Mbody example has STDP but because it is otherwise well suited for
GeNN due to essentially feedforward connectivity for the majority of synapses and sparse firing,
it speeds up well in Brian2GeNN. The COBA example does not have plasticity and yet, due to
its relatively dense, random connectivity and somewhat higher firing rates, the speedups are good
but less pronounced than in the Mbody example.

Future work
Further work on Brian and GeNN will go in two main directions. On the GeNN side, we plan
to expand the features available in GeNN to cover more of the features available in Brian, as
well as improving efficiency. A specific bottleneck that has been recently identified is the synapse
creation task (see figure 3). Work is under way that enables synapse creation on the GPU instead

8

.CC-BY-NC 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/448050doi: bioRxiv preprint first posted online Oct. 20, 2018;

http://dx.doi.org/10.1101/448050
http://creativecommons.org/licenses/by-nc/4.0/

of the CPU with considerable performance advantages, in particular where synaptic connectivity
becomes more intricate.
On the Brian side, we plan to simplify and optimise the process of writing third party back-

ends. This will not only simplify future development of Brian2GeNN but will also encourage
the development of an ecosystem of back-ends, for example featuring different GPU algorithms
or targeting different computational hardware such as field programmable gate arrays (FPGAs).
An interface to generate CUDA code directly from a Brian script, called Brian2CUDA (Augustin
et al., 2018), is also under development, but has not yet been released.
For Brian2GeNN itself, we are planning to expose more of the optimisation choices offered to

direct users of GeNN to Brian2GeNN users, for instance per-synapse group choices for connectivity
matrix representations (sparse, dense, ragged, bitmask) and parallelisation strategies (pre- or post-
synaptic). We will also work on exposing the emerging on-GPU initialisation methods mentioned
above and the heterogeneous synaptic delays that were recently introduced to GeNN.

Methods

Brian2GeNN
Brian2GeNN makes use of the existing code generation facilities in the Brian and GeNN simula-
tors. These code generation facilities differ in important aspects. The Brian simulator provides a
comprehensive code generation framework that converts not only high-level descriptions of neural
and synaptic models to executable code, but also extends this framework to model initialization
including the generation of synapses according to high-level rules. In addition, the user code is writ-
ten in Python, a language that is very accessible to researchers with a less technical background.
However, the generated code is C++ code that runs only on the CPU, and therefore cannot make
use of the computational power of GPU accelerators. GeNN’s code generation framework on the
other hand is focused more on organizing the code to run efficiently on highly parallel GPUs,
leaving the task of defining the code for simulating the neural and synaptic model, and the details
of how to run the overall simulation to the user. This is completed in C++, which allows tight
integration with other C++ based code, e.g. in the context of robotic controllers, but also makes
writing a GeNN simulation relatively difficult for inexperienced programmers. The major advan-
tage of using GeNN is its ability to generate efficient CUDA code that can be executed on a GPU
to accelerate simulations.
Brian2GeNN acts as a “glue” between Brian and GeNN, thereby combining the advantages of

both simulators. It is built as an extension of Brian’s code generation mechanism and can therefore
be directly used from within a Brian script; by choosing the “GeNN device” (l. 2–3, figure 5 top), a
standard Brian simulation is turned into a hybrid Brian/GeNN simulation. Such a script typically
sets up the simulation components and then triggers the simulation of the network (figure 5 top and
bottom left). At this point, the code generation process is activated and generates, compiles and
executes the target code. The results of this simulation are then written to disk by the executed
code, enabling the Python code to access the requested results to analyze or plot them. The
executable code (figure 5 bottom right) is jointly generated by Brian (blue boxes), Brian2GeNN
(green boxes/arrows), and GeNN (red box) and executed partly on the CPU and partly on the
GPU. The initial steps, synapse creation and model initialization, are unchanged from Brian’s
default code generation process. However, since Brian and GeNN use different data structures
to represent synapses, Brian2GeNN has to generate code to convert between the two formats. In
addition, it copies all the data to the GPU so that it can be used during the simulation run. The
main simulation loop delegates the core of the simulation, the dynamic update of neuronal and
synaptic state variables as well as the propagation of synaptic events, to the code generated by
the GeNN simulator, which executes on the GPU. After each time step, some of this data may
be copied back from the GPU and converted to the Brian format so that it can be recorded by
Brian’s monitoring mechanism. After the end of the simulation run, Brian2GeNN takes care to
copy all data back from the GPU and to convert it to the Brian format, so that Brian can store

9

.CC-BY-NC 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/448050doi: bioRxiv preprint first posted online Oct. 20, 2018;

http://dx.doi.org/10.1101/448050
http://creativecommons.org/licenses/by-nc/4.0/

User code

Generated by Brian2GeNN

Generated by Brian 2

Generated by GeNN

Neuron model
defini�on

Synapse model
defini�on

Synapse
connec�on

Ini�al values

Monitor
defini�ons

Run

Analyse results

Create synapses

Ini�alize values

Convert data
(Brian → GeNN)

run step

Convert data
(GeNN → Brian)

Record values in
monitors

Convert data
(GeNN → Brian)

Write results to disk

Run loop

copy data
(CPU → GPU)

copy data
(GPU → CPU)

copy data
(GPU → CPU)

①

②

③

④

⑤

⑥

①②

③

④

⑤

⑥

CPU GPU

generate,
compile and run

read results from disk

User script Executable

①

②
③

④

⑤

⑥

COBAHH.py
from brian2 import *

import brian2genn

set_device('genn')

eqs = Equations(...)

P = NeuronGroup(4000, model=eqs, threshold='v>-20*mV', refractory=3*ms,

 method='exponential_euler')

Pe = P[:3200]

Ce = Synapses(Pe, P, on_pre='ge+=we')

Ce.connect(p=0.02)

...

P.v = 'El + (randn() * 5 - 5)*mV'

...

trace = StateMonitor(P, 'v', record=[1, 10, 100])

run(10 * second)

Figure 5: Running simulations with Brian2GeNN. Top: Excerpt from an example Brian script
that will execute in a hybrid Brian/GeNN simulation due to the import of the brian2genn library
(line 2) and the selection of the “GeNN device” (line 3). Bottom left: General workflow of a
Brian2GeNN simulation: the run call triggers the code generation, compilation and execution.
After the successful run, results are stored to disk and made available to the Python script.
Bottom right: Structure of generated code. Parts of the code result from Brian’s standard code
generation process (blue), while the main run step is implemented by GeNN (red) and everything
is connected together by Brian2GeNN (green). The preparation of the simulation and actions such
as variable monitoring are executed on the CPU (left), while the core of the simulation is executed
on the GPU (right).

10

.CC-BY-NC 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/448050doi: bioRxiv preprint first posted online Oct. 20, 2018;

http://dx.doi.org/10.1101/448050
http://creativecommons.org/licenses/by-nc/4.0/

the results to disk and make them available for analysis in the Python script.

Benchmarks
Benchmarks were run on a number of different workstations, with different GPUs installed ranging
from a standard consumer card (Quadro K2200) to a more powerful gaming GPU (TITAN Xp), an
older computing accelerator model (Tesla K40c) to the most recent and most powerful accelerator
(Tesla V100). The different configurations for benchmarking are listed in table 2. We used Brian
2, version 2.2 (Stimberg et al., 2018a), GeNN version 3.2 (Knight et al., 2018), and Brian2GeNN
version 1.2 (Stimberg et al., 2018b) for our benchmarks.

Table 2: Configurations used for benchmarking.

CPU GPU
cores Clock

speed
(GHz)

Memory
(GB)

Archi-
tecture

cores Memory
(GB)

Perfor-
mance∗
(float)

Perfor-
mance∗
(double)

Intel Xeon E5-1630 v3 Quadro K2200
4 3.7–3.8 16 Maxwell 640 4 1,439 45

Intel Xeon E5-1620 v2 Tesla K40c
4 3.7–3.9 32 Kepler 2,880 12 4,290 1,430

Intel Core i9-7920X TITAN Xp
12 2.9–4.4 64 Pascal 3,840 12 12,150 380

Dual Intel Xeon Gold 6148 Tesla V100
2× 20 2.4 192 Volta 5,120 16 14,131 7,066

∗maximum performance in GFLOPS

All benchmarks were run without “monitors”, Brian’s mechanism for recording the activity
during a simulation, as we observed in exploratory tests that monitors play only a minor role
in the context of the two models used as benchmarks here. For the runs using Brian2GeNN,
we used GeNN’s Yale sparse matrix representation (Yavuz et al., 2016) throughout. While for
smaller models, dense matrix representations may have speed advantages, the more relevant mid-
and large-scale models would lead to “out of memory” failure on all tested GPUs with either of
GeNN’s dense matrix representations. Even with sparse matrix representation, some runs failed
because of memory overrun. The corresponding data points were omitted from the benchmark
figures below.

11

.CC-BY-NC 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/448050doi: bioRxiv preprint first posted online Oct. 20, 2018;

http://dx.doi.org/10.1101/448050
http://creativecommons.org/licenses/by-nc/4.0/

References
Augustin, M., Alevi, D., Stimberg, M., and Obermayer, K. (2018). Flexible simulation of neuronal

network models on graphics processing units: an efficient code generation approach based on
brian. In Bernstein Conference 2018.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen, D., Choo,
X., Voelker, A. R., and Eliasmith, C. (2014). Nengo: a Python tool for building large-scale
functional brain models. Frontiers in Neuroinformatics.

Brette, R. and Goodman, D. F. M. (2012). Simulating spiking neural networks on GPU. Network
(Bristol, England), 23(4):167–82.

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., Diesmann, M., Mor-
rison, A., Goodman, P. H., Harris, F. C., Zirpe, M., Natschläger, T., Pecevski, D., Ermentrout,
B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., Davison, A. P., El Boustani,
S., and Destexhe, A. (2007). Simulation of networks of spiking neurons: A review of tools and
strategies. Journal of Computational Neuroscience, 23(3):349–398.

Fidjeland, A. and Shanahan, M. (2010). Accelerated simulation of spiking neural networks using
GPUs. pages 1 –8.

Goodman, D. and Brette, R. (2008). Brian: a simulator for spiking neural networks in python.
Frontiers in neuroinformatics, 2:5.

Goodman, D. F. M. (2010). Code Generation: A Strategy for Neural Network Simulators. Neu-
roinformatics, 8(3):183–196.

Goodman, D. F. M. and Brette, R. (2009). The Brian simulator. Frontiers in Neuroscience,
3(2):192–197.

Hoang, R. V., Tanna, D., Jayet Bray, L. C., Dascalu, S. M., and Harris, F. C. (2013). A novel
CPU/GPU simulation environment for large-scale biologically realistic neural modeling. Fron-
tiers in Neuroinformatics.

Knight, J., Yavuz, E., Turner, J., and Nowotny, T. (2018). GeNN (version 3.2),
https://doi.org/10.5281/zenodo.593735.

Mutch, J., Knoblich, U., and Poggio, T. (2010). CNS: a GPU-based framework for simulating
cortically-organized networks. Computer Science and Artificial Intelligence Laboratory Technical
Report.

Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., and Veidenbaum, A. V. (2009). A
configurable simulation environment for the efficient simulation of large-scale spiking neural
networks on graphics processors. Neural Networks, 22(5–6):791–800.

Nowotny, T., Huerta, R., Abarbanel, H. D. I., and Rabinovich, M. I. (2005). Self-organization in
the olfactory system: Rapid odor recognition in insects. Biol Cybern, 93:436–446.

NVIDIA R© Corporation (2006-2018). CUDATM, https://developer.nvidia.com/cuda-zone.

Oh, K.-S. and Jung, K. (2004). GPU implementation of neural networks. Pattern Recognition,
37(6):1311 – 1314.

Rolfes, T. (2004). Neural networks on programmable graphics hardware. Charles River Media,
Boston, MA.

Stimberg, M., Goodman, D. F. M., Benichoux, V., and Brette, R. (2014). Equation-oriented
specification of neural models for simulations. Frontiers in Neuroinformatics, 8:6.

12

.CC-BY-NC 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/448050doi: bioRxiv preprint first posted online Oct. 20, 2018;

http://dx.doi.org/10.1101/448050
http://creativecommons.org/licenses/by-nc/4.0/

Stimberg, M., Goodman, D. F. M., and Brette, R. (2018a). Brian 2 (version 2.2),
https://doi.org/10.5281/zenodo.1459786.

Stimberg, M., Nowotny, T., and Goodman, D. F. M. (2018b). Brian2GeNN (version 1.2),
https://doi.org/10.5281/zenodo.1464116.

Traub, R. D. and Miles, R. (1991). Neural Networks of the Hippocampus. Cambridge University
Press, New York.

Vitay, J., Dinkelbach, H. Ü., and Hamker, F. H. (2015). ANNarchy: a code generation approach
to neural simulations on parallel hardware. Frontiers in Neuroinformatics.

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: A code generation framework for accelerated
brain simulations. Sci. Rep., 6:18854.

Acknowledgments
We thank James Knight for assisting us with running benchmarks on the V100 device and helping
with adjustments in GeNN. This work was partially funded by the EPSRC (grants EP/J019690/1,
EP/P006094/1) and Horizon 2020 research and innovation program under grant agreement no

785907 (Human Brain Project, SGA2).

Author contributions statement
Author contributions: MS, DG and TN developed Brian2Genn, MS, DG and TN ran bench-
marks, MS produced figures, MS, DG and TN wrote the manuscript. All authors reviewed the
manuscript.

Additional information
Brian2GeNN is developed publicly on github (https://github.com/brian-team/brian2genn). The
scripts and raw results of the benchmark runs are available at https://github.com/brian-team/brian2genn_benchmarks.
The authors declare that they have no competing interests with respect to this work and the

funders have not played any role in its design or interpretation.

13

.CC-BY-NC 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/448050doi: bioRxiv preprint first posted online Oct. 20, 2018;

http://dx.doi.org/10.1101/448050
http://creativecommons.org/licenses/by-nc/4.0/

