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Abstract

The successor representation (SR) is a candidate principle for generaliza-
tion in reinforcement learning, computational accounts of memory, and the
structure of neural representations in the hippocampus. Given a sequence
of states, the SR learns a predictive representation for every given state that
encodes how often, on average, each upcoming state is expected to be visited,
even if it is multiple steps ahead. A discount or scale parameter determines
how many steps into the future SR’s generalizations reach, enabling rapid
value computation, subgoal discovery, and flexible decision-making in large
trees. However, SR with a single scale could discard information for pre-
dicting both the sequential order of and the distance between states, which
are common problems in navigation for animals and artificial agents. Here
we propose a solution: an ensemble of SRs with multiple scales. We show
that the derivative of multi-scale SR can reconstruct both the sequence of
expected future states and estimate distance to goal. This derivative can be
computed linearly: we show that a multi-scale SR ensemble is the Laplace
transform of future states, and the inverse of this Laplace transform is a
biologically plausible linear estimation of the derivative. Multi-scale SR and
its derivative could lead to a common principle for how the medial temporal
lobe supports both map-based and vector-based navigation.

Introduction

The reinforcement learning problem is one faced by biological and computational
agents alike: finding a series of actions in an environment to maximize long-run reward
(Dayan & Balleine, 2002). Many environments have sparse rewards, making a step by
step simulation of entire trajectories to choose optimal reward policy (Figure 1, top left)
costly and sometimes intractable. One way to make the solution tractable is to generalize
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MULTI-SCALE SUCCESSOR REPRESENTATIONS 2

representations of nearby states along long paths, allowing simulations to hop over nearby
states rather than traverse them one by one. The successor representation offers such a
solution (Dayan, 1993). The key idea is that, given a stream of experience and actions,
the SR represents a given state in terms of states that will follow it in the near future.
Importantly, the definition of “near” depends on a discount parameter, which imposes a
timescale on the generalization and hence predictions over successor states (Figure 1, top
right). It has been shown that the successor representation (SR) offers a candidate principle
for generalization in reinforcement learning (Dayan, 1993; Momennejad, Russek, et al., 2017;
Russek, Momennejad, Botvinick, Gershman, & Daw, 2017) and computational accounts of
episodic memory and temporal context (Gershman, Moore, Todd, Norman, & Sederberg,
2012), with implications for neural representations in the medial temporal lobe (Stachenfeld,
Botvinick, & Gershman, 2017) and the midbrain dopamine system (Gardner, Schoenbaum,
& Gershman, 2018).

Most real-world planning problems require agents to plan over longer timescales.
Classic reinforcement learning solutions, the model-based and the model-free and hybrid
agents, provide non-satisfactory solutions to the problem. A model-free (MF) agent simply
stores long-term value of a given action without storing information about the states or the
map of the environment. An MF agent solves the RL problem fast, but is inflexible in the
face of changes in either the rewards or the map structure of the environment. A typical
model-based (MB) solution to finding action policies that maximize rewards is to learn and
use a representation of the environment that stores relationships between states that are one-
step away from one another, or a one-step transition map of the environment. When the MB
agent is about to make a decision, it retrieves different trajectories to reward then computes
and compares their expected values via simulating possible sequences one step at a time.
Thus, MB agents compute expected value (long-term cumulative reward) for each possible
sequence. This one-step MB solution offers flexibility in the face of sudden changes, but it
is computationally expensive and sometimes intractable for environments with large state
spaces. In contrast, SR offers a more computationally efficient solution to the RL problem
by storing generalizations (temporal abstractions) of multi-step relationships between states
(Dayan, 1993; Gershman, 2018).

In order to increase efficient computations, SR relies on the weighted sum over the
probability of visiting future states, storing expected future occupancy of each future states
(that follow from the current state) at a discount scale. This precomputed information
about multi-step predictive relationships is later combined with reward to compute value in
a linear operation, enabling rapid and flexible adaptation to changes in reward, as in reward
revaluation. SR is as flexible as MB when the rewards change in the environment (reward
revaluation) but less flexible when the map of the environment changes (transition revalu-
ation), predicting behaviorally asymmetric flexibility. Recent experiments have compared
these models to human behavior and shown that the asymmetry in human behavior is more
consistent with the predictions of SR agents that update their models via replay (SR-Dyna)
(Momennejad, Russek, et al., 2017). It has also been shown that SR offers a computational
account of optimal behavior in a variety of RL problems such as policy revaluation and
detour (Russek et al., 2017) and explains how context repetition enhances memory-driven
predictions in human behavior (Smith, Hasinski, & Sederberg, 2013). SR has also been pro-
posed as a principle for neural organization for place cells and grid cells in the hippocampus
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and the entorhinal cortex, playing a crucial role in rodent navigation (Stachenfeld et al.,
2017). Stachenfeld and colleagues reviewed the literature for the hippocampal-entorhinal
encoding of spatial maps during navigation, and modeled the evidence using the successor
representation. They concluded that SR is a candidate organizational principles governing
the neural firing of place cells and grid cells for learning spatial maps guiding navigation.
Since the eigenvectors for the transition matrix and the SR are the same, they suggested
that grid cells in the medial entorhinal cortex may provide an eigendecomposition of the
graph of the states.

Furthermore, human neuroimaging implicates SR in neural representations underlying
event segmentation in the statistical learning of non-spatial relational structures (Schapiro,
Rogers, Cordova, Turk-Browne, & Botvinick, 2013). Computational models show that SR
can partition the state space, enabling sub-goal processing in large decision trees (Botvinick
& Weinstein, 2014). Finally, a recent human fMRI study showed that SR govern the implicit
encoding and later retrieval of non-spatial relational knowledge (Garvert, Dolan, & Behrens,
2017). They presented a series of images in an order that was implicitly determined by
discrete and non-spatial graphs, and later probed participants about the relation between
the different images. They were able to recover the structure of non-spatial relationships
from blood oxygen level-dependent adaption in the hippocampus and entorhinal cortex,
and showed that the map that best captured behavioral and medial temporal lobe (MTL)
results was the weighted sums of future states, as in SR (Garvert et al., 2017).

Taken together, these computational, behavioral, neuroimaging, and electrophysio-
logical evidence in humans and rodents suggest the successor representation as a candidate
principle underlying the organization of hippocampal and entorhinal firing in spatial navi-
gation and non-spatial relational learning.

The purpose of our paper is to clarify limitations of existing SR models and propose a
solution. Briefly, the limitations are that estimating sequential order and distance between
states from an SR with a single discount is nontrivial. Intuitively, for every row of the n×n
SR matrix, information about the sequential order and distance between states is lost. SR
generalizes over successor states and this temporal abstraction relies on a weighted sum of
future states. The weights of successor states exponentially decay the further they are in
the future, depending on a discount parameter γ. The parameter γ determines the horizon
over which the SR generalizes states. Low γ values discounts states that are further in the
future, leading to a shorter temporal horizon over which states are abstracted, while high
γ values lead to less steep discounting, and hence a larger time-scale for the abstraction.
This weighted sum also depends on the number of times a future state is expected to be
visited, starting from the present state.

This can perhaps best be illustrated in an example. Consider the choice between
actions that lead from a starting state (e.g., my work) to two different successor states
(e.g., two bistros). Depending on how often one or the other is expected to be visited, it is
possible that the successor state that is furthest (my favorite bistro) has a higher SR value
(expected frequency of future visits) than the successor state nearby (bistro close to work).
Depending on the goals of the organism (e.g., how hungry I am and how much time I have
for lunch) the optimal choice of a successor state may require separate information about the
distances and the frequency of future visits from the present state (e.g., work) to the optimal
successor state (e.g., bistro). Thus, due to temporal abstraction, the weighted sum imposes
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two limitations. The SR vector starting in a given state, and computed with one discount
parameter, does not always tell us which future state is closer to the starting location, and
what the sequence of states leading to each is. That is, the distance and sequential steps
between a starting state and its successor states cannot be computed with merely the SR
vector of size . Instead, this estimation requires nonlinear operations involving the entire
n × n SR matrix, involving computation on n vectors, each starting in a different state.
Given large SR matrices this operation can be costly and it is not likely to be biologically
plausible. Our proposed theoretical framework overcomes this limitation by assuming that
the brain stores an ensemble of SRs at multiple discounts, and by estimating the derivative
of multi-scale SRs.

The simple intuition behind our proposed solution is as follows. Consider an ensemble
of ng matrices of SRs estimated with different γs, all between 0 and 1, where ng is the
number of γs and hence SR matrices. Then consider a line going through the jith cell of all
SR matrices. This is a vector of expected future visitations from state i to state j across all
the SR matrices, with size ng. Each index in this vector corresponds to temporal abstraction
at a different γ. The distance between i and state j determines at which index (or γ) of
this vector the expected future occupancy will change. For an intermediate distance, this
relationship could be near zero for low γs but increase for higher γs. For instance, let us say
that they are 20 states apart, then their relationship will only register for SRs where the
abstraction horizon reaches 20 states into the future, but not for SRs with smaller horizons.

Mathematically, this means that the derivative of this vector of SRs from i to j at
multiple discount rates can identify at which distance horizon the relationship between the
two states changes, thus recovering their distance. From any given starting state, if we
know at which horizon the relationship to every other state changes, it is possible to recover
the sequential order and distance of all successor states (see Figure 1). This is a powerful
intuition since absent multiple SRs or the derivative, computing distance and order in the
bistro example from a single SR requires computing the one-step transition matrix from a
given state to all other states using the entire matrix, which is nontrivial.

In short, the derivative of multiple SR matrices can identify at which scales the
relationship between two given states change. If we know at which horizon the relationship
between every two states i and j changes, it is possible to identify the distance between
two states (see Figure 1). In this paper we show that linear operations on an ensemble of
multi-scale SRs can estimate their derivatives. Using the derivative, we can reconstruct the
sequence of expected future states following a given starting state, and recover order and
distance between states, merely by computing a vector as opposed to entire matrices.

In the remainder of the manuscript we offer a more detailed account of our proposal,
and show qualitative fit between model predictions and recent neural findings. We conclude
with a discussion of the proposal, its neural plausibility, and its possible implications for a
unifying account of map-based and vector-based representations using SR.

An ensemble of successor states is the Laplace transform of the likely future

Where might one look for a gradient of multi-scale SRs, which are equivalent to the
Laplace transform? It has been hypothesized that place cells in the hippocampus reflect
a predictive map of the environment generated by the SR (Stachenfeld et al., 2017). It is
well known that there is a gradient of spatial scales along the long axis of the hippocampus
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Figure 1. Multi-scale successor representations. (Top) Following Tolman, the classic notion of
cognitive maps, and the most common notions of model-based RL, suggest that the brain learns a
model of the environment as a 1-step transition matrix. This state-action-state transition matrix (T)
stores the probability of transitioning from each state i to state j with a single action a. For instance,
it stores the probability 1 for every deterministic transition between the states in the graph of a
Markov decision process (MDP) displayed. This 1-step matrix is unrolled at decision time to choose
between options, making computation costly, time-consuming, and sometimes intractable for larger
decision trees. The successor representation offers a computationally more efficient alternative, where
for any starting state i (any row) expected future occupancy of every other state j (each columns) is
computed with some discount parameter γ (between 0 and 1). (Bottom) We propose that the brain
simultaneously caches multiple successor representations with various scales of discounting. The
scales determine the cached planning horizons, can be adaptive to task demands and the volatility of
the environment, and can be augmented and updated during wake and sleep offline replay. Neurally,
the long-axis of the hippocampus may store the SR ensemble, with smaller scales of abstraction in
more posterior regions and higher scales of abstraction gradually spread along the anterior axis. In
the following sections we show how such a multi-scale ensemble of SRs can recover both sequential
order and distance between states and construct a predicted future trajectory.
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(Jung, Wiener, & McNaughton, 1994; Kjelstrup et al., 2008a; Brunec et al., 2018; Collin,
Milivojevic, & Doeller, 2015). For instance, all things equal, CA1 place fields grow in size
as the recording location is moved systematically from the dorsal end of the hippocampus
to the ventral end (e.g., Kjelstrup et al., 2008a). Furthermore, it has been shown that
grid cells are topographically organized in the medial entorhinal cortex (MEC) as well,
with the scale of grids increasing from the dorsal border of MEC (Brun et al., 2008). It is
possible that this gradient of observed place and gird field sizes corresponds to a gradient of
planning horizons over which the SR is computed. Much of the neurophysiology of the MTL
hippocampal formation seems oriented to computations along this gradient, suggesting that
computation of a derivative is a reasonable computation. For instance, theta oscillations are
traveling waves that traverse along the long axis of the hippocampus (Lubenov & Siapas,
2009; Patel, Fujisawa, Berényi, Royer, & Buzsáki, 2012; Zhang & Jacobs, 2015) enabling
different spatial scales (and perhaps planning horizons) to be processed sequentially. We
discuss the neural plausibility of our proposal in the Discussion section in more detail.

In what follows we show that a neurally plausible linear operation, namely the inverse
of the Laplace transform, can be used to compute the derivative of multi-scale SR. We first
demonstrate that an ensemble of successor representations with different discount rates is
the Laplace transform of a timeline of future states. We will then show that a simple
inverse of the Laplace transform identifies the derivative of multiple SRs, indicating where
the relationships between states change. We show that this operation recovers the sequential
order of states and predicts cells that fire at specific distance to goal states, as shown in
recent animal and human literature (Sarel, Finkelstein, Las, & Ulanovsky, 2017a; Qasim et
al., 2018). We will then discuss the significance of this model for learning and navigation,
evidenced by the qualitative match between the model’s predictions and recent findings
across species.

The successor representation, described above, provides an exponentially-weighted
estimate of future occupancy in going from one state i to state j. That is, when the agent is
in its current location in state i, the representation of its successor states are co-activated.
The extent of this co-activation depends on the distance: successor states that are nearby are
co-activated to a larger extent than those further away, leading to a exponentially-weighted
representation of successor states. However, if the multiplied probability of transitioning
from state i to a given successor state j is higher than that of transitioning to an equidistant
successor state l, then in spite of similar discounting, the state j will have a higher SR value.
Therefore, merely on the basis of a row of SR alone, it will not be possible to tell whether
state j or state l is closer or not.

It is worth noting that SR is policy dependent, which means that every SR matrix is
computed under a given action policy. If the agent expects to visit a state often simply out
of habit, the successor representation for that state will have a high magnitude simply due
to this policy choice, even if that state does not contain higher reward. This makes it in
principle possible that different policies lead to the SR matrix at different time-scales, since
the agent may be caching SRs while taking different policies at different scales. This feature
may enable multi-scale SR to dynamically select different policy based on changing temporal
horizons. In other words, caching a multi-scale ensemble of SRs enables selecting policies
with a flexible temporal horizon, which would be more adaptive to task demands compared
to a condition where a single predictive horizon was used regardless of the planning horizon
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required by the task. We return to this point in the discussion.

The choice of discounting and abstraction is controlled by a parameter γ, with values
between 0 and 1. Choosing different values of γ sets the temporal horizon over which
predictions can be made. Each successor representation matrix is constructed using a
discount rate or scale of generalization, and under a certain policy. Here we propose that
the brain constructs multiple SR matrices along the MTL with a broad set of values of γ
in parallel.

Here we make the point that the choice to use many values of γ in parallel also
enables a very different form of representation that directly estimates a timeline over future
events. This is possible because an ensemble of successor representations with a continuous
(or near continuous) spectrum of values of γ encodes the Laplace transform of the future.
Perhaps an analogy to the better known Fourier transform can provide a good intuition
into what a Laplace transform of sequential future trajectories entails. While a Fourier
transform decomposes a signal using different sinusoidal functions with different frequencies,
the Laplace transform can decompose a signal (e.g., the flow of experience) using exponential
curves with different decay rates – note that here we only consider the real part of the
Laplace transform.

The Laplace transform has powerful properties, enabling extraction of important in-
formation using simple linear operations, such as inversion. The Laplace transform can
be inverted with a linear operator L-1

k that has been extensively studied in computational
cognitive neural models of memory (Shankar & Howard, 2012, 2013; Liu, Tiganj, Hasselmo,
& Howard, in press). Importantly, inverting the transform is the equivalent of computing
a derivative of the relation between two given states i and j across different SR matrices,
i.e., across different time-scales. Intuitively, knowing at which scales the relationship be-
tween two states change, indicated by the derivative, enables us to estimate their distance
from each other. In short, the multi-scale SR ensemble and its derivative are equivalent,
respectively, to the Laplace transform of expected sequential future states and its inversion.
Thus, we arrive with cached representation that can also recover the order and distance in
estimated future trajectories. To see how this intuition is possible in more detail, we start
with a formal description of the successor representation.

Let us suppose that the environment consists of a finite number of states 1..n, or S.
Depending on the states that an agent visits at every time point, we have a time series
of visited states st where each visited state belongs to S. The agent visits these states
according to a Markov process specified by a one-step transition matrix, where the jith
element is the probability of transitioning from state i to state j within one step under
action a

Ta (j, i) = P (st+1 = j | st = i) (1)

The successor representation (SR) with a given γ value and a given policy, which we denote
M (γ), constructs an associative matrix between each pair of states whether they are one
step or multiple steps away. The entries in this SR matrix estimate the exponentially-
discounted expected future occupancy of any destination state j (any column) when starting
at a particular state i, over all future time. That is, the entries of M (γ) estimate:

[M (γ)]ji '
∑
τ

γτP (st+τ = j|st = i) (2)
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That is,

M (γ) '
∑
τ

γτTτ (3)

In the case where the statistics of the world are governed by a Markov process, the successor
representation can be efficiently computed via temporal difference (TD) learning (Dayan,
1993).

Note that Eq. 2 describes a sum over future events. Naturally, the sum contains less
information than a complete description of all of the future events. One can readily see this
by noting that there are number of possible futures that would give the same value for the
sum. For instance, given the same starting state (e.g., work), a visitation to a nearby state
that the agent is does not visit often (e.g., nearby bistro) might end up with the same (or
even less) weighted SR value as a state with more likely transitions that is many more steps
away (e.g., favorite bistro miles away). As such, given that the probabilities of one-step
transitions along the trajectory are not all 1 and different policies may be adopted, a higher
SR value does not necessarily imply proximity and smaller distance, neither can sequential
order be inferred from a comparison of SR values. However, we will show that an ensemble
of successor representations with different values of γ can be used to recover the expected
future trajectory.

To simplify notation and show equivalence to the Laplace transform, let us define a
function that returns the true un-discounted expected trajectory of all future states (whether
one or multiple steps away) that are expected to follow a given starting state i, at a lag of
time τ as: [

f̂i (τ)
]
j
≡ P (st+τ = j|st = i) .

For a successor representation matrix with a single discount rate, M (γ), we can now rewrite
Eq. 2 using the function defined above as

[M (γ)].i '
∑
τ

γτ f̂i (4)

Let us take the continuum limit and define σ ≡ − log γ. Importantly, σ is the real part of
the Laplace domain variable. The variable σ is understandable as a rate; the time constant
1/σ has units of time and is understandable as the temporal horizon over which predictions
are evaluated. Now, we can rewrite Eqs. 3 and 4 as the Laplace transforms of the transition
matrix and future following state i respectively:

M (σ) =

∫ ∞
0

e−στ Tτdτ (5)

[M (σ)].i =

∫ ∞
0

e−στ f̂i (τ) dτ (6)

Here we understand the left hand sides of Eq. 6 to refer to many instances of M (σ) with
a wide range of (real) values of σ, i.e., multiple SRs with different (real) values of γ. From
Eq. 6 it is clear that [M (σ)].i is the Laplace transform of the expected states that will follow

i as a function of future time, f̂i (τ).
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Figure 2. Estimating a timeline of future events from a multi-scale SR ensemble. (Left) The
schematic shows an ensemble of SR matrices, each estimated with a different temporal horizon, i.e.,
a different discount parameter γ. (Right) Computing a derivative as a function of planning horizon
for each set of ijth SR value, we construct an activation that rises and then falls as a function of
distance from a starting state i to a destination state j. Because different units are responsive to
different distances, we can construct an estimate of the distance to each possible outcome. If this is
done for all states and all possible distances, across all matrices, we arrive at a series of activations
that estimate a future timeline. One method for constructing such an estimate of future timeline is
to invert the Laplace transform of the given future timeline, which we show in the manuscript, is
equivalent to taking the derivative of the ijth SR ensemble with respect to σ ≡ − log γ.

The insight that M (σ) is the real Laplace transform of f̂i is very powerful. The
Laplace transform is invertible; if we could invert the Laplace transform we could explicitly
estimate the expected sequential trajectory of future states (Figure 2). The real part of the
Laplace transform, which is given by Eq. 6 is sufficient to uniquely specify functions defined
over the interval from 0 to ∞. Recall that this sequence of future states was formalized
in the future-trajectory function above (see Eq. 4). This means that inverting the Laplace
transform could recover an estimate of the function over future events itself.

Inverting the Laplace transform in a neurally-plausible way

Put another way, Eq. 6 says that the timeline over the sequence of future states f̂i is
distributed across different values of σ. Our strategy is to invert the transform, recovering
this information about the function, and write the answer onto a set of neurons that estimate
the future-trajectory function directly. Different neurons in this representation would then
estimate the states that are expected to occur at different points in the future. Therefore,
if we find a neurally plausible way to invert the Laplace transform, then we will have a
powerful tool for recovering a function of future states from a multi-scale but static stack
of cached predictive representations.

Fortunately, there has been a great deal of progress on neurally plausible methods
to encode and invert the Laplace transform (Shankar & Howard, 2012, 2013). The Post
approximation provides a means to estimate the inverse transform using a set of fixed
weights that resemble center-surround receptive fields with respect to σ. The comparison
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to receptive fields offers an intuition about how a coarse estimate of the future-trajectory
function is arrived at by averaging over a temporal neighborhood in the vicinity of each
moment/state along the trajectory.

We denote the set of weights that invert the transform as L-1
k , which is defined as

L-1
k ≡ Ck σk+1 d

k

dσk
, (7)

where Ck is a normalization constant that depends on k. The kth derivative on the right
hand side can be approximated numerically. It can be understood in an analogy to center-
surround receptive fields. There is a long-standing tradition of identifying center-surround
receptive fields using spatial derivatives (e.g., Marr & Hildreth, 1980). In this view, the
so-called “Mexican hat” form for the receptive field suggests computation of the second
derivative of Gaussian receptive fields.

Putting this together, we construct an estimate of the future following state i by first
probing the ensemble M (σ) with i. This yields a vector valued (over states) estimate for
each value of σ. We then operate on this with L-1

k , which estimates derivatives with respect

to σ. The result is a set of units, indexed by
∗
τ ≡ k

σ . Intuitively,
∗
τ designates the unit of

time: the temporal horizon or the horizon of generalization. As we will demonstrate in more
detail later, f̂, or the future trajectory, is estimated using many units each with a different

value of
∗
τ :

f̃i(
∗
τ) ≡ L-1

k [M (σ)]i. (8)

' f̂i(τ) (9)

The right-hand of the first line makes reference to the prediction of all future states following
from i via a successor representation with different values of σ [M (σ)].i. As previously
discussed, this is the Laplace transform of the future expected to follow i under a given
policy (Eq. 6). This multi-scale successor representation is operated on by L-1

k , which
approximates the inverse Laplace transform (Eq. 7). The second line simply makes the
claim that inverting the transform recovers the original function that was transformed, here
f̂i(τ). Because L-1

k provides an estimate to the inverse transform, this equivalence is only
approximate.

The Post approximation ensures that in the limit as k → ∞, the approximation

of future states becomes perfect (Post, 1930). When k is finite, f̃i(
∗
τ) is a coarse-grained

estimate of f̂i(τ =
∗
τ) averaging over a temporal neighborhood in the vicinity of τ . Following

(Shankar & Howard, 2012) it can be shown that the width of this coarse-graining is exactly

proportional to each units value of
∗
τ , implementing a scale-invariant estimate of the future.

Simulating points along a future trajectory

The form of the curves representing the future can be readily understood analytically
starting from the Laplace transform of a delta function. Consider the case where some state
perfectly predicts an outcome some time τo in the future. This would obtain if a set of states
are deterministically experienced in a long sequence. Let us write f̂ = δ(τo) to describe the
function describing the distance to the goal state from the present. In this case, we find the
Laplace transform of this function, generated by the successor representation is given by
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MULTI-SCALE SUCCESSOR REPRESENTATIONS 11

F(σ) = e−στo (10)

The left panel of Figure 3 shows this expression for different values of σ (different curves)
with the distance to the goal state τo on the x-axis. This describes the activation of these
units unfolding as the agent comes closer to the goal state moving left to right.

Now, to compute f̃ we must take derivatives of F(σ) with respect to σ. Each derivative
of Eq. 10 spits out another factor of τo and we find (including the remainder of the definition
in Eq. 7),

f̃ = Ck σ (τoσ)k e−στo (11)

∝ 1
∗
τ

(
τo
∗
τ

)k
e
−k τo∗

τ (12)

where we have used the definition of
∗
τ ≡ k

σ in the second line. The right panel of Figure 3

shows this expression for units with different values of
∗
τ (different curves each correspond-

ing to a different horizon unit) as the goal state is approached. Rather than increasing
monotonically as the goal is approached, neurons in f̃ peak in their activation when the
goal is a characteristic distance in the future.

The form of Equation 12 makes several properties of the representation clear. The

expression is the product of two terms, an increasing power law function
(
τo
∗
τ

)k
and a

decreasing exponential term e
−k τo∗

τ . The product is zero when the ratio is zero and also when
the ratio is infinity. As k increases each of these terms becomes more steep. An elementary

calculation shows that Eq. 12 is maximal at
∗
τ = τo

k
k+1 . Considering the behavior of Eq. 12

as one varies τo, the unit coding for
∗
τ steps in the future is maximally activated when

τo =
∗
τ , independent of k. Because τo appears only as a ratio with

∗
τ , we can see that the

model is scale-invariant. That is, starting for any particular value of τo (and k), we find

some pattern of activation as a function of
∗
τ . If we change the value of τo to τ ′o = aτo, we

will find the same pattern of activation across units (up to a constant factor) by remapping
∗
τ
′
= a

∗
τ .

The goal of Figure 4 is to provide mechanistic insight into why f̃(
∗
τ) has the properties

it does. Rather than showing the activation of units unfolding in time Figure 4 shows the

activation across all units in the multi-scale SR (x-axis) and f̃(
∗
τ) at different moments when

the goal state is predicted at different distances in the future (different lines). The top left
panel shows the multi-scale SR for each possible value of γ. In each case, one obtains an
exponential function; when the goal is closer, the curve is shallow (lighter lines); when it is
further in the future the curve is more steep (darker lines). The curvature of this function
over values of γ encodes information about when the outcome is expected to occur. In order
to decode this information in units of distance to the goal, we need to change variables from
the discount factor to units of distance. σ is understandable as a rate; k/σ has the same
units as τo. The bottom left shows the mapping between γ and k/σ. The y-axis of this
graph is truncated. This is because as γ goes to 1 the “time constant” k/σ grows without
bound corresponding to an infinitely broad planning horizon.
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Figure 3. Activation of neurons representing the goal state in the multi-scale SR (left) and in the
estimate of future timeline (right). The panels correspond to activations in two different types of
neurons. In each panel, the activations of units or neurons coding for a goal state are shown as the
agent approaches the goal along a 1-dimensional sequence of states. The x-axis shows the distance
to the goal. The y-axis shows goal activation as the path is traversed. In the left panel, different
shades of the curves correspond to different values of γ and on the right, they correspond to different

values of
∗
τ or different horizon unit (right). Higher values of γ are shown in darker shades of grey

(left). Higher values of
∗
τ are shown in darker shades of grey (right). As can be seen by the shape

of the curves on the left, units in the multi-scale SR show an exponential increase as the agent
approaches the goal; larger values of γ result in a less sharp increase. Units in the future timeline
(right) also predict the goal state and change their activation as the goal is predicted at different
distances in the future. However, rather than increasing monotonically, these units peak when the
goal is predicted in a particular future horizon, i.e., a particular number of steps or distance in the

future. Neurons with larger values of
∗
τ (darker curves) peak when the goal is further away in time.

Neurons with smaller values of
∗
τ peak when the goal is closer.

The upper right plot in Figure 4 replots the data from the upper left curve, but as a
function of k/σ rather than γ (the axes are also rescaled). Note that each of these curves
start at zero with a very shallow slope. Moving to the right, they shift to a regime with
a non-zero slope. Note that the second derivative of each curve would be very small at
the left of the plot and very small at the right of the plot. In between, the curve rapidly
changes from the shallow slope to the higher slope. The inflection point where this happens
depends on how far in the future the goal state is predicted. Because each unit in f̃ indexed

by
∗
τ computes derivatives with respect to σ in the neighborhood of

∗
τ = k/σ, these units

are maximally activated when the goal state is expected
∗
τ units in the future. With many

values of
∗
τ , the pattern of f̃(

∗
τ) over different values provides a veridical but coarse-grained

estimate of when the goal state will be observed in the future subject to the policy that
generated the multi-scale SR.

Predictive maps and distance to goal firing patterns

Multi-scale successor representations can be thought of as a set of predictive maps,
each with a different scale or predictive horizon. The analytic expression above (Eq. 12)
can be readily calculated for simple environments for which the multi-scale SR has a simple
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Figure 4. Top left: Prediction of the goal state by the multi-scale SR as a function of γ when the
goal state is different distances in the future (separate curves). Darker curves correspond to cases
when the goal is further away. In each case the multi-scale SR gives rise to a gradient over different
values of γ; the distance to the goal is encoded by the steepness of this curve. Bottom left: The
discount factor γ is in a one-to-one relationship with the Laplace domain variable σ. The curve in
the bottom left shows k/σ as a function of γ. Note that k/σ grows without bound as γ goes to 1.
Top right: The curve in the top left is shown as a function of k/σ rather than as a function of γ.
The y-axis is compressed to better show the detail of the activation. The x-axis is chosen to go up
to 10. Note that the curves start at zero and then rise around an inflection point. The position of
the inflection point depends on the distance to the goal. When the goal is closer (lighter curves), the
inflection point is found at smaller values of k/σ. Bottom right: The estimate of future outcomes

as a function of
∗
τ = k/σ is constructed by taking the derivative with respect to σ. The axes of

the right panels are chosen so that the units align with one another. The estimate of the future is
computed by taking derivatives with respect to σ in the neighborhood of the corresponding value of
k/σ (see Eq. 7). Because the inflection point in the top right panel depends on the distance to the
goal, computing derivatives with respect to σ results in a representation of the distance to the goal
as function of the future.
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MULTI-SCALE SUCCESSOR REPRESENTATIONS 14

closed form solution. However, operating on the multi-scale SR with L-1
k constructs an

estimate of expected future outcomes as a function of distance across expected paths given
a particular policy. Figure 6 illustrates the multi-scale SR and the estimate of future timeline
for a gridworld environment with a barrier.

To construct the SR, one first starts with the transition matrix T which is non-zero
for each transition between adjacent points that is not prevented by a barrier. This can
be a policy-independent or policy-dependent transition matrix. As an agent navigates the
environment, SRs should be estimated based on the agent’s experience and in a policy-
dependent manner, where successor states are dependent on the agent’s action policies. For
the present purposes, however, we will use an equation that obtains for a random-walk
version of SR. For a random policy, it is possible to estimate SR simply from a one-step
transition matrix using the equation below. Computing SRs using the one-step transition
matrix is the equivalent of computing SR while the agent navigates the environment under
a random policy, if the rewards were equally distributed across the environment. Following
previous work (e.g., Dayan, 1993; Momennejad, Russek, et al., 2017; Stachenfeld et al.,
2017), here we computed successor representations at multiple scales from the one-step
transition probability matrix (T) according to

M (γ) = (1− γT)−1

Figure 5 displays a multi-scale ensemble of SRs with different γs as well as the corre-
sponding derivatives (inverse of transforms for various values of σ) for a gridworld with a
π-shaped barrier in the middle, and reward in position (2, 2). The plots on the left show an
ensemble of predictive maps, i.e., M (γ), predicting the successors of a state in the upper
left of the gridworld with different values of γ. As γ increases, the gradient across states be-
comes more shallow; at large horizons one can note the π shaped barrier. We applied L-1

k ,
computed with a discrete approximation to the derivative operator (Shankar & Howard,
2013), to these predictive maps and obtained the panels on the right of Figure 5. States of
the same shade in these panels represent states that are the same expected distance from
the goal state subject to the policy used to generate the M (γ). This procedure naturally
takes into account barriers—note that one can read off that states close to the goal but on
the other side of the barrier are the same distance in terms of expected paths as states in
the lower right corner of the environment.

There is some evidence that these computational properties are reflected in the firing
patterns of cells in the hippocampal and medial temporal formations in animal models.
As shown above, computing the inverse (or the derivative) of the multi-scale SR ensemble
resembles firing patterns at specific distances to any given destination state. This predicts
sequential activations of different units/cells as a function of distance to the goal (this ’goal’
could be a goal object, a reward state, a frequently visited location or destination, a specific
boundary, a subgoal, a remembered location, etc.). Whereas the successor representation
itself gives monotonically decreasing gradients into the future (like border cells), the inverse
of a multi-scale SR ensemble predicts cells that are sequentially activated as a function of
distance to goal (these can be thought of as distance-to-goal cells).

These theoretical predictions offer a qualitative fit (though we did not compute a
quantitative fit) to three recent empirical findings in the bat, rodents, and humans. These
studies have discovered cells that display sequential firing as a function of distance to a goal
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a Successor Representation b Inverse Transform

Figure 5. The successor representation and inverse transform in a 2-D gridworld with a π shaped
barrier near the center. The axes correspond to x and y coordinates uniquely identifying each cell
in the grid world. A reward is placed on the top left cell corresponding to location 2, 2. Each
image shows the value of the successor representation starting from a location near the upper left
of a gridworld to every other cell in the grid world. Higher SR values, or higher expectations of
future occupancy, are reflected as brighter colors. a. Successor representation matrices for three
different values of γ. The brightest location in the top left is the location of the reward, or goal
state. As γ increases (top to bottom), there is markedly higher expected occupancy for further states
that lead to the goal. For all values of γ, future occupancy decays monotonically from the starting
point along possible paths. SR matrices were normalized to their peak value. b. Inverse transform

for corresponding values of
∗
τ , each of which corresponds to a temporal field during the process of

inverting the SR ensemble. To obtain the inverted Laplace transform in this figure we set k = 8.

Note that rather than decreasing monotonically, successively larger values of
∗
τ (top to bottom) lead

to activation in positions within the gridworld with further distances to the goal state.
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Figure 6. Qualitative comparison of units with distance-to-goal firing in the future timeline (Eq. 12)
and distance-to-goal cells in the bat hippocampus. (Left) Constructing a future timeline from an
ensemble of multi-scale SR maps predicts units that each fire within a different distance to the goal
state. The y axis here corresponds to different units, and the x axis to the simulated distance from
the grid world shown in the previous figure above. (Right) Firing patterns of goal-cells discovered
in the bat hippocampus, reproduced from Sarel et al., 2017. Note the resemblance to the predicted
distance-to-goal firing on the left.

state. First, Sarel and colleagues (Sarel, Finkelstein, Las, & Ulanovsky, 2017b) investigated
the representation of spatial goals in the hippocampus of bats (Figure 6, right). They
reported that CA1 neurons of flying bats displayed angular tuning to the goal direction,
many of which were tuned to the goal even when it was occluded. Importantly, some of
these cells encoded distance to goal as well as goal direction. The distance to goal aspect
is in line with earlier reports of goal-approach cells in rodents (Eichenbaum, Kuperstein,
Fagan, & Nagode, 1987). These firing patterns are consistent with the idea of a vectorial
representation of goals in the hippocampus. Our simulation of distance to goal firing based
on our theoretical proposal in Figure 6 resembles the distance to goal cells in the bats.

The second piece of evidence consistent with distance-to-goal firing comes from
Gauthier and Tank (2018), who report mouse CA1 cells that tune to specific distances
from reward locations (which they refer to as reward cells). The study reports that these
reward cells were tuned to similar distances to reward states even when the animal was
moved to another environment. This is what one would expect from this conception of a
future timeline. Because the same outcome is predicted at the same distance in the two en-
vironments, this should result in the same cells being activated to code for the same future
outcome.

The third piece of evidence comes from human electrophysiology (Qasim et al., 2018).
Qasim and colleagues report cells in the human entorhinal cortex (EC) that fire at certain
distances as people approach remembered locations during cued object-location recall. In
this case, the goal location is not visible in the environment, and is instead an internally
generated goal related to the memory retrieval cue.
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In short, consistent with our predicted distance-to-goal firing cells, recent empirical
evidence suggests cells that fire at specific distances to goal in the hippocampus and entorhi-
nal cortex of bats (Sarel et al., 2017b), rodents (Aronov, Nevers, & Tank, 2017; Gauthier
& Tank, 2018), and humans (Qasim et al., 2018). As indicated in Figure 6 the inverse (or
derivative with respect to σ) of a multi-scale SR ensemble simulates the reported distance to
goal effect. One difference between the bat goal-cell findings and our distance-to-goal units
is that, in the bat results, more cells fire in closer proximity to the goal state (see Figure 6,
right). Furthermore, in the model the units that fire in closer distance to the goal states
show less uncertainty. This could be because our model overestimates certainty about what
state the agent is in. This can be addressed by including a certainty term. Taken together,
this correspondence suggests that vectorial representations could emerge from static cached
maps. (Johnson & Redish, 2007; Pfeiffer & Foster, 2013).

Our multi-scale successor representation framework could potentially offer a unified
principle that supports both the map-like representations elicited by place cells, asymmetric
firing skewed towards the goal location (Stachenfeld et al., 2017), and the vectorial repre-
sentation of direction and distance to goal (Kubie & Fenton, 2009; Bush, Barry, Manson, &
Burgess, 2015). The predictions of this proposal are in line with the observation of distance
to goal cells (Fig. 6).

Discussion

The successor representation (SR) offers a principle for abstract organization in rein-
forcement learning (Dayan, 1993; Momennejad, Russek, et al., 2017; Russek et al., 2017),
computational accounts of episodic memory and temporal context (Gershman et al., 2012),
and predictive representations in place cells and grid cells in the hippocampus and medial
entorhinal cortex (Stachenfeld et al., 2017). The successor representation (SR) offers a
solution to planning at large temporal horizons and optimal sub-goal discovery (Botvinick
& Weinstein, 2014). Combined with offline replay, a model known as SR-Dyna is superior
to classic model-free and model-based reinforcement learning mechanisms in explaining hu-
man behavior (Momennejad, Russek, et al., 2017), outperforming hybrid MF-MB models
and varieties of earlier Dyna models across other problems as well (Russek et al., 2017).
Neurally, it can also explain asymmetric firing toward the goal state in hippocampal place
cells (Stachenfeld et al., 2017). However, on its own, a single row of SR discards fine grained
information about order and distance of a starting state to expected future states. This
information is important to animals in many real-world decision making problems, and call
for an adequate account in any computational proposal.

Here we have shown that a multi-scale ensemble of successor representations can
overcome these limitations: the derivative of the SR ensemble can estimate the expected
sequence of future states following a starting state, recovering both sequential order and
distance between states. Importantly, this derivative marks changes in the relationship be-
tween two given states across the timescales of abstraction. How can the brain compute this
derivative in a neurally plausible manner? We have shown that a multi-scale SR ensemble is
equivalent to the real Laplace transform of a given states timeline of successor states. The
inverse of this Laplace transform computes the derivative of the SR ensemble, recovering
which future states lie within given temporal horizons of a given state (e.g., the present
state, or the goal state). Importantly, the Laplace formulation and its inverse are closely
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related to an established neurally plausible proposal for a scale-invariant representation of
the past in the medial temporal lobe (Howard et al., 2014). In short, we mathematically
show the neural plausibility of the idea that the brain may store multi-scale SRs and com-
pute their derivative, leading to both predictive map representations and neural firings akin
to vectorial representation.

Notably, the inverse of the Laplace transform (i.e., derivative of the multi-scale SR)
predicts sequential firing of “distance-to-goal” neurons when the agent is in certain temporal
neighborhoods of (or distance to) the goal state (Figures 3 and 6). We show that this
analytic model prediction resembles recent findings in bats, rodents, and humans (Sarel et
al., 2017b; Gauthier & Tank, 2018; Qasim et al., 2018) that are consistent with the idea of
vectorial navigation. The rodent data calls these cells reward cells, the bat data has been
taken these cells as evidence for goal-vector cells, and the human stury refers to them as
trace cells. What these results and our proposal here have in common are units/cells that
each fire at a specific predictive distance to a goal state, such as reward in the rodent study,
resting locations (or destination state) in the bat study, or remembered goal locations in
the human study. What our proposal further provides is that, computationally, all these
varieties of vectorial representations supervene on underlying predictive maps. Thus, our
proposal combines vector-based and map based navigation in a neurally plausible fashion.

Neural plausibility: Evidence from place cells, grid cells, and time cells

We have suggested that the derivative of a multi-scale SR ensemble offers a linear
solution for computing the distance and sequential order of a given state’s future trajec-
tory. But is multi-scale SR neurally plausible? The proposal that SR can be stored at
multiple scales along the long axis of the hippocampus has been suggested elsewhere as
well (Stachenfeld et al., 2017) and is in line with the following observations in the rodent
literature. First, it has been shown that hippocampal place cells, i.e., neurons the activity
of which corresponds to the animal’s current location, fire over a larger spatial radius in
more ventral (anterior in humans) hippocampal neurons compared to more dorsal (poste-
rior in humans) hippocampal neurons. In other words, the size of place fields vary along
the long axis of the hippocampus, with topologically more anterior hippocampal regions
representing larger place fields (Kjelstrup et al., 2008b). Furthermore, grid cells are topo-
graphically organized in the medial temporal lobe (MTL) as well, and the scale of the grids
has been shown to increase along the dorsal border of the medial entorhinal cortex (Brun
et al., 2008).

It has also been shown that the so called place cells also respond to non-spatial re-
lations, e.g., sonic and social state-spaces (Aronov et al., 2017; Omer, Maimon, Las, &
Ulanovsky, 2018). This suggests a potentially non-spatial underlying computational role
for place and grid systems that is not restricted to spatial navigation but can support the
organization of non-spatial relational knowledge as well (Garvert et al., 2017). Based on
these findings it is possible that the brain learns an ensemble of successor representations
along the long axis of the hippocampus, each with a different discount parameter corre-
sponding to different scales of abstraction, providing information about progressively larger
horizons along the long axis of the hippocampus (see Figure 1). Notably, topologically orga-
nized place fields have also been observed in cortical regions such as the retrospenial cortex,
but it has been shown that these fields develop slowly over time and are hippocampally
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dependent: they are attenuated with hippocampal damage (Mao et al., 2018). Similarly,
while multi-scale SRs can also be encoded or consolidated in the neocortex, it is likely that
the hippocampus plays a crucial role in their formation.

In addition to encoding spatial representations, MTL neurons also carry explicit in-
formation about the time at which events were experienced in the past. Neurons referred to
as time cells have been observed in many brain regions (Pastalkova, Itskov, Amarasingham,
& Buzsaki, 2008; Jin, Fujii, & Graybiel, 2009; MacDonald, Lepage, Eden, & Eichenbaum,
2011; Kraus et al., 2015; Mello, Soares, & Paton, 2015; Akhlaghpour et al., 2016; Tiganj,
Kim, Jung, & Howard, 2017; Tiganj, Cromer, Roy, Miller, & Howard, 2018). These neurons
appear to show receptive fields in time for past events; as a stimulus recedes into the past
different neurons become sequentially activated, presumably as the stimulus sequentially
enters their receptive fields. Because each neuron has a temporally circumscribed “time
field”, enabling the animal to learn associations between stimuli separated in time via a
simple association. Looking across neurons, it is possible to directly read off an estimate
of the time at which different events were experienced. Time cells may rely on representa-
tions of events that decay at different rates, allowing an estimate of past events that extend
backward from the present moment. If one could construct an analogous estimate of future
events that extend forward from the present, this would provide us with explicit sequen-
tial information about future events. Such an estimate would resemble distance to goal
cells, which fire at particular distances to a goal location (Eichenbaum et al., 1987; Sarel,
Finkelstein, Las, & Ulanovsky, 2017c; Gauthier & Tank, 2018; Qasim et al., 2018). As
shown above, the derivatives of multi-scale successor representations may offer a theoretical
account for the emergence of such firing from predictive maps.

While sufficient neurophysiological data is not available to strongly constrain our
account, progress in understanding the neurobiology of the Laplace transform for memory
of the past may provide some insight. Shankar and Howard (2012, 2013) argued that the
brain could construct a memory as a function of how far in the past events were experienced
via the Laplace transform. Analogous to the present paper, a set of cells code the Laplace
transform of the past. These cells project via L-1

k to another set of cells that approximate
functions of past time.

Neurons coding for the time of past events would behave like so-called “time cells”
that had been observed in the medial temporal lobe (Pastalkova et al., 2008; MacDonald et
al., 2011). Since the initial reports, time cells have been observed in a wide range of regions,
tasks, and species, confirming several qualitative predictions of the theoretical account via
the inverse Laplace transform (e.g., Tiganj et al., 2017; Tiganj, Cromer, et al., 2018; Mello
et al., 2015; Akhlaghpour et al., 2016). Of course, time cells that align with the properties
predicted for the inverse Laplace transform of the past could have been constructed via some
other mechanism. However, recent preliminary work shows evidence for neurons that decay
exponentially with a spectrum of rates in the entorhinal cortex (Tsao et al., 2017; Meister
& Buffalo, 2017); just the form predicted for the Laplace transform of time. Notably, “the
Laplace transform of the past” could be understood in the context of reinforcement learning
as “a set of eligibility traces with different decay rates.”

Given the neural plausibility of the Laplace transform itself, the only other require-
ment to neurally construct the inverse is to find a biological basis for the operator L-1

k . This
operator can be understood as a set of receptive fields conveying information from cells
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encoding the transform (indexed by σ) to cells estimating the inverse (indexed by
∗
τ). It has

long been understood that center-surround receptive fields compute derivatives (e.g., Marr
& Hildreth, 1980) much like those required for eq. 7). The entries in L-1

k can be understood
as describing center-surround receptive fields with respect to σ (Liu et al., in press). In the
visual system it has been understood that general computational principles could enable
learning of center-surround receptive fields from natural statistics (Bell & Sejnowski, 1997;
Olshausen & Field, 1996). These findings suggest that the the operator L-1

k used here is
neurally plausible.

The distribution of scales and discretization of time

What have attributed time-scales to the parameter γ. It is not obvious whether the
distribution of γ scales is approximately continuous or discrete. The mammalian brain
provides both discrete and continuous distributions of scales for related quantities. For
instance, the distribution of spatial frequency of grid cells appears to be organized into
discrete modules along the entorhinal cortex (Barry, Hayman, Burgess, & Jeffery, 2007;
Stachenfeld et al., 2017). These modules consist of many grid cells with the same spatial
frequency but different spatial phases. The modules are organized along the dorso-ventral
axis. In contrast, the distribution of time cell receptive fields appears to be continuous
even within dorsal CA1 (Mau et al., 2018). That is, within the population of time cells in
CA1, the set of time cells continuously maps the delay interval (up to at least a few dozen
seconds). On another note, a recent study has shown that temporal information is robustly
encoded across time scales (seconds to hours) in lateral entorhinal cortex populations (Tsao
et al., 2018), while similar information was not found in either CA3-CA1 nor in the medial
entorhinal cortex. It is, however, computationally possible that a small number of discrete
nodes over future time provides sufficient information to solve computational problems
related to time-scales. For instance, a deep Q-learning network performing a video game
task was able to learn efficiently with just a handful of logarithmically-sampled points of a
temporal history (Spears, Jacques, Howard, & Sederberg, 2017). Future work is required
to shed light on the distribution of scales and the discretization of time.

Relationship to prior modeling work

We have proposed that the brain maintains successor representations at a spectrum of
scales or γs. Previous modeling works have proposed spectral assumptions about learning
rates and eligibility traces. In (Kurth-Nelson & Redish, 2009), the authors used a set of
“micro-agents” each with a different learning rate. They showed that the set of micro-
agents, with a distribution of learning rates across agents, was able to simulate behavior
akin to hyperbolic discounting. Ludvig, Sutton, and Kehoe (2008) propose a model in which
the decaying trace of a stimulus is approximated by a series of basis functions with receptive
fields spread across trace heights. The time course of the trace results in “microstimuli”
that get shorter and wider with time. Future modeling work can better illuminate the
relationship between spectral proposals about learning rates, eligibility traces, and the scale
parameter in SR.

Other recent models have proposed methods for constructing a compressed estimate
of future events by exploiting properties of the Laplace transform. Tiganj, Gershman,
Sederberg, and Howard (2018) constructed an estimate of future events as a function of time
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using a simple associative account in which a compressed estimate of the past—analogous
to a set of sequentially-activated hippocampal time cells—was associated to the present.
The associative operator learns simple Hebbian associations between the past at each lag
∗
τ < 0 and the present. In order to estimate the future a lag

∗
τ > 0 in the future, the present

stimulus is used to probe the appropriate association. Tiganj, Gershman, et al. (2018)
described a number of computational properties of this method, including scale-invariance.
Shankar, Singh, and Howard (2016) exploited the properties of the Laplace domain to
translate the current estimate of the past to estimate the future. That model made a
detailed mapping between function translation and theta phase precession. Although the
endpoint of these models—a scale-invariant estimate of future events that makes order and
distance explicit—is quite similar to the endpoint of the method developed in this paper, the
mechanisms used to generate them are quite different. The multiscale SR described here can
use efficient temporal-difference learning algorithms to construct the SRs. In environments
where the world is well-approximated by a Markov process, this property can represent a
considerable computational advantage over associative models.

Relationship between map-based and vector-based navigation

An interesting implication of our account is that it supports properties of both map-
based and vector-based navigation. Map-based navigation relies on computations using
an underlying cognitive map like representations of states, which in our proposal take the
form of multi-scale predictive representations. Vector-based navigation, on the other hand,
enables rapid planning of direct trajectories to goals via estimates of distance and direction
to the goal state (Kubie & Fenton, 2009; Bush et al., 2015). Previous work has contrasted
map-based navigation with vector-based navigation for solving optimal route to goal in
path integration problems (Kubie & Fenton, 2009). It has been proposed that vector-
based navigation requires computing a “shortcut matrix” in memory: a set of shortcut
vectors computed for pairs of visited locations (Kubie & Fenton, 2009). Kubie and Fenton
contrast insect navigation, where heading vectors are computed by path integration, with
mammalian navigation where hippocampal place cells are typically considered to govern
map-based navigation. However, when considering map-based navigation most studies focus
on representations of one-step relationships between visited locations.

Indeed if mammalian path integration was merely computed online using a map of
one-step transitions, one would not expect firing distance-to-goal cells, like the goal-vector
cells shown in bats (Sarel et al., 2017b), reward cells shown in rodents (Gauthier & Tank,
2018), or or trace cells in humans representing distances to remembered locations (Qasim
et al., 2018). However, recapturing the idea of cognitive maps in terms of predictive repre-
sentations of multi-step relationships can offer a different view on the relationship between
map-based and vector-based navigation. The correspondence of our simulated distance-
to-goal firing and the finding of vectorial representations in the bat suggests that a linear
function over multi-scale predictive maps is - at least partly - consistent with a vector-based
representation of goals (Kubie & Fenton, 2009; Bush et al., 2015). Intuitively, this makes
sense in light of previous computational proposals for vectorial representations.

It has been proposed that in order to accomplish vector-based navigation the brain
computes and stores a “shortcut matrix” using path integration (Kubie & Fenton, 2009),
leading to egocentric and immediate firings of direction and distance to goal without further
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online computations. While a shortcut matrix does not readily arise from traditional one-
step cognitive maps since Tolman (Tolman, 1948), the sorts of representations computed
for a shortcut matrix are already learned in the multi-step dependencies that are stored
in the successor representation (Dayan, 1993; Momennejad, Russek, et al., 2017). First,
consistent with the idea of a shortcut matrix, relationships between states that are multiple
steps apart are cached, and second, as we show here, predictions consistent with the firing
of cells in specific distances to goal states can be derived from the multi-scale SR account.
Our proposal could potentially extend the shortcut vector view to multi-scale or hierarchical
shortcut vectors, where rows of SRs at different scales correspond to shortcut vectors at
hierarchically different levels of abstraction – well-suited for complex navigation. Future
work is required to systematically compare the mathematical relationship between the two
accounts, as well as how they compare when simulating empirical data.

Our proposal is also consistent with recent work by Banino, Barry and colleagues,
who have shown that training a recurrent network to perform path integration leads to the
emergence of grid-like representations (Banino et al., 2018). Importantly, deep reinforce-
ment learning agents using such grid-like representation and vectorial navigation outper-
formed other models (and humans) in goal-directed navigation in unfamiliar environments,
and mammal-like discovery of shortcuts. We showed that the distance to goal aspect of
vectorial representations appears readily using the derivative of multi-scale SR, through the
activation of cells corresponding to different neighboring horizons of the destination state
(corresponding to different σ values). The dependence on head direction can perhaps be
captured in the policy-dependent aspect of successor representations as well the relationship
to the grid system and basis set/eigen-vector accounts (Gustafson & Daw, 2011; Stachen-
feld et al., 2017). However, though every SR matrix is computed under a specific policy
toward the goal state, here we have assumed SRs with a single policy for simplification. The
direction to goal aspect of the vector-based representation is, thus, less readily apparent in
the present version of multi-scale SR. Future accounts can expand this model to system-
atically simulate policy-dependent SRs and their relationship to simulating head-direction
cells during navigation.

Future directions

Policy dependence. One of the main features of SR is that it is policy dependent.
That is, SR matrices are computed given particular action policies that the agent takes,
rather than the alocentric map of the environment. SR is not optimal for facilitating “full
model-based,” off-policy, alocentric, action-outcome contingent analyses. Due to policy-
dependence, SR over-represents parts of the state space that are often visited under its
corresponding policy. Perhaps a rough analogy is that of walking in the snow: paths
that are more often taken are carved deeper and more clearly than paths less traveled.
This analogy can explain why the direction to often-visited states (or goal states with a
high value) should readily arise from the neural representation of multi-scale SRs. That
said, in principle it is possible that SRs at different time-scales are formed with different
policies as well, corresponding to the statistics of the environment at different time-scales.
If true, this could allow flexible policy-choice depending on environmental statistics and the
temporal horizon of the problem at hand. That is, policy-dependence could potentially lead
to selecting different policy depending on the time-scale or planning horizon.
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One possibility is that different policies mark the relevant SR at different scales of
abstraction, and at the moment of decision making, arbitration between representations
from different policies might be required. In the case of navigation, the policy-dependence
of SRs, and potentially different policies used for abstraction at different levels, may yield
interesting relationships to head-direction cells and grid cells when choosing policy at differ-
ent scales or horizons for planning future actions. Future studies can be designed to model
and test specific predictions of a multi-scale policy dependent model.

Expanding the SR ensemble via offline replay. To overcome limited predictive and
planning horizon, we have proposed that the brain simultaneously caches multiple successor
representations with different discount rates (Figure 1). However, attentional and learning
resources may be limited to specific horizons during experience and online learning. As
one increases the number of scales (γs) at which SR matrices are computed, the resolution
for the estimate over future time points increases. This resolution comes at a high cost:
the amount of resources committed to constructing the representation ‘online’ goes up
proportional to the number of scales. This means that, given a fully online strategy, the
system must commit the resources necessary to construct the multi-scale representations
at the outset of learning. However, in the absence of an a priori expectation about the
meta-parameters of the environment or information about what scale—or scales—will be
relevant in a particular learning problem, the cost of learning representations at multiple
scales may be too high.

To overcome this further limitation, one possibility is that offline replay enables the
brain to learn and cache more successor representations with a larger set of discount rates
‘offline’. Depending on the parameters of the task, this could potentially enable better
separation of different categories, better integration and inference (Momennejad, Otto, Daw,
& Norman, 2017), or clustering and generalization of items from the same context. We
have elsewhere proposed and named the combination of offline replay and the successor
representation SR-Dyna (Momennejad, Russek, et al., 2017; Russek et al., 2017). A multi-
scale extension of SR-Dyna could use offline replay to cache representations at scales beyond
what has been learned during direct experience. This further proposal for a multi-scale SR-
Dyna remains to be computationally fleshed out and empirically tested in future studies.

Summary

We propose a multi-scale model of predictive representations that overcomes caveats
in existing models incorporating the successor representation. Computing the order and
sequence of future states following a starting state is non-trivial and costly: it requires non-
linear operations on entire SR matrices that can be large. Here we show that the derivatives
of multiple successor representations (computed with different scales of abstraction) can be
used to recover distance and sequential order of successor states, reconstructing entire ex-
pected future trajectories. Our proposal offers a mechanism for constructing an estimated
timeline of sequential future events using representations abstracted at multiple time-scales.
This proposal expands previous work on predictive representations in reinforcement learning
(Momennejad, Russek, et al., 2017; Russek et al., 2017; Stachenfeld et al., 2017) and has the
same properties as an analogous representation of remembering or reconstructing a timeline
for the past (Shankar & Howard, 2013). The model’s prediction of distance-to-goal cells is
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in line with recent findings in the bat, rodent, and human literature (Sarel et al., 2017b;
Gauthier & Tank, 2018; Qasim et al., 2018), and may offer promising insight into a unified
model of cognitive map and vector-based representations (Kubie & Fenton, 2009; Banino
et al., 2018) used in navigation and planning. This proposal can be applied to planning in
the context of spatial navigation as well as non-spatial cognition. We expect the model to
inspire future theoretical and empirical studies in reinforcement learning, navigation, and
planning.
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along the entire septotemporal axis of the hippocampus. Neuron, 75 (3), 410-7. doi:
10.1016/j.neuron.2012.07.015

Pfeiffer, B. E., & Foster, D. J. (2013). Hippocampal place-cell sequences depict future paths to
remembered goals. Nature, 497 (7447), 74-9. doi: 10.1038/nature12112

Post, E. (1930). Generalized differentiation. Transactions of the American Mathematical Society ,
32 , 723-781.

Qasim, S. E., Miller, J., Inman, C. S., Gross, R., Willie, J. T., Lega, B., . . . Jacobs, J. (2018).
Neurons remap to represent memories in the human entorhinal cortex. bioRxiv . Retrieved from
https://www.biorxiv.org/content/early/2018/10/16/433862 doi: 10.1101/433862

Russek, E. M., Momennejad, I., Botvinick, M. M., Gershman, S. J., & Daw, N. D. (2017, Septem-
ber). Predictive representations can link model-based reinforcement learning to model-free
mechanisms. PLOS Computational Biology , 13 (9), e1005768. Retrieved 2018-05-29, from
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005768

doi: 10.1371/journal.pcbi.1005768

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/449470doi: bioRxiv preprint 

https://doi.org/10.1101/449470
http://creativecommons.org/licenses/by-nd/4.0/


MULTI-SCALE SUCCESSOR REPRESENTATIONS 27

Sarel, A., Finkelstein, A., Las, L., & Ulanovsky, N. (2017a). Vectorial representation of spatial goals
in the hippocampus of bats. Science, 355 (6321), 176–180.

Sarel, A., Finkelstein, A., Las, L., & Ulanovsky, N. (2017b, January). Vectorial representation of spa-
tial goals in the hippocampus of bats. Science, 355 (6321), 176–180. Retrieved 2018-05-29, from
http://science.sciencemag.org/content/355/6321/176 doi: 10.1126/science.aak9589

Sarel, A., Finkelstein, A., Las, L., & Ulanovsky, N. (2017c, January). Vectorial representation of spa-
tial goals in the hippocampus of bats. Science, 355 (6321), 176–180. Retrieved 2018-07-03, from
http://science.sciencemag.org/content/355/6321/176 doi: 10.1126/science.aak9589

Schapiro, A. C., Rogers, T. T., Cordova, N. I., Turk-Browne, N. B., & Botvinick,
M. M. (2013, April). Neural representations of events arise from temporal com-
munity structure. Nature Neuroscience, 16 (4), 486–492. Retrieved 2018-08-28, from
https://www.nature.com/articles/nn.3331 doi: 10.1038/nn.3331

Shankar, K. H., & Howard, M. W. (2012). A scale-invariant internal representation of time. Neural
Computation, 24 (1), 134-193.

Shankar, K. H., & Howard, M. W. (2013). Optimally fuzzy temporal memory. Journal of Machine
Learning Research, 14 , 3753-3780.

Shankar, K. H., Singh, I., & Howard, M. W. (2016). Neural mechanism to simulate a scale-invariant
future. Neural Computation, 28 , 2594–2627.

Smith, T. A., Hasinski, A. E., & Sederberg, P. B. (2013). The context repetition effect: Pre-
dicted events are remembered better, even when they dont happen. Journal of Experimental
Psychology: General , 142 , 1298–1308.

Spears, T. A., Jacques, B. G., Howard, M. W., & Sederberg, P. B. (2017). Scale-invariant
temporal history (sith): optimal slicing of the past in an uncertain world. arXiv preprint
arXiv:1712.07165 .

Stachenfeld, K. L., Botvinick, M. M., & Gershman, S. J. (2017, November). The hippocampus
as a predictive map. Nature Neuroscience, 20 (11), 1643–1653. Retrieved 2018-05-29, from
https://www.nature.com/articles/nn.4650 doi: 10.1038/nn.4650

Tiganj, Z., Cromer, J. A., Roy, J. E., Miller, E. K., & Howard, M. W. (2018). Compressed timeline
of recent experience in monkey lPFC. Journal of Cognitive Neuroscience, 30 , 935-950.

Tiganj, Z., Gershman, S. J., Sederberg, P. B., & Howard, M. (2018). Estimating scale-invariant
future in continuous time. arXiv , arXiv:1802.06426 .

Tiganj, Z., Kim, J., Jung, M. W., & Howard, M. W. (2017). Sequential firing codes for time in
rodent mPFC. Cerebral Cortex , 27 , 5663-5671.

Tolman, E. C. (1948, Jul). Cognitive maps in rats and men. Psychological Review , 55 (4), 189-208.
Tsao, A., Sugar, J., Lu, L., Wang, C., Knierim, J. J., Moser, M.-B., & Moser, E. I. (2017). Integrating

time in lateral entorhinal cortex. In Society for neuroscience abstracts (Vol. 84.21).
Tsao, A., Sugar, J., Lu, L., Wang, C., Knierim, J. J., Moser, M.-B., & Moser, E. I. (2018, August).

Integrating time from experience in the lateral entorhinal cortex. Nature, 1. Retrieved 2018-
08-29, from https://www.nature.com/articles/s41586-018-0459-6 doi: 10.1038/s41586-
018-0459-6

Zhang, H., & Jacobs, J. (2015, Sep). Traveling theta waves in the human hippocampus. Journal of
Neuroscience, 35 (36), 12477-87. doi: 10.1523/JNEUROSCI.5102-14.2015

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/449470doi: bioRxiv preprint 

https://doi.org/10.1101/449470
http://creativecommons.org/licenses/by-nd/4.0/

