
 1

ClassificaIO: machine learning for classification graphical user interface 1

Raeuf Roushangar 1, 2, George I. Mias 1, 2* 2

1 Department of Biochemistry and Molecular Biology, 3

2 Institute for Quantitative Health Science and Engineering, 4

Michigan State University, East Lansing MI 48824, USA 5

 6

*Corresponding author 7

E-mail: gmias@msu.edu (GM) 8

 9

 10

 11

 12

 13

 14

 15

 16

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/

 2

Abstract 17

Machine learning methods are being used routinely by scientists in many 18

research areas, typically requiring significant statistical and programing knowledge. 19

Here we present ClassificaIO, an open-source Python graphical user interface for 20

machine learning classification for the scikit-learn Python library. ClassificaIO provides 21

an interactive way to train, validate, and test data on a range of classification algorithms. 22

The software enables fast comparisons within and across classifiers, and facilitates 23

uploading and exporting of trained models, and both validation and testing data results. 24

ClassificaIO aims to provide not only a research utility, but also an educational tool that 25

can enable biomedical and other researchers with minimal machine learning 26

background to apply machine learning algorithms to their research in an interactive 27

point-and-click way. The ClassificaIO package is available for download and installation 28

through the Python Package Index (PyPI) (http://pypi.python.org/pypi/ClassificaIO) and 29

it can be deployed using the “import” function in Python once the package is installed. 30

The application is distributed under an MIT license and the source code is publicly 31

available for download (for Mac OS X, Linux and Microsoft Windows) through PyPI and 32

GitHub (http://github.com/gmiaslab/ClassificaIO, and 33

https://doi.org/10.5281/zenodo.1320465). 34

Introduction 35

Recent advances in high-throughput technologies, especially in genomics, have 36

led to an explosion of large-scale structured data (e.g. RNA-sequencing and microarray 37

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/

 3

data) (1). Machine learning methods (classification, regression, clustering, etc.) are 38

routinely used in mining such big data to extract biological insights in a range of areas 39

within genetics and genomics (2). For example, using unsupervised machine learning 40

classification methods to predict the sex of gene expression microarrays donor samples 41

(3), using genome sequencing data to train machine learning models to identify 42

transcription start sites (4), splice sites (5), transcriptional promoters and enhancers 43

regions (6). Recent examples of using machine learning classification methods include 44

their use to detect neurofibromin 1 tumor suppressor gene inactivation in glioblastoma 45

(7), and to identify reliable gene markers for drug sensitivity in acute myeloid leukemia 46

(8). Many advanced machine learning algorithms have been developed in the recent 47

years. Scikit-learn (9) is one of the most popular machine learning libraries in Python 48

with a plethora of thoroughly tested and well-maintained machine learning algorithms. 49

However, these algorithms are primarily aimed at users with computational and 50

statistical backgrounds, which may discourage many biologists, biomedical scientists or 51

beginning students (who may have minimal machine learning background but still want 52

to explore its application in their research) from using machine learning. Ching et al 53

(2018) recently highlighted the role of deep learning (a class of machine learning 54

algorithms) currently plays in biology, and how such algorithms present new 55

opportunities and obstacles for a data-rich field such as biology (10). 56

Several open source machine learning applications, such as KNIME (11) and 57

Weka (12) written in Java and Orange (13) written in Python, have been developed with 58

graphical user interfaces. The dataflow process for most of these applications is 59

generally graphically constructed by the user, in the form of placing and connecting 60

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/

 4

widgets by drag-and-drop. Such graphical workflow and representation of data input, 61

processing and output is visually appealing, but can be computationally demanding 62

(memory, storage, processing, etc.) and limiting in algorithm comparison, since each 63

machine learning algorithm can have many different parameters. These tools are very 64

mature with numerous algorithms, and well documented. However, they can be 65

intimidating for machine learning beginners and students that want to preform simple 66

tasks such as data classification. Also, scikit-learn has comprehensive documentation 67

(14), and many online resources, including though Kaggle (15) and Stack Overflow (16), 68

and a large online user base, which make scikit-learn a very popular package for 69

machine learning beginners learning using Python. 70

Here, we present ClassificaIO, an open-source Python graphical user interface 71

(GUI) for supervised machine learning classification for the scikit-learn library. To the 72

best of our knowledge, no standalone GUI exists for the scikit-learn library. 73

ClassificaIO’s core aim is to provide a, machine learning research, teaching and 74

educational tool that is visually minimalistic and computationally light interactive 75

interface, that can give access to a range of state-of-the-art classification algorithms to 76

machine learning beginners with some basic knowledge of Python and using a terminal, 77

and with broad background in machine learning, allowing them to use machine learning 78

and apply it to their research. What distinguishes ClassificaIO from other similar 79

applications is: 80

• Cross-platform implementation for Mac OS X, Linux, and Windows operating 81

systems 82

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/

 5

• Interactive point-and-click GUI to 25 supervised classification algorithms in scikit-83

learn 84

• Accessible clickable links, to scikit-learn’s well-written online documentation for 85

each implemented classification algorithms 86

• Simple upload of all data files with dedicated buttons; with robust CSV reader, 87

and a displayed history-log to track uploaded files, files names and directories 88

• Fast comparisons within and across classifiers to train, validate, and test data 89

• Upload and export of ClassificaIO trained models (for future of a trained model 90

without the need to retrain), and export of both validated, and tested data results 91

• Small application footprint in terms of disk space usage (<2 MB) 92

 93

Materials and methods 94

ClassificaIO implementation 95

ClassificaIO has been developed using the standard Python interface Tkinter 96

module to the Tk GUI toolkit (17), for Mac OS X (using High Sierra ≥ 10.13), Linux 97

(using Ubuntu 18.04-64 bit), and Windows (using Windows 10 64-bit), Table 1. It uses 98

external packages including: Tkinter, Pillow, Pandas (18), NumPy (19), scikit-learn and 99

SciPy (20). To avoid any system errors, crashes, and crude fonts, we recommend not to 100

install ClassificaIO using integrated environment package installers – instead, native 101

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/

 6

installation of ClassificaIO and dependencies (using pip for Mac and Windows, and pip3 102

and apt-get for Linux) is encouraged. Once installed, ClassificaIO can be deployed 103

using the ‘import’ function. A ClassificaIO user manual uploaded as supplementary file 104

S1_Manual (hereafter referred to as S1) is also distributed with ClassificaIO GUI and 105

can be accessed directly through the ‘HELP’ button at the upper left of the GUI, that 106

points the user’s default browser to ClassificaIO’s online user manual on GitHub. Some 107

basic knowledge of Python and accessing it through a terminal are required for 108

installation and running the software. Additional ClassificaIO software information is 109

provided in Table 1. 110

Table 1. ClassificaIO software information 111

Current ClassificaIO Version 1.1.5

Public Links to Executables PyPI: https://pypi.org/project/ClassificaIO/

GitHub: https://github.com/gmiaslab/ClassificaIO

Distribution License MIT license (MIT)

Operating Systems Mac OS X, Linux, and Microsoft Windows

Software Installation
Dependencies

Python 3 and Python libraries: Tkinter, Pillow, Pandas,
NumPy, scikit-learn and SciPy

ClassificaIO Online User
Manual

https://github.com/gmiaslab/manuals/blob/master/ClassificaIO
/ClassificaIO_UserManual.pdf

Supplementary Data Online
Availability

https://github.com/gmiaslab/manuals/tree/master/ClassificaIO/
Supplementary%20Files

Contact E-mail gmiaslab@gmail.com

ClassificaIO is provided as open source software, and distributed on GitHub and PyPI. Up-to-112

date code, manuals and supplementary example material will be maintained on GitHub. 113

 114

ClassificaIO backend 115

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/

 7

 ClassificaIO implements 25 scikit-learn classification algorithms for supervised 116

machine learning. A list of all these algorithms, their corresponding scikit-learn 117

functions, and immutable (unchangeable) parameters with their default values are 118

presented in S1 Table 1, and ClassificaIO’s workflow is outlined in Fig 1. Once training 119

and testing data are uploaded to the front-end as described below, a classifier selection 120

is made and submitted, ClassificaIO’s backend calls the scikit-learn selected classifier, 121

including any values from manually set parameters to create the model. Otherwise, the 122

default parameters values are used instead. For example, for “LogisticRegression”, the 123

model is defined in the scikit-learn library as a class, in terms of Python code used in 124

the backend, the details are outlined in the scikit-learn documentation: 125

sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit126

_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver=127

’liblinear’, max_iter=100, multi_class=’ovr’, verbose=0, warm_start=False, n_jobs=1) 128

Fig1. ClassificaIO workflow. The diagram summarizes the graphical user interface 129

and backend functionality/workflow for ClassificaIO Use My Own Training Data and 130

Already Trained My Model windows. 131

The inputs to the class, within the parentheses, such as “penalty”, “dual”, “tol”, 132

etc., correspond to the model parameters, followed by an equal sign assigning the 133

default values for these parameters. Rather than typing the values, the ClassificaIO GUI 134

displays these parameters with input fields and radio buttons, for each classifier, initially 135

populated by the default values. More information is available for all the parameters in 136

the GUI, through a link for each classifier in the interface named “Learn More”. The link 137

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/

 8

directs the default browser to the scikit-learn online documentation of the selected 138

classifier, and connects to the underlying backend documentation, and online parameter 139

descriptions. The details and code complexity of the backend implementation are 140

effectively hidden from the user, who can interact with the ClassificaIO GUI to set the 141

relevant parameters, or leave them unchanged as default values. On the training data, 142

ClassificaIO fits the estimator for classification using the scikit-learn ‘fit’ method, e.g. 143

fit(x_train, y_train), to train (learn from the model), and uses the scikit-learn ‘predict’ 144

method, e.g. predict(x_validation), to validate the model. Finally, ClassificaIO predicts 145

new values using the scikit-learn ‘predict’ method again but on the testing data, e.g. 146

predict(testing_X), for implementing the model on new data that have not been used in 147

model training. 148

ClassificaIO functionalities 149

ClassificaIO’s GUI consists of three windows: ‘Main’, ‘Use My Own Training 150

Data’, and ‘Already Trained My Model’. Each window is actually implemented within the 151

code as a class with several functions/methods that are dynamically connected to 152

provide the GUI. ClassificaIO’s Main window, Fig 2, has two buttons: (i) the ‘Use My 153

Own Training Data’ button, which when clicked allows the user to train and test 154

classifiers using their own training and testing data, (ii) the ‘Already Trained My Model’ 155

button, which when clicked allows the user to use their own already ClassificaIO trained 156

model and testing data. 157

Fig 1. ClassificaIO main window. The main window appears on the screen after typing 158

‘ClassificaIO.gui()’ in a terminal or a Python interpreter. 159

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/

 9

 160

Data input 161

For the ‘Use My Own Training Data’ window, Fig 3a, by clicking the 162

corresponding buttons in the ‘UPLOAD TRAINING DATA FILES’ and ‘UPLOAD 163

TESTING DATA FILE’ panels, a file selector directs the user to upload all required 164

comma-separated values (CSV) data files (‘Dependent and Target’ or ‘Dependent, 165

Target and Features’ and ‘Testing Data’) (S1 Fig 1). Briefly, the dependent data 166

represent the data on which the model will depend on for learning, and the target data is 167

the annotation, i.e. what is going to be predicted. The dependent data have attributes 168

(also known as features) that take values (measurements/results) for each contained 169

object (i.e. each sample). Further details on data files formats and examples are 170

provided in the S1 Figs 3(a, b) and S2-S5. A history of all uploaded data files (file name 171

and directory) is automatically saved in the ‘CURRENT DATA UPLOAD’ panel (S1 Figs 172

2 and 7(c)). 173

Fig 3. ClassificaIO user interface (Mac OS shown). As described in ClassificaIO 174

implementation section, (a) an example ‘Use My Own Training Data’ window with 175

uploaded training and testing data files, selected logistic regression classifier, populated 176

classifier parameters, and output classification results. (b) A corresponding ‘Already 177

Trained My Model’ window with uploaded logistic regression ClassificaIO trained model 178

and testing data file, and output classification result. 179

Classifier selection 180

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/

 10

After the data is uploaded, the user can select between all 25 different widely 181

used classification algorithms (including logistic regression, perceptron, support vector 182

machines, k-nearest neighbors, decision tree, random forest, neural network multi-layer 183

perceptron, and more). The algorithms are integrated from the scikit-learn library, and 184

allow the user to train and test models using their own uploaded data. Each classifier 185

can be easily selected by clicking the corresponding classifier name in the ‘CLASSIFER 186

SELECTION’ panel (see S1 ‘Classifier selection’ section). Once classifier selection is 187

completed, a brief description for the classifier with an underlined clickable link that 188

reads “Learn more” right next to the classifier name (S1 Fig 4(a)) and the classifier 189

parameters will populate (S1 Fig 4(c)). If “Learn more” is clicked, the link directs the 190

default web browser to open scikit-learn’s online well-written documentation that 191

explains the specific classifier parameters, with explanation for each parameter and its 192

use, and how to tune/optimize each parameter to get the best performance. ClassificaIO 193

provides the user with an interactive point-and-click interface to set, modify, and test the 194

influence of each parameter on their data. The user can switch between classifiers and 195

parameters through point-and-click, which enables fast comparisons within and across 196

classifier models. 197

Model training 198

Both train-validate split and cross-validation methods (which are necessary to 199

prevent/minimize overfitting) will populate with each classifier that can be used for data 200

training (S1 Fig 4(b)). Training, validating and testing are all performed after pressing 201

the submit button (middle of Fig. 3(a)). 202

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/

 11

Results output 203

After model training and testing is completed, the confusion matrix, classifier 204

accuracy and error are displayed in the ‘CONFUSION MATRIX, MODEL ACCURACY & 205

ERROR’ panel, bottom of Fig 3(a) and S1 Fig 5(a). Model validation data results are 206

displayed in the ‘TRAINING RESULT: ID – ACTUAL – PREDICTION’ panel, S1 Fig 207

5(b), and testing data results are displayed in the ‘TESTING RESULT: ID – 208

PREDICTION’ panel, S1 Fig 6(b). 209

Model export 210

By clicking on the ‘Export Model’ button (see Fig 3(a) bottom left and S1 Fig 211

5(a)), the user can export trained models to save for future use without having to retrain. 212

A previously exported ClassificaIO model can then be used for testing of new data in 213

the ‘Already Trained My Model’ window, Fig 3(b), by clicking the ‘Model file’ button in 214

the ‘UPLOAD TRAINING MODEL FILE’ panel (S1 Fig 7(a)). 215

Results export 216

Full results (trained models, both validated and tested data, and uploaded files 217

names and directories) for both windows, Fig 3(a and b), can be exported as CSV files 218

for further analysis for publication, sharing, or later use (for more details on the exported 219

trained model and data file formats, see S7 and S8). 220

 221

Results: Illustrative examples and data used 222

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/

 12

To illustrate the use of the interface and classification, we have used in this manuscript 223

the following two examples (also see the S1 for more details). 224

(i). Iris prediction using Iris dataset. To demonstrate the interface and classification, 225

we used the so-called Fisher/Anderson iris dataset (21, 22). This dataset is used widely 226

as a prototype to illustrate classification algorithms, not only of biological data but in 227

general machine learning implementations. The dataset consists of fifty samples each 228

for three different species of iris flowers (Setosa, Versicolor and Viginica), with sepal 229

length and width, and petal length and width provided as measurements. For more 230

details on the iris data files format, see S1 Fig 3(a,b) and S2-S5. 231

(ii). Sex prediction using microarray gene expression data. In this example, 232

provided in ClassificaIO user manual (S1), we used raw microarray gene expression 233

data, from Gene Expression Omnibus (GEO) (23) to predict each sample donor’s sex. 234

This is often necessary in metadata analyses, using publicly available gene expression 235

datasets for reanalysis, as samples annotations on GEO may be missing information, 236

including sample donor’s sex. To illustrate the classification/sex prediction we used two 237

datasets, GSE99039 (24) (training data) and GSE18781 (25) (testing data). In both 238

GSE99039 and GSE18781 datasets, we used 121 and 25 samples respectively, for 239

which RNA from peripheral blood mononuclear cells was assayed using Affymetrix 240

Human Genome U133 Plus 2.0 Array (accession GPL570). The Y chromosome gene 241

expression values were used in ClassificaIO as training and testing data to predict 242

samples donor’s sex. Using the ‘Linear SVC’ model with “k-fold cross validation” (10-243

fold), resulted into a model with 99% accuracy for sample donor’s sex prediction (in the 244

displayed example). For more details on the pre-processing of the raw gene expression 245

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/

 13

data, files format, and Y chromosome probes ids, and final result, see S1 ‘Additional 246

Examples: Ex2’ section and Figs 9 and 10. 247

 248

 249

Discussion 250

We have presented ClassificaIO, a GUI that implements the scikit-learn 251

supervised machine learning classification algorithms. The scikit-learn package is one 252

of the most popular in Python with well-written documentation, and many of its machine 253

leaning algorithms are currently used for analyzing large and complex data sets in 254

genomics. Our interface aims to provide an interactive machine learning research, 255

teaching and educational tool to do machine learning analysis without the requirement 256

of advanced computational and machine learning knowledge using scikit-learn. 257

ClassificaIO is provided as an open source software, and its back-end classes and 258

functions allow for rapid development. We anticipate further development, aided by the 259

scikit-learn library developer community to integrate additional classification algorithms, 260

and extend ClassificaIO to include other machine leaning methods such as regression, 261

clustering, and anomaly detection, to name but a few. 262

 263

Acknowledgements 264

None 265

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/

 14

 266

References 267

1. Mias GI, Snyder M. Personal genomes, quantitative dynamic omics and 268

personalized medicine. Quant Biol. 2013;1(1):71-90. 269

2. Libbrecht MW, Noble WS. Machine learning applications in genetics and 270

genomics. Nat Rev Genet. 2015;16(6):321-32. 271

3. Buckberry S, Bent SJ, Bianco-Miotto T, Roberts CT. massiR: a method for 272

predicting the sex of samples in gene expression microarray datasets. Bioinformatics. 273

2014;30(14):2084-5. 274

4. Ohler U, Liao GC, Niemann H, Rubin GM. Computational analysis of core 275

promoters in the Drosophila genome. Genome Biol. 2002;3(12):RESEARCH0087. 276

5. Degroeve S, De Baets B, Van de Peer Y, Rouze P. Feature subset selection for 277

splice site prediction. Bioinformatics. 2002;18 Suppl 2:S75-83. 278

6. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, et al. Distinct 279

and predictive chromatin signatures of transcriptional promoters and enhancers in the 280

human genome. Nat Genet. 2007;39(3):311-8. 281

7. Way GP, Allaway RJ, Bouley SJ, Fadul CE, Sanchez Y, Greene CS. A machine 282

learning classifier trained on cancer transcriptomes detects NF1 inactivation signal in 283

glioblastoma. BMC Genomics. 2017;18(1):127. 284

8. Lee SI, Celik S, Logsdon BA, Lundberg SM, Martins TJ, Oehler VG, et al. A 285

machine learning approach to integrate big data for precision medicine in acute myeloid 286

leukemia. Nat Commun. 2018;9(1):42. 287

9. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. 288

Scikit-learn: Machine Learning in Python. J Mach Learn Res. 2011;12:2825-30. 289

10. Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, et al. 290

Opportunities and obstacles for deep learning in biology and medicine. J R Soc 291

Interface. 2018;15(141). 292

11. Berthold MR, Cebron N, Dill F, Gabriel TR, Kotter T, Meinl T, et al. KNIME: The 293

Konstanz Information Miner. Stud Class Data Anal. 2008:319-26. 294

12. Frank E, Hall M, Trigg L, Holmes G, Witten IH. Data mining in bioinformatics 295

using Weka. Bioinformatics. 2004;20(15):2479-81. 296

13. Demsar J, Curk T, Erjavec A, Gorup C, Hocevar T, Milutinovic M, et al. Orange: 297

Data Mining Toolbox in Python. J Mach Learn Res. 2013;14:2349-53. 298

14. Scikit Learn Documentation. Scikit learn online documentation. 2018. 299

15. Help KDa. How to use kaggle 2018 [Available from: 300

https://www.kaggle.com/docs.] 301

16. Stack Overflow. The stack overflow python online comunity. 2018. 302

17. Ousterhout JK. Tcl and the Tk toolkit. Reading, Mass.: Addison-Wesley; 1994. 303

xx, 458 p. p. 304

18. McKinney W, editor Data structures for statistical computing in python. 305

Proceedings of the 9th Python in Science Conference; 2010. 306

19. Oliphant TE. A guide to NumPy: Trelgol Publishing USA; 2006. 307

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/

 15

20. Olivier BG, Rohwer JM, Hofmeyr JHS. Modelling cellular processes with Python 308

and Scipy. Mol Biol Rep. 2002;29(1-2):249-54. 309

21. Fisher RA. The use of multiple measurements in taxonomic problems. Ann 310

Eugenic. 1936;7:179-88. 311

22. Anderson E. The Irises of the Gaspe peninsula. Bulletin of American Iris Society. 312

1935;59:2-5. 313

23. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene 314

expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207-315

10. 316

24. Shamir R, Klein C, Amar D, Vollstedt EJ, Bonin M, Usenovic M, et al. Analysis of 317

blood-based gene expression in idiopathic Parkinson disease. Neurology. 318

2017;89(16):1676-83. 319

25. Sharma SM, Choi D, Planck SR, Harrington CA, Austin CR, Lewis JA, et al. 320

Insights in to the pathogenesis of axial spondyloarthropathy based on gene expression 321

profiles. Arthritis Res Ther. 2009;11(6):R168. 322

 323

Supporting information 324

S1 Fig 1. Graphical control element dialog box. (a) Dependent data file selected for 325

upload. (b) Selected target data file to upload. N.B. each file selection has to be done 326

one at a time. 327

S1 Fig 2. Current data upload panel. Both dependent and target data file names 328

shown (red boxes). Scroll down for uploaded data files directories. 329

S1 Fig 3(a) Dependent data. Example of partial dependent data file format. Testing 330

data (not shown) uses the same format. 331

S1 Fig 3(b) Target data. Example of partial target data file format where the targets 332

correspond to setosa = 0, versicolor = 1, and virginica = 2. Versicolor and virginica are 333

not visible in this screenshot. 334

S1 Fig 4. Selected logistic regression classifier. The interface for each selected 335

classifier, has uniform features. (a) Classifier definition is displayed, together with an 336

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/

 16

underlined clickable link that reads “Learn more” next to the classifier name. (b) Training 337

methods with ‘Train Sample Size (%)’ method selected. (c) The classifier parameters 338

set to their default values. 339

S1 Fig 5. Trained logistic regression classifier. (a) Trained model using 78 data 340

points (75% of 105 data points), classifier evaluation (confusion matrix, model accuracy 341

and error). (b) Model validated using 27 data points (25% of 105 data points). 342

S1 Fig 6. Tested logistic regression classifier. (a) Upload testing data panel. (b) 343

Model tested using 45 data points. 344

S1 Fig 7. ‘Already Trained My Model’ window. (a) Upload ClassificaIO trained model 345

panel. (b) Upload testing data panel. (c) Current data upload panel with both model and 346

testing data files names shown (red boxes). (d) Model preset parameters. (e) Trained 347

model result and model evaluation (confusion matrix, model accuracy and error). (f) 348

Model testing result. 349

S1 Fig 8. Training and testing using gene expression data. (a) selected k-nearest 350

neighbors classifier with trained and tested the data using the default parameters 351

values, (b) Same classifier selected with trained and tested data but using different 352

parameters values. 353

S1 Fig 9. Trained linear support vector machine classifier. Trained model using 354

GSE99039 121 data points and k-fold cross validation, classifier evaluation (confusion 355

matrix, model accuracy and error). Model validated and tested model using GSE18781 356

25 data points. 357

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/

 17

S1 Fig 10. Features data. Example of partial features data file format where each 358

Affymetrix probe id correspond to a Y chromosome gene. 359

S1_Manual. ClassificaIO user manual. User manual for ClassificaIO, including all 360

supplementary Figs 1-10 as well as working examples implementing using 361

supplementary files S2-S8. 362

S2_Iris_Dependent_DataSet.csv. Iris dependent data set (105 data points). 363

S3_Iris_Target.csv. Iris Target data set (105 labels). 364

S4_Iris_Testing_DataSet.csv. Iris testing data set (45 data points). 365

S5_Iris_FeatureNames.csv. Example Iris features (2 features: sepal length and 366

petal width). 367

S6_LogisticRegression_IrisTrainedModel.pkl. Example ClassificaIO trained model 368

using logistic regression. 369

S7_IrisTrainValidationResult.csv. Example ClassificaIO testing result using 370

logistic regression. 371

 372

S8_IrisTestingResult.csv. Example ClassificaIO validation result using logistic 373

regression. 374

 375

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/240184doi: bioRxiv preprint

https://doi.org/10.1101/240184
http://creativecommons.org/licenses/by-nc/4.0/

