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Abstract:

One common method of minimizing errors in large DNA sequence datasets is to drop variable sites
with a minor allele frequency below some specified threshold. Though widespread, this procedure
has the potential to alter downstream population genetic inferences and has received relatively
little rigorous analysis. Here we use simulations and an empirical SNP dataset to demonstrate the
impacts of minor allele frequency (MAF) thresholds on inference of population structure. We find
that model-based inference of population structure is confounded when singletons are included in
the alignment, and that both model-based and multivariate analyses infer less distinct clusters when
more stringent MAF cutoffs are applied. We propose that this behavior is caused by the combination
of a drop in the total size of the data matrix and by correlations between allele frequencies and
mutational age. We recommend a set of best practices for applying MAF filters in studies seeking
to describe population structure with genomic data.

Introduction:

The distribution of genetic variation within and among individuals is the crucial to understanding
the organization of biological diversity and its underlying causes. Across the genome, the effects
of different evolutionary processes and historical events can result in different classes of genetic
variants characterized by their relative frequency in a given population. An excess of common alleles
may reflect the signature of population bottlenecks (Marth et al. 2004), purifying selection (Fay
et al. 2001), or the absence of population subdivision (Pritchard et al. 2000). Alternatively, high
frequencies of rare alleles can provide evidence of population expansion (Marth et al. 2004), detailed
information on mutation rates and gene flow (Slatkin 1985), and reveal geographically localized
population subdivision (Barton and Slatkin 1986, Gombert et al. 2014). Because the distribution
of allele frequencies across sites (also known as the site frequency spectrum, or SFS) reflects the
unique combination of these varied factors, downstream analyses are sensitive to the influence of
sampling methodologies that alter the SFS. Yet despite the explosive recent growth of population
genetics provided by advent of affordable reduced-representation genome sequencing for nonmodel
organisms, there remain significant gaps in our knowledge of how data collection biases population
genetic inference.

These biases may originate either in wet lab or bioinformatic treatments. Prior to sequencing,
the SFS may be shaped by ascertainment bias in library preparation: RADseq-style methods
introduce genealogical biases (Arnold et al. 2013) and nonrandom patterns of missing data (Gautier
et al. 2012) due to reliance on the presence of restriction cut sites, while hybridization capture
with ultraconserved element (UCE) probesets necessarily involves targeting sites highly conserved
across evolutionarily distant taxa (Faircloth et al. 2012). During sequencing itself, relatively high
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error rates are accepted in individual reads, under the assumption they will be corrected during
bioinformatic processing steps (Nielsen et al. 2012). However, the absence of standard bioinformatic
pipelines in ecology and evolutionary biology is itself a source of uncertainty (Shafer et al. 2016)
because specific methodologies and parameter choices may dramatically affect the composition of
data matrices.

For organisms lacking a suitable reference genome, de novo sequence assemblies may introduce
substantial errors that affect both the SFS and inference of population genetic structure (Shafer et
al. 2016). During read-mapping, SNP variation can result in higher rates of successful alignments in
reads sharing the reference allele (Degner et al. 2009). Parameters used during variant detection
can also play a significant role in determining the number and distribution of single nucleotide
polymorphisms or SNPs (Neilsen et al. 2012), the most frequently used marker type in modern
population genetics. In particular, minor allele frequency (MAF) thresholds directly influence the
SFS by imposing a cutoff on the minimum allele frequency allowed to incorporate a specific genetic
variant. But despite its potential importance, the two most popular comprehensive bioinformatic
pipelines for RADseq data alternatively include (Catchen et al. 2013) or exclude (Eaton et al. 2014)
the option to set minor allele frequency thresholds during variant calling, with the result that among
empirical studies MAF thresholds are only sometimes reported (e.g., Winger 2017, Blanco-Bercial
and Bucklin 2016).

One potential consequence of ambiguous MAF choice is variation in the ability to detect population
subdivision (or structure), a fundamental goal of many population genetic studies. Broadly speak-
ing, methods to detect population structure fall into two categories: model-based (or parametric)
approaches, and nonparamatric approaches. Model-based methods, exemplified by the influential
program structure (Pritchard et al. 2000), typically assume a hypothetical K populations charac-
terized by p allele frequencies at locus l, and seek to probabilistically assign individuals to each of
these populations given their genotypes. When allowing for admixture, an additional parameter Q
models the proportion of each individual’s genome that originated from a given population. While
other programs differ from structure in using variational inference (fastStructure; Raj et al. 2014)
or a maximum likelihood framework (ADMIXTURE; Alexander et al. 2009; FRAPPE; Tang et al. 2005),
they are united in proposing an explicit causal model for input data, assuming linkage equilibrium
between loci and Hardy Weinberg equilibrium between alleles. In contrast, nonparametric methods
such as principal components analysis and K -means clustering (Jombart et al. 2010; Novembre et
al. 2008) first reduce the dimensionality of an allele frequency matrix and then seek to identify
groups of individuals that minimize an objective function without explicitly modelling the attributes
of genetic data.

Because of these differences, parametric and nonparametric approaches may show different sensitivi-
ties to SFS generated through biased data collection methods. It’s possible these sensitivities also
reflect the influence of the type datasets available during each program’s initial development: for
example, as structure’s underlying algorithm was tested prior to widespread adoption of high
throughput sequencing methods and initially applied on microsatellite data screened for appropriate
frequency distributions (Pritchard et al. 2000, Li et al. 2000), the characteristics of unfiltered
modern SNP datasets may present unanticipated challenges to accurate population genetic infer-
ence. Yet to the best of our knowledge, no studies have directly addressed this potential source
of error in population genetic and phylogeographic studies. Here, we assess the influence of minor
allele frequency (MAF) thresholds on inference of population structure. We evaluate the ability
of model-based and nonparametric clustering methods to describe population structure in both
simulated and empirical genomic datasets and find that structure is confounded by singletons and
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both approaches are sensitive to variation in MAF thresholds. We propose a simple hypothesis
to explain this behavior and recommend a set of best practices for researchers seeking to describe
population structure using reduced-representation libraries.

Methods:

Simulated Data. We simulated genome-wide SNP datasets under a custom demographic model in
fastsimcoal2 (Excoffier et al. 2013) in order to assess the impacts of MAF filtering on population
structure inference in the absence of sequencing or assembly error. Model parameters were chosen
to reflect a plausible demographic history for our empirical case (see below), with one population
experiencing successive splits 60,000 and 40,000 generations in the past after which all populations
increase in size exponentially, reaching a final Ne of 50,000 for the “outgroup” lineage and 500,000 for
the remaining populations (Figure 1A). Migration is allowed among all populations after the final
divergence event. We included a mutation rate parameter of 2x10-6 in simulated data—equivalent
to selecting a single SNP from a 200 bp region in an organism with an average genome-wide
mutation rate of 1x10-8 (see fastsimcoal2 user manual). Missing data—a common feature of
reduced-representation library SNP datasets—was simulated by randomly dropping 25% of the
alleles at each simulated locus.

We generated 10 independent simulations using the same starting parameter values and replicated
analyses 10 times for each dataset. Each simulation was initialized with 5,000 loci across 10
individuals in each of the 3 populations. After converting fastsimcoal2 output to structure’s
input file format, we generated MAF-filtered datasets at each of the following cutoffs: 1/60, 2/60,
3/60, 4/60, 5/60, 8/60, 11/60, and 15/60.

To test whether variation in inferred admixture levels was caused by MAF thresholds specifically
rather than a drop in the total size of the data matrix after filtering, we reran the above simulations
but initialized with 40,000 loci and then randomly downsampled all alignments to 1000 sites after
applying MAF cutoffs.

Empirical Data. We collected genome-wide SNP data from 40 individuals of the widespread North
American passerine Regulus satrapa, the Golden Crowned Kinglet. Our geographic sampling aimed
to represent three areas of the species’ breeding range a previous study with mitochondrial DNA
suggested were distinct populations (Klicka 2017, unpublished data): subspecies satrapa in the
Eastern US / Canada; subspecies olivaceous / apache in the coastal and Rocky Mountain US /
Canada, respectively; and subspecies azteca in the Sierra Madre del Sur and Transvolcanic Belt of
Mexico (Figure 1B). We extracted whole genomic DNA using Qiagen DNEasy extraction kits and
prepared reduced-representation libraries via the ddRADseq protocol (Peterson et al. 2012) using
the digestion enzymes Sbf1 and Msp1 and a size-selection window of 415-515 bp. We sequenced the
resulting libraries for 50 bp single-end reads on an Illumina HiSeq 2500.

We assembled reads into sequence alignments de novo using the program ipyrad v. 0.7.11
(https://github.com/dereneaton/ipyrad). We set a similarity threshold of 0.88 for clustering reads
within and between individuals, a minimum coverage depth of 6 per individual, and a maximum
depth of 10,000. To exclude paralogs from the final dataset, we filtered out loci sharing a heterozy-
gous site in 50% of samples. We define “locus” throughout this manuscript as a cluster of sequence
reads putatively representing the same 50 bp region downstream of an Sbf1 cut site. Because
missing data can have a strong influence on population genetic inference (Arnold et al. 2013, Gautier
et al. 2013) and preliminary exploration suggested anomalous clustering behavior, we removed 7
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individuals from our dataset prior to all downstream analysis. Of these final 33 samples, we required
each locus to be sequenced in at least half of samples and randomly selected one SNP per locus.

Population Structure Analyses. We ran 10 replicate structure analyses for all MAF filters of
simulated (n=80) and empirical data (n=8) using the correlated allele frequency model with
admixture for 250,000 generations each, with 10,000 generations of burn-in. All runs were initialized
using a random seed value drawn from a uniform distribution with range (0 – 10,000). No prior
population assignment information was included in the model. All other settings were left at default
values.

Principal components analysis, K -means clustering and discriminant analysis of principal components
(DAPC) were conducted using the R package adegenet (Jombart et al. 2010) and the MAF-filtered
structure files as input. Missing data was replaced with the mean values across the full sample
before running PCAs. DAPCs were initialized using the K -means clustering solution and tested
by training the model on half the individuals in each population, then predicting the population
assignment of the remaining individuals. PCA and K -means analyses were repeated 10 times per
input dataset, and DAPC cross validations were repeated 10 times per K -means replicate.

In practice most clustering solutions are assessed visually by comparing bar plots of structure's
output or scatter plots of PCs 1 and 2. In order to quantitatively compare clustering results
across methods and MAF cutoffs, we estimated two summary statistics: the proportion of correct
population assignments, and the ratio of distances between individuals within populations to those
between all individuals (we refer to this as “PCst” to emphasize its analogy to Fst and φst). The
proportion of correct population assignments was estimated by assigning each individual to a single
cluster (for structure results individuals were assigned to the cluster with the highest q value),
swapping cluster labels to account for stochastic label switching during inference, and comparing
inferred and true population assignments.

Within-to-total population distance ratios were calculated as:

PCst = 1 − 1
k

∑
k

d̄kikj

d̄ij

where k is the population index, i and j are the indices of individuals, and d̄ is the mean Euclidean
distance between individuals in a k-dimensional space described by the first k principal components or
the columns of the q matrix returned by structure. More simply, this ratio is the average distance
between individuals in the same population over the average distance between all individuals.
High values indicate that inferred clusters are discrete, while low values indicate that clusters
overlap—either reflecting uncertainty in individual assignments or admixture among populations.

Results:

Simulations and sequence assembly. Following MAF filtering, our simulated datasets retained an
average range of 3942 (for MAF=1) to 242 (for MAF=15) loci. Constant-length datasets were
always subsampled to 1000 bp. For our Regulus satrapa ddRAD libraries, Illumina sequencing
returned an average of 781,011 quality-filtered reads per sample. Clustering within individuals
identified 35,722 putative loci per sample, with an average depth of coverage of 22x. After clustering
across individuals and applying paralog and depth-of-coverage filters, we retained an average of 4286
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loci per sample. Prior to applying MAF filters and removing individuals for excess missing data,
our alignment included 3898 unlinked diallelic SNPs from sequenced in at least 30 of the original 40
samples. Our final MAF-filtered datasets ranged from 3419 (MAF=1) – 431 (MAF=20) loci.

Parametric clustering. The ability to detect population subdivision in both simulated and empirical
datasets varied widely across MAF thresholds using the model-based method structure (Figure
2). In both constant and variable-length datasets, including singletons caused structure to assign all
individuals to the same majority ancestry cluster. For variable-length simulated datasets, after ex-
cluding alignments with singletons, higher MAF thresholds are also associated with lower population
discrimination (linear regression, p<2e-16, R2=0.21, slope= -0.02, df=698) and assignment accuracy
(p<2e-16, R2=0.20, slope=-0.014, df=698) (Figure 5). The association between high MAF cutoffs
and population discrimination is reversed in constant-length datasets – more stringently filtered
datasets infer more discrete clusters—though the effect is much weaker (p<1e-10, R2=0.093, slope
= 0.007).

Nonparametric clustering. In contrast to structure, both K -means clustering accuracy and PCst

were robust to inclusion of singletons (Figure 3). However, both measures were highly sensitive to
MAF thresholds in simulated data. Both PCst and K -means assignment accuracy decline as the
MAF threshold is increased (linear regression, PCst: p<2e-16, R2=0.606, slope=-0.01; K -means
accuracy: p<2e-16, R2=0.404, slope=-0.011, df=798). As with structure these relationships are
reversed but weaker when alignment length is held constant (linear regression, PCst: p<2e-16,
R2=0.216, slope=0.005; K -means accuracy: p<2e-16, R2=0.069, slope=0.006) (Figure 6), though
the relationship remains negative across MAF cutoffs in the range of 0.01 0 – 0.083. For empirical
data, both methods achieved near-perfect assignment accuracy under all MAF cutoffs.

Discussion

Inference of population structure is sensitive to MAF. Our results demonstrate that inference of
population structure can be strongly influenced by choice of MAF threshold with both model-based
and multivariate approaches. Structure fails to detect even moderate population subdivision
(Fst ≈ 0.05) when singletons are included in the alignment, and both methods generally infer
increasing levels of admixture as the minimum MAF of sites included in the alignment is increased.
These trends do not occur when alignment length is held constant, suggesting that most of the
effect is driven by a drop in the total size of the data matrix after filtering by MAF. In practice
this will occur in most empirical datasets when genotypes are estimated from sequencing data. For
chip-based approaches in which SNPs are first screened for variation at some cutoff, our analysis
suggests that clustering results should be relatively robust to implicit MAF cutoffs applied during
chip design.

Two factors may explain the pattern of increased admixture in more stringently filtered datasets:
variation in the total size of the data matrix, and the distribution of mutations on a coalescent
tree. In simulated datasets with varying size (as in nearly all empirical cases), increasing the MAF
cutoff decreases the total size of the data matrix and leads to much higher estimates of individual
admixture. This is in part an interpretive issue, as the strong effect of the size of the data matrix
suggests that the high q-matrix values reflect uncertainty in individual assignments rather than
higher admixture levels. However, because parametric approaches are typically interpreted in light
of their generative model, many users are likely to see this pattern as evidence of higher gene flow.

A secondary cause of increased admixture in more stringently filtered datasets is the time distribution
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of mutations in a coalescent tree. Under a standard coalescent model the expected number of sites
with a derived allele present in i samples (si) is the total length of branches subtending i descendents
(τi), multiplied by the expected number of mutations per unit time (θ/2):

E[si] = θ

2E[τi] (Wakely 2009, Equation 4.15)

Low-frequency alleles represent mutations that occurred on branches with few descendants, and
these branches are typically found close to the present (Figure 4; see Appendix 1 for simulation
details). Low-frequency alleles therefore contain a disproportionate amount of information about
recent events. Removing them is similar to drawing a horizontal line across a coalescent tree and
dropping mutations that occur beyond that line. In the absence of recent pulses of gene flow,
this causes populations to appear less differentiated as the MAF threshold increases, seen in PCA
output as reduced distance between clusters and in structure output as increased admixture within
individuals (though some would argue that this is simply a misinterpretation of structure’s output,
e.g. Lawson et al. 2017).

Model-based analyses’ failure to recover a clear signal of population subdivision when singletons
are included in the alignment is more difficult to explain. The issue appears to be related to
overfitting as a result of either a high frequency of uninformative rare alleles or a high frequency of
uninformative common alleles (Alexander and Lange 2011). In both scenarios, population k1 receives
an allele frequency distribution averaging out true population specific-frequencies of common alleles,
resulting in the broad band of majority ancestry visible in Figure 2. Subsequently, populations
k2. . . kn receive high frequencies of singletons or otherwise uninformative rare alleles, resulting in the
additional bands of minority ancestry shared across all individuals. With our simulated data, rare
but non-singleton alleles reflect fine population structure and thus harm inference when excluded;
with our empirical data, rare alleles are uninformative and serve only as noise to common allele
frequency distributions reflecting true population history.

This hypothesis is consistent with a pathology related structure’s inability to model mutation
of modern alleles, previously identified as a potential obstacle to accurate inference of population
structure under certain histories (Shringapure and Xing 2009). Because structure assumes each
unique allele in the input dataset has a distinct frequency in its parent population, recent mutations—
e.g., derived alleles—are erroneously treated as representative of a separate population-specific allele
frequency profile rather than as descendants of ancestral copies. If a sufficient number of singletons
are present in the dataset, the noise from these false allele frequency profiles may mask the signal
from alleles indicative of “true” populations. Though most multivariate analyses were robust to
inclusion of singletons, a similar pattern of low accuracy and population discrimination was observed
in PCA when alignment length was held constant—likely because low-frequency alleles hold less
information about inter-group differences than moderate-frequency alleles, and low-frequency alleles
will be a larger proportion of the total data matrix in this case.

Recommendations for setting MAF thresholds in population genetic studies. Our results suggest
that SFS distributions that can cause structure and other model-based programs to erroneously fail
to detect structure may be generated by either normal demographic processes (e.g., exponential
population growth with relatively recent divergence, as in our simulated example) or by assembly
errors (potentially present in our empirical example, and well documented in other de novo RADseq
datasets, e.g. Shafer et al. 2016). As a consequence, a broad set of empirical studies may be affected.
We recommend researchers using model-based programs to describe population structure observe the
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following best practices: 1) duplicate analyses with nonparametric methods such as PCA and DAPC
with cross validation; 2) exclude singletons; and 3) compare alignments with multiple assembly
parameters. When seeking to exclude only singletons in alignments with missing data (a ubiquitous
problem for reduced-representation library preparation methods), it is preferable to filter by the
count (rather than frequency) of the minor allele, because variation in the amount of missing
data across an alignment will cause a static frequency cutoff to remove different SFS classes at
different sites. The scripts used to filter structure input files for this manuscript are available at
https://github.com/cjbattey/LinckBattey2017_MAF_clustering.

Population genetics of Regulus satrapa. Though describing population structure and phylogeographic
patterns of the Golden-crowned Kinglet was not the primarily goal of our study and will be elaborated
on elsewhere, our data provide novel evidence for deep splits across the range of the species,
corroborating previous mtDNA evidence (Klicka 2017, unpublished data). Curiously, the results
of our model-based population structure inference suggest not only singletons but also doubletons
have a high noise to signal ratio, while common alleles (MAC ≥ 3) accurately reflect expected
relationships. This pattern may be driven by either purifying selection eliminating geographically
localized variants (Nelson et al. 2012, Jackson et al. 2015), a population bottleneck (Nei et al. 1975;
Gattepaille et al. 2013), a burst of recent migration following exponential population growth (Slatkin
1985), or assembly artifacts resulting in a high proportion of uninformative / erroneous sites (Shafer
at al. 2016). While all scenarios are likely contributing to some extent, studies of genetic variation
in similar taxa provide support for post-Pleistocene expansion and gene flow among populations
separated by ice sheets (Spellman and Kilcka 2006), processes that may result in similar SFS
distributions to our example.

Future directions. With simulated and empirical cases reflecting similar (if non-identical) site
frequency spectra, our focus was on a necessarily narrow range of demographic scenarios and a
relatively narrow range of SFS distributions. Future examinations of the sensitivity of population
genetic inference to MAF thresholds with datasets simulated under a diversity of evolutionary
histories may shed light on the biological processes generating problematic SFS, and lead to the
development of more robust model-based programs. While other parametric population structure
inference programs share structure’s underlying model and we believe the broad patterns reported
here will be similarly reflected, differences in implementation (e.g., MCMC mixing) may shape
specific sensitivities. A broader survey of model-based population structure inference methods will
help clarify which approaches are best suited to NGS data, and lead to the development of more
robust software for describing the fundamental units of biological organization.
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Figure 1: (A) The demographic model used in simulating SNP datasets. (B) Sampling localities
and sizes for Regulus satrapa, with a priori population assignments.
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Figure 2: The influence of minor allele count on structure's assignment accuracy and PCst for
simulated and empirical datasets
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Figure 3: The influence of minor allele count on K -means assignment accuracy and PCst for
simulated and empirical datasets
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Appendix 1:

Coalescent simulations of mutation timing. To demonstrate the relationship between the time a
mutation occurs and the minor allele frequency at a given site, we developed a single-locus discrete
coalescent simulator that tracks the generation of each mutation. Simulations are initialized with
a set of individuals at generation 0. At each generation moving into the past, the probability of
a coalescence event is approximated by sampling from a binomial distribution with probability of
success (k − 1)/N , where k is the number of tracked lineages in the current generation and N is
the total population size. If a coalescent event occurs, two individuals are randomly selected and
merged. The number of mutations occurring on the branches joining the coalescing individuals is
then approximated by conducting n binomial draws with probability µ, where n is the branch length
and µ is the mutation rate. Mutations are then assigned to generations by randomly sampling
values across the range of generations between successive coalescent events. Results are stored in a
Newick tree and a set of tables, and plotted with functions from the R packages ape (Paradis et
al. 2004), ggplot2 (Wickham 2016), and ggridges (Wilke 2018). The simulator is implemented in
R and is available at: https://github.com/cjbattey/coalesceR.
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Figure 5: Structure results for simulated data when alignment length is held constant at 1000
SNPs.
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Figure 6: Multivariate clustering of simulated data when alignment length is held constant at 1000
SNPs.
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