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Abstract 17 

Machine learning methods are being used routinely by scientists in many 18 

research areas, typically requiring significant statistical and programing knowledge. 19 

Here we present ClassificaIO, an open-source Python graphical user interface for 20 

machine learning classification for the scikit-learn Python library. ClassificaIO provides 21 

an interactive way to train, validate, and test data on a range of classification algorithms. 22 

The software enables fast comparisons within and across classifiers, and facilitates 23 

uploading and exporting of trained models, and both validation and testing data results. 24 

ClassificaIO aims to provide not only a research utility, but also an educational tool that 25 

can enable biomedical and other researchers with minimal machine learning 26 

background to apply machine learning algorithms to their research in an interactive 27 

point-and-click way. The ClassificaIO package is available for download and installation 28 

through the Python Package Index (PyPI) (http://pypi.python.org/pypi/ClassificaIO) and 29 

it can be deployed using the “import” function in Python once the package is installed. 30 

The application is distributed under an MIT license and the source code is publicly 31 

available for download (for Mac OS X, Linux and Microsoft Windows) through PyPI and 32 

GitHub (http://github.com/gmiaslab/ClassificaIO, and 33 

https://doi.org/10.5281/zenodo.1320465). 34 

Introduction 35 

Recent advances in high-throughput technologies, especially in genomics, have 36 

led to an explosion of large-scale structured data (e.g. RNA-sequencing and microarray 37 
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data) (1). Machine learning methods (classification, regression, clustering, etc.) are 38 

routinely used in mining such big data to extract biological insights in a range of areas 39 

within genetics and genomics (2). For example, using unsupervised machine learning 40 

classification methods to predict the sex of gene expression microarrays donor samples 41 

(3), using genome sequencing data to train machine learning models to identify 42 

transcription start sites (4), splice sites (5), transcriptional promoters and enhancers 43 

regions (6). Recent examples of using machine learning classification methods include 44 

their use to detect neurofibromin 1 tumor suppressor gene inactivation in glioblastoma 45 

(7), and to identify reliable gene markers for drug sensitivity in acute myeloid leukemia 46 

(8). Many advanced machine learning algorithms have been developed in the recent 47 

years. Scikit-learn (9) is one of the most popular machine learning libraries in Python 48 

with a plethora of thoroughly tested and well-maintained machine learning algorithms. 49 

However, these algorithms are primarily aimed at users with computational and 50 

statistical backgrounds, which may discourage many biologists, biomedical scientists or 51 

beginning students (who may have minimal machine learning background but still want 52 

to explore its application in their research) from using machine learning. Ching et al 53 

(2018) recently highlighted the role of deep learning (a class of machine learning 54 

algorithms) currently plays in biology, and how such algorithms present new 55 

opportunities and obstacles for a data-rich field such as biology (10). 56 

Several open source machine learning applications, such as KNIME (11) and 57 

Weka (12) written in Java and Orange (13) written in Python, have been developed with 58 

graphical user interfaces. The dataflow process for most of these applications is 59 

generally graphically constructed by the user, in the form of placing and connecting 60 
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widgets by drag-and-drop. Such graphical workflow and representation of data input, 61 

processing and output is visually appealing, but can be computationally demanding 62 

(memory, storage, processing, etc.) and limiting in algorithm comparison, since each 63 

machine learning algorithm can have many different parameters. These tools are very 64 

mature with numerous algorithms, and well documented. However, they can be 65 

intimidating for machine learning beginners and students that want to preform simple 66 

tasks such as data classification. Also, scikit-learn has comprehensive documentation 67 

(14), and many online resources, including though Kaggle (15) and Stack Overflow (16), 68 

and a large online user base, which make scikit-learn a very popular package for 69 

machine learning beginners learning using Python.  70 

Here, we present ClassificaIO, an open-source Python graphical user interface 71 

(GUI) for supervised machine learning classification for the scikit-learn library. To the 72 

best of our knowledge, no standalone GUI exists for the scikit-learn library. 73 

ClassificaIO’s core aim is to provide a, machine learning research, teaching and 74 

educational tool that is visually minimalistic and computationally light interactive 75 

interface, that can give access to a range of state-of-the-art classification algorithms to 76 

machine learning beginners with some basic knowledge of Python and using a terminal, 77 

and with broad background in machine learning, allowing them to use machine learning 78 

and apply it to their research. What distinguishes ClassificaIO from other similar 79 

applications is: 80 

• Cross-platform implementation for Mac OS X, Linux, and Windows operating 81 

systems 82 
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• Interactive point-and-click GUI to 25 supervised classification algorithms in scikit-83 

learn 84 

• Accessible clickable links, to scikit-learn’s well-written online documentation for 85 

each implemented classification algorithms 86 

• Simple upload of all data files with dedicated buttons; with robust CSV reader, 87 

and a displayed history-log to track uploaded files, files names and directories 88 

• Fast comparisons within and across classifiers to train, validate, and test data 89 

• Upload and export of ClassificaIO trained models (for future of a trained model 90 

without the need to retrain), and export of both validated, and tested data results 91 

• Small application footprint in terms of disk space usage (<2 MB) 92 

 93 

Materials and methods 94 

ClassificaIO implementation 95 

ClassificaIO has been developed using the standard Python interface Tkinter 96 

module to the Tk GUI toolkit (17), for Mac OS X (using High Sierra ≥ 10.13), Linux 97 

(using Ubuntu 18.04-64 bit), and Windows (using Windows 10 64-bit), Table 1. It uses 98 

external packages including: Tkinter, Pillow, Pandas (18), NumPy (19), scikit-learn and 99 

SciPy (20). To avoid any system errors, crashes, and crude fonts, we recommend not to 100 

install ClassificaIO using integrated environment package installers – instead, native 101 
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installation of ClassificaIO and dependencies (using pip for Mac and Windows, and pip3 102 

and apt-get for Linux) is encouraged. Once installed, ClassificaIO can be deployed 103 

using the ‘import’ function. A ClassificaIO user manual uploaded as supplementary file 104 

S1_Manual (hereafter referred to as S1) is also distributed with ClassificaIO GUI and 105 

can be accessed directly through the ‘HELP’ button at the upper left of the GUI, that 106 

points the user’s default browser to ClassificaIO’s online user manual on GitHub. Some 107 

basic knowledge of Python and accessing it through a terminal are required for 108 

installation and running the software. Additional ClassificaIO software information is 109 

provided in Table 1. 110 

Table 1. ClassificaIO software information 111 

Current ClassificaIO Version 1.1.5 

Public Links to Executables  PyPI: https://pypi.org/project/ClassificaIO/ 

GitHub: https://github.com/gmiaslab/ClassificaIO 

Distribution License MIT license (MIT) 

Operating Systems Mac OS X, Linux, and Microsoft Windows 

Software Installation 
Dependencies 

Python 3 and Python libraries: Tkinter, Pillow, Pandas, 
NumPy, scikit-learn and SciPy 

ClassificaIO Online User 
Manual 

https://github.com/gmiaslab/manuals/blob/master/ClassificaIO
/ClassificaIO_UserManual.pdf  

Supplementary Data Online 
Availability 

https://github.com/gmiaslab/manuals/tree/master/ClassificaIO/
Supplementary%20Files 

Contact E-mail gmiaslab@gmail.com 

ClassificaIO is provided as open source software, and distributed on GitHub and PyPI. Up-to-112 

date code, manuals and supplementary example material will be maintained on GitHub. 113 

 114 

ClassificaIO backend 115 
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 ClassificaIO implements 25 scikit-learn classification algorithms for supervised 116 

machine learning. A list of all these algorithms, their corresponding scikit-learn 117 

functions, and immutable (unchangeable) parameters with their default values are 118 

presented in S1 Table 1, and ClassificaIO’s workflow is outlined in Fig 1. Once training 119 

and testing data are uploaded to the front-end as described below, a classifier selection 120 

is made and submitted, ClassificaIO’s backend calls the scikit-learn selected classifier, 121 

including any values from manually set parameters to create the model. Otherwise, the 122 

default parameters values are used instead. For example, for “LogisticRegression”, the 123 

model is defined in the scikit-learn library as a class, in terms of Python code used in 124 

the backend, the details are outlined in the scikit-learn documentation:  125 

sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit126 

_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver=127 

’liblinear’, max_iter=100, multi_class=’ovr’, verbose=0, warm_start=False, n_jobs=1) 128 

Fig1. ClassificaIO workflow. The diagram summarizes the graphical user interface 129 

and backend functionality/workflow for ClassificaIO Use My Own Training Data and 130 

Already Trained My Model windows.  131 

The inputs to the class, within the parentheses, such as “penalty”, “dual”, “tol”, 132 

etc., correspond to the model parameters, followed by an equal sign assigning the 133 

default values for these parameters. Rather than typing the values, the ClassificaIO GUI 134 

displays these parameters with input fields and radio buttons, for each classifier, initially 135 

populated by the default values. More information is available for all the parameters in 136 

the GUI, through a link for each classifier in the interface named “Learn More”. The link 137 
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directs the default browser to the scikit-learn online documentation of the selected 138 

classifier, and connects to the underlying backend documentation, and online parameter 139 

descriptions. The details and code complexity of the backend implementation are 140 

effectively hidden from the user, who can interact with the ClassificaIO GUI to set the 141 

relevant parameters, or leave them unchanged as default values. On the training data, 142 

ClassificaIO fits the estimator for classification using the scikit-learn ‘fit’ method, e.g. 143 

fit(x_train, y_train), to train (learn from the model), and uses the scikit-learn ‘predict’ 144 

method, e.g. predict(x_validation), to validate the model. Finally, ClassificaIO predicts 145 

new values using the scikit-learn ‘predict’ method again but on the testing data, e.g. 146 

predict(testing_X), for implementing the model on new data that have not been used in 147 

model training. 148 

ClassificaIO functionalities 149 

ClassificaIO’s GUI consists of three windows: ‘Main’, ‘Use My Own Training 150 

Data’, and ‘Already Trained My Model’. Each window is actually implemented within the 151 

code as a class with several functions/methods that are dynamically connected to 152 

provide the GUI. ClassificaIO’s Main window, Fig 2, has two buttons: (i) the ‘Use My 153 

Own Training Data’ button, which when clicked allows the user to train and test 154 

classifiers using their own training and testing data, (ii) the ‘Already Trained My Model’ 155 

button, which when clicked allows the user to use their own already ClassificaIO trained 156 

model and testing data. 157 

Fig 1. ClassificaIO main window. The main window appears on the screen after typing 158 

‘ClassificaIO.gui()’ in a terminal or a Python interpreter. 159 
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 160 

Data input 161 

For the ‘Use My Own Training Data’ window, Fig 3a, by clicking the 162 

corresponding buttons in the ‘UPLOAD TRAINING DATA FILES’ and ‘UPLOAD 163 

TESTING DATA FILE’ panels, a file selector directs the user to upload all required 164 

comma-separated values (CSV) data files (‘Dependent and Target’ or ‘Dependent, 165 

Target and Features’ and ‘Testing Data’) (S1 Fig 1). Briefly, the dependent data 166 

represent the data on which the model will depend on for learning, and the target data is 167 

the annotation, i.e. what is going to be predicted. The dependent data have attributes 168 

(also known as features) that take values (measurements/results) for each contained 169 

object (i.e. each sample). Further details on data files formats and examples are 170 

provided in the S1 Figs 3(a, b) and S2-S5. A history of all uploaded data files (file name 171 

and directory) is automatically saved in the ‘CURRENT DATA UPLOAD’ panel (S1 Figs 172 

2 and 7(c)). 173 

Fig 3. ClassificaIO user interface (Mac OS shown). As described in ClassificaIO 174 

implementation section, (a) an example ‘Use My Own Training Data’ window with 175 

uploaded training and testing data files, selected logistic regression classifier, populated 176 

classifier parameters, and output classification results. (b) A corresponding ‘Already 177 

Trained My Model’ window with uploaded logistic regression ClassificaIO trained model 178 

and testing data file, and output classification result. 179 

Classifier selection 180 
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After the data is uploaded, the user can select between all 25 different widely 181 

used classification algorithms (including logistic regression, perceptron, support vector 182 

machines, k-nearest neighbors, decision tree, random forest, neural network multi-layer 183 

perceptron, and more). The algorithms are integrated from the scikit-learn library, and 184 

allow the user to train and test models using their own uploaded data. Each classifier 185 

can be easily selected by clicking the corresponding classifier name in the ‘CLASSIFER 186 

SELECTION’ panel (see S1 ‘Classifier selection’ section). Once classifier selection is 187 

completed, a brief description for the classifier with an underlined clickable link that 188 

reads “Learn more” right next to the classifier name (S1 Fig 4(a)) and the classifier 189 

parameters will populate (S1 Fig 4(c)). If “Learn more” is clicked, the link directs the 190 

default web browser to open scikit-learn’s online well-written documentation that 191 

explains the specific classifier parameters, with explanation for each parameter and its 192 

use, and how to tune/optimize each parameter to get the best performance. ClassificaIO 193 

provides the user with an interactive point-and-click interface to set, modify, and test the 194 

influence of each parameter on their data. The user can switch between classifiers and 195 

parameters through point-and-click, which enables fast comparisons within and across 196 

classifier models. 197 

Model training 198 

Both train-validate split and cross-validation methods (which are necessary to 199 

prevent/minimize overfitting) will populate with each classifier that can be used for data 200 

training (S1 Fig 4(b)). Training, validating and testing are all performed after pressing 201 

the submit button (middle of Fig. 3(a)). 202 
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Results output 203 

After model training and testing is completed, the confusion matrix, classifier 204 

accuracy and error are displayed in the ‘CONFUSION MATRIX, MODEL ACCURACY & 205 

ERROR’ panel, bottom of Fig 3(a) and S1 Fig 5(a). Model validation data results are 206 

displayed in the ‘TRAINING RESULT: ID – ACTUAL – PREDICTION’ panel, S1 Fig 207 

5(b), and testing data results are displayed in the ‘TESTING RESULT: ID – 208 

PREDICTION’ panel, S1 Fig 6(b). 209 

Model export 210 

By clicking on the ‘Export Model’ button (see Fig 3(a) bottom left and S1 Fig 211 

5(a)), the user can export trained models to save for future use without having to retrain. 212 

A previously exported ClassificaIO model can then be used for testing of new data in 213 

the ‘Already Trained My Model’ window, Fig 3(b), by clicking the ‘Model file’ button in 214 

the ‘UPLOAD TRAINING MODEL FILE’ panel (S1 Fig 7(a)). 215 

Results export 216 

Full results (trained models, both validated and tested data, and uploaded files 217 

names and directories) for both windows, Fig 3(a and b), can be exported as CSV files 218 

for further analysis for publication, sharing, or later use (for more details on the exported 219 

trained model and data file formats, see S7 and S8). 220 

 221 

Results: Illustrative examples and data used  222 
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To illustrate the use of the interface and classification, we have used in this manuscript 223 

the following two examples (also see the S1 for more details). 224 

(i). Iris prediction using Iris dataset. To demonstrate the interface and classification, 225 

we used the so-called Fisher/Anderson iris dataset (21, 22). This dataset is used widely 226 

as a prototype to illustrate classification algorithms, not only of biological data but in 227 

general machine learning implementations. The dataset consists of fifty samples each 228 

for three different species of iris flowers (Setosa, Versicolor and Viginica), with sepal 229 

length and width, and petal length and width provided as measurements. For more 230 

details on the iris data files format, see S1 Fig 3(a,b) and S2-S5. 231 

(ii). Sex prediction using microarray gene expression data. In this example, 232 

provided in ClassificaIO user manual (S1), we used raw microarray gene expression 233 

data, from Gene Expression Omnibus (GEO) (23) to predict each sample donor’s sex. 234 

This is often necessary in metadata analyses, using publicly available gene expression 235 

datasets for reanalysis, as samples annotations on GEO may be missing information, 236 

including sample donor’s sex. To illustrate the classification/sex prediction we used two 237 

datasets, GSE99039 (24) (training data) and GSE18781 (25) (testing data). In both 238 

GSE99039 and GSE18781 datasets, we used 121 and 25 samples respectively, for 239 

which RNA from peripheral blood mononuclear cells was assayed using Affymetrix 240 

Human Genome U133 Plus 2.0 Array (accession GPL570). The Y chromosome gene 241 

expression values were used in ClassificaIO as training and testing data to predict 242 

samples donor’s sex. Using the ‘Linear SVC’ model with “k-fold cross validation” (10-243 

fold), resulted into a model with 99% accuracy for sample donor’s sex prediction (in the 244 

displayed example). For more details on the pre-processing of the raw gene expression 245 
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data, files format, and Y chromosome probes ids, and final result, see S1 ‘Additional 246 

Examples: Ex2’ section and Figs 9 and 10. 247 

 248 

 249 

Discussion 250 

We have presented ClassificaIO, a GUI that implements the scikit-learn 251 

supervised machine learning classification algorithms. The scikit-learn package is one 252 

of the most popular in Python with well-written documentation, and many of its machine 253 

leaning algorithms are currently used for analyzing large and complex data sets in 254 

genomics. Our interface aims to provide an interactive machine learning research, 255 

teaching and educational tool to do machine learning analysis without the requirement 256 

of advanced computational and machine learning knowledge using scikit-learn. 257 

ClassificaIO is provided as an open source software, and its back-end classes and 258 

functions allow for rapid development. We anticipate further development, aided by the 259 

scikit-learn library developer community to integrate additional classification algorithms, 260 

and extend ClassificaIO to include other machine leaning methods such as regression, 261 

clustering, and anomaly detection, to name but a few. 262 

 263 

Acknowledgements 264 

None 265 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint 

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/


 14

 266 

References  267 

1. Mias GI, Snyder M. Personal genomes, quantitative dynamic omics and 268 

personalized medicine. Quant Biol. 2013;1(1):71-90. 269 

2. Libbrecht MW, Noble WS. Machine learning applications in genetics and 270 

genomics. Nat Rev Genet. 2015;16(6):321-32. 271 

3. Buckberry S, Bent SJ, Bianco-Miotto T, Roberts CT. massiR: a method for 272 

predicting the sex of samples in gene expression microarray datasets. Bioinformatics. 273 

2014;30(14):2084-5. 274 

4. Ohler U, Liao GC, Niemann H, Rubin GM. Computational analysis of core 275 

promoters in the Drosophila genome. Genome Biol. 2002;3(12):RESEARCH0087. 276 

5. Degroeve S, De Baets B, Van de Peer Y, Rouze P. Feature subset selection for 277 

splice site prediction. Bioinformatics. 2002;18 Suppl 2:S75-83. 278 

6. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, et al. Distinct 279 

and predictive chromatin signatures of transcriptional promoters and enhancers in the 280 

human genome. Nat Genet. 2007;39(3):311-8. 281 

7. Way GP, Allaway RJ, Bouley SJ, Fadul CE, Sanchez Y, Greene CS. A machine 282 

learning classifier trained on cancer transcriptomes detects NF1 inactivation signal in 283 

glioblastoma. BMC Genomics. 2017;18(1):127. 284 

8. Lee SI, Celik S, Logsdon BA, Lundberg SM, Martins TJ, Oehler VG, et al. A 285 

machine learning approach to integrate big data for precision medicine in acute myeloid 286 

leukemia. Nat Commun. 2018;9(1):42. 287 

9. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. 288 

Scikit-learn: Machine Learning in Python. J Mach Learn Res. 2011;12:2825-30. 289 

10. Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, et al. 290 

Opportunities and obstacles for deep learning in biology and medicine. J R Soc 291 

Interface. 2018;15(141). 292 

11. Berthold MR, Cebron N, Dill F, Gabriel TR, Kotter T, Meinl T, et al. KNIME: The 293 

Konstanz Information Miner. Stud Class Data Anal. 2008:319-26. 294 

12. Frank E, Hall M, Trigg L, Holmes G, Witten IH. Data mining in bioinformatics 295 

using Weka. Bioinformatics. 2004;20(15):2479-81. 296 

13. Demsar J, Curk T, Erjavec A, Gorup C, Hocevar T, Milutinovic M, et al. Orange: 297 

Data Mining Toolbox in Python. J Mach Learn Res. 2013;14:2349-53. 298 

14. Scikit Learn Documentation. Scikit learn online documentation. 2018. 299 

15. Help KDa. How to use kaggle 2018 [Available from: 300 

https://www.kaggle.com/docs.] 301 

16. Stack Overflow. The stack overflow python online comunity. 2018. 302 

17. Ousterhout JK. Tcl and the Tk toolkit. Reading, Mass.: Addison-Wesley; 1994. 303 

xx, 458 p. p. 304 

18. McKinney W, editor Data structures for statistical computing in python. 305 

Proceedings of the 9th Python in Science Conference; 2010. 306 

19. Oliphant TE. A guide to NumPy: Trelgol Publishing USA; 2006. 307 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint 

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/


 15

20. Olivier BG, Rohwer JM, Hofmeyr JHS. Modelling cellular processes with Python 308 

and Scipy. Mol Biol Rep. 2002;29(1-2):249-54. 309 

21. Fisher RA. The use of multiple measurements in taxonomic problems. Ann 310 

Eugenic. 1936;7:179-88. 311 

22. Anderson E. The Irises of the Gaspe peninsula. Bulletin of American Iris Society. 312 

1935;59:2-5. 313 

23. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene 314 

expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207-315 

10. 316 

24. Shamir R, Klein C, Amar D, Vollstedt EJ, Bonin M, Usenovic M, et al. Analysis of 317 

blood-based gene expression in idiopathic Parkinson disease. Neurology. 318 

2017;89(16):1676-83. 319 

25. Sharma SM, Choi D, Planck SR, Harrington CA, Austin CR, Lewis JA, et al. 320 

Insights in to the pathogenesis of axial spondyloarthropathy based on gene expression 321 

profiles. Arthritis Res Ther. 2009;11(6):R168. 322 

 323 

Supporting information 324 

S1 Fig 1. Graphical control element dialog box. (a) Dependent data file selected for 325 

upload. (b) Selected target data file to upload. N.B. each file selection has to be done 326 

one at a time. 327 

S1 Fig 2. Current data upload panel. Both dependent and target data file names 328 

shown (red boxes). Scroll down for uploaded data files directories. 329 

S1 Fig 3(a) Dependent data. Example of partial dependent data file format. Testing 330 

data (not shown) uses the same format. 331 

S1 Fig 3(b) Target data. Example of partial target data file format where the targets 332 

correspond to setosa = 0, versicolor = 1, and virginica = 2. Versicolor and virginica are 333 

not visible in this screenshot. 334 

S1 Fig 4. Selected logistic regression classifier. The interface for each selected 335 

classifier, has uniform features. (a) Classifier definition is displayed, together with an 336 
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underlined clickable link that reads “Learn more” next to the classifier name. (b) Training 337 

methods with ‘Train Sample Size (%)’ method selected. (c) The classifier parameters 338 

set to their default values. 339 

S1 Fig 5. Trained logistic regression classifier. (a) Trained model using 78 data 340 

points (75% of 105 data points), classifier evaluation (confusion matrix, model accuracy 341 

and error). (b) Model validated using 27 data points (25% of 105 data points). 342 

S1 Fig 6. Tested logistic regression classifier. (a) Upload testing data panel. (b) 343 

Model tested using 45 data points. 344 

S1 Fig 7. ‘Already Trained My Model’ window. (a) Upload ClassificaIO trained model 345 

panel. (b) Upload testing data panel. (c) Current data upload panel with both model and 346 

testing data files names shown (red boxes). (d) Model preset parameters. (e) Trained 347 

model result and model evaluation (confusion matrix, model accuracy and error). (f) 348 

Model testing result. 349 

S1 Fig 8. Training and testing using gene expression data. (a) selected k-nearest 350 

neighbors classifier with trained and tested the data using the default parameters 351 

values, (b) Same classifier selected with trained and tested data but using different 352 

parameters values. 353 

S1 Fig 9. Trained linear support vector machine classifier. Trained model using 354 

GSE99039 121 data points and k-fold cross validation, classifier evaluation (confusion 355 

matrix, model accuracy and error). Model validated and tested model using GSE18781 356 

25 data points. 357 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint 

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/


 17

S1 Fig 10. Features data. Example of partial features data file format where each 358 

Affymetrix probe id correspond to a Y chromosome gene. 359 

S1_Manual. ClassificaIO user manual. User manual for ClassificaIO, including all 360 

supplementary Figs 1-10 as well as working examples implementing using 361 

supplementary files S2-S8. 362 

S2_Iris_Dependent_DataSet.csv. Iris dependent data set (105 data points). 363 

S3_Iris_Target.csv. Iris Target data set (105 labels). 364 

S4_Iris_Testing_DataSet.csv. Iris testing data set (45 data points). 365 

S5_Iris_FeatureNames.csv. Example Iris features (2 features: sepal length and 366 

petal width). 367 

S6_LogisticRegression_IrisTrainedModel.pkl. Example ClassificaIO trained model 368 

using logistic regression. 369 

S7_IrisTrainValidationResult.csv. Example ClassificaIO testing result using 370 

logistic regression. 371 

 372 

S8_IrisTestingResult.csv. Example ClassificaIO validation result using logistic 373 

regression. 374 

 375 
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