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Abstract 
 
We present a new method for improving the efficiency of calculating rate constants using the weighted 
ensemble path sampling strategy. This method reduces the sensitivity of rate-constant estimation to the 
earliest (and least typical) pathways reaching the target state by incorporating the distribution of event 
durations (excluding dwell time in the initial stable state) that correspond to pathways captured by the 
simulation. We demonstrate that the improved method enables accurate estimation of the rate constant for a 
protein conformational switching process using a fraction of the simulation time required by the original 
weighted ensemble method. Importantly, our method accounts for systematic error when using data from the 
entire simulation. Our method is relevant to any simulation strategy that involves unbiased trajectories of 
similar length to the typical event duration, including weighted ensemble and standard simulations. 
 
 
1. Introduction 
 
The weighted ensemble (WE) path sampling strategy1 can be highly efficient at estimating rate constants as 
well as generating unbiased pathways for rare events (e.g. protein folding, protein binding).2–78 A hallmark of 
rare events is that the actual transitions between stable states are infrequent, but relatively fast. Furthermore, 
the barrier crossing time, or event duration tb, is typically orders of magnitude less than the associated waiting 
time between events (i.e., the first passage time or the inverse of rate constant k) such that tb << k-1. Rare-
events sampling strategies, including the WE strategy, exploit this separation of timescales by focusing the 
sampling on the transitions between stable states rather than the stable states themselves.9  
 
Here we present a new method for improving the efficiency of calculating rate constants using the WE strategy. 
One issue with the original WE strategy is that there is a transient phase prior to relaxation into a steady-state, 
or equivalently, there is a “ramp up” time between when trajectories are started in the initial state and when the 
flux is no longer sensitive to the earliest (and least probable) pathways generated for the rare event. Our 
method significantly reduces this sensitivity by expressing the “ramp up” time in terms of the probability 
distribution of event durations that correspond to pathways captured by the simulation thereby enabling the 
calculation of rate constants from shorter trajectories. In addition to the WE strategy, our method is relevant to 
any simulation strategy that relies on unforced pathways of similar length to the typical event duration, 
including standard simulations, milestoning, and the construction of Markov state models. 
 
To demonstrate the power of our improved WE strategy for calculating rate constants, we have applied the 
strategy to estimate the rate constant for protein conformational switching based on simulations of a protein-
based Ca2+ sensor using a residue-level protein model.6 This sensor was engineered using the alternate frame 
folding scheme, which involves fusing together the wild-type protein (in this case, the Ca2+-binding protein, 
calbindin) and a circular permutant of the protein such that the two proteins partially overlap in sequence.10 
Due to sterics, the two proteins fold in a mutually exclusive manner. The protein conformational switching 
process therefore involves switching between the two alternate folded states. Importantly, our simulations of 
the switching process were able to capture the entire distribution of event duration times, making the 
simulations ideal for a “proof-of-principle” study.  
 
2. Theory 
 
The weighted ensemble (WE) strategy. In the WE strategy,1 multiple trajectories are started in parallel from 
the initial state with each trajectory assigned a statistical weight. To control the trajectory distribution, 
configurational space is divided into bins along a ‘progress coordinate’ toward the target state. Trajectories are 
evaluated at fixed time intervals 𝜏 for either replication or combination to maintain the same number of 
trajectories/bin with the goal of generating a sufficiently large ensemble of continuous, successful pathways for 
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computing rate constants. Rigorous management of trajectory weights ensures that no bias is introduced into 
the dynamics. To maintain steady-state conditions, trajectories that reach the target state are ‘recycled’, i.e. 
terminated followed by the initiation of a new trajectory with the same weight as the terminated trajectory.  
 
Original method for rate-constant estimation calculation. Consider a system in state A at time 𝑡 = 0. 
Assume that this system has the following properties.  

1. While in state A, the system has a constant probability per unit time of entering a successful transition 
path to state B, denoted 𝑘%&.	 

2. After entering a successful transition path, the transition to B occurs in a nonnegative interval of time. 
These event durations are randomly distributed according to a probability density function 𝑔%&: [0,∞) →
[0,∞)	with ∫∞

0 𝑔%&(𝑡)𝑑𝑡 = 1 
3. Upon arriving in state B, the system is immediately “recycled” to state A. 

 
Using the original WE strategy, macroscopic rate constants 𝑘%&for the switching process involving an initial 
state A and target state B are computed as follows: 
 

𝑘%& =
〈𝑓%&33〉
〈𝑝%〉

=〈𝑓%&33〉 

 
where 𝑓%&33 is the steady-state flux of probability carried by trajectories originating in state A and arriving in state 
B and 𝑝%is the fraction of trajectories more recently in A than in B, which is unity due to the recycling 
conditions. In practice, if a steady state cannot be reached, or if it is unknown whether a simulation has 
reached steady state, then an analogous naïve estimate may be used:  
 

𝑘%& =〈𝑓%&(𝑡)〉5 
 
where 𝑓%&(𝑡) is the flux (not necessarily at steady-state) from state A to state B at simulation time 𝑡.  
 
Reducing the impact of transient effects in rate-constant estimation. The new method of rate-constant 
estimation in the present study reduces the impact of transient effects in rate-constant estimation by 
incorporating information measurable during WE simulation, namely, the distribution of event durations 
(excluding the dwell time in state A) denoted 𝑔%&(𝑡).  The flux 𝑓%& from the initial state A into the target state B  
can then be written as a convolution of the initiation of a transition with rate 𝑘%& and completion of the event in 
a time 𝜏distributed according to 𝑔%&. Thus, 𝑓%&(𝑡) = ∫50 𝑘%&	𝑔%&(𝜏)𝑑𝜏, which can be integrated and 
rearranged to obtain an expression for 𝑘%&that depends only upon the cumulative flux 𝐹%&(𝑡789) =
∫5:;<
0 𝑓%&(𝑡)𝑑𝑡 and the cumulative distribution of barrier crossing times 𝐺%&(𝑡) 	= 	∫

>
0 𝑔%&(𝜏)𝑑𝜏, both of 

which are observed from WE simulation: 𝑘%& = 𝐹%&(𝑡789)/ ∫
5:;<
0 𝐺%&(𝑡)𝑑𝑡. Finally, an additional correction is 

necessary to estimate the distribution 𝑔%&(𝑡) of barrier-crossing times from the observed 𝐴 → 𝐵 events, since 
during the transient phase we are more likely to observe events with shorter barrier crossing times.  From the 
histogram 𝑔B%&(𝑡), we obtain a corrected estimate 𝑔C%&(𝑡) by considering the interval of time [𝑡, 𝑡789] in which it 
is possible to observe an event of duration 𝑡 in a simulation of total length 𝑡789: 𝑔C%&(𝑡) ∝ 𝑔B%&(𝑡)/(𝑡789 − 𝑡),	
where the constant of proportionality is chosen such that	∫∞

0 𝑔C%&(𝑡)𝑑𝑡 = 1. Thus we define an estimate 𝑘G%& 
as follows: 

𝑘G%& =
𝐹%&(𝑡789)

∫5:;<
0 ∫50 𝑔C%&(𝜏)𝑑𝜏𝑑𝑡

 

 
While this analysis does not eliminate the need to observe the majority of the distribution of barrier-crossing 
times, we anticipate that the improved analysis will enable more accurate estimation of rate constants using 
less total simulation time, since the transient phase can be correctly incorporated into the calculation rather 
than “thrown away” in favor of later data.  Furthermore, we note that this analysis could  be especially 
important for challenging molecular processes, which feature long transient phases. 
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In cases where it is not possible to sample the entire distribution of event duration times, our method provides 
a framework for understanding the error that results from not observing longer duration events. Supposing that 
the maximum trajectory length is 𝑡0, the histogram estimate 𝑔C%&(𝑡) of 𝑔%&(𝑡) will be zero for 𝑡 > 𝑡0and, since 
𝑔C%& is normalized such that ∫∞

0 𝑔C%&(𝑡)𝑑𝑡 = 1, 𝑔C%&(𝑡) will be artificially inflated for 𝑡 < 𝑡0, i.e.: 
  𝑔C%&(𝑡) ≈ 𝑔%&(𝑡)/ ∫

50
0 𝑔%&(𝜏)𝑑𝜏 for 𝑡 ∈ [0, 𝑡0] 

 
Thus while we desire that  𝑘G%& ≈ 𝐹%&(𝑡789)/ ∫

5:;<
0 ∫50 𝑔%&(𝜏)𝑑𝜏𝑑𝑡, which would be the case if 𝑔C%& ≈ 𝑔%&, 

we instead find that 𝑘G%& ≈ (∫500 𝑔%&(𝜏)𝑑𝜏)𝐹%&(𝑡789)/ ∫
5:;<
0 ∫50 𝑔%&(𝜏)𝑑𝜏𝑑𝑡. Equivalently, 𝑘G%&tends to 

underestimate 𝑘%& by a factor of ∫500 𝑔%&(𝜏)𝑑𝜏, the observed fraction of the event duration distribution. In 
practice a numerical estimate of this value is prohibited by the lack of knowledge of 𝑔%&, but we confirm the 
intuitive proposition that if, for example, 20% of pathways reaching the target state are of greater duration than 
the maximum trajectory length, then we tend to underestimate 𝑘%&by 20%, which is improved relative to the 
naive estimate 𝑘%& =〈𝑓%&(𝑡)〉5 = 𝐹%&(𝑡789)/𝑡789. 
  
 
3. Methods 
 
WE simulations. WE simulations of the protein conformational switching pathways were carried out as 
described in DeGrave et al.6 All data represent 10 independent WE simulations of the N’ ⟶N transition of the wild-
type E65’Q switch construct. Briefly, the simulations were carried out using the open-source, highly scalable 
WESTPA software package (https://westpa.github.io/westpa)11 under steady-state conditions using a Brownian 
dynamics algorithm with hydrodynamic interactions, as implemented in the UIOWA-BD software.12,13 All 
analysis was performed with conformations sampled every 50 ps. A minimal residue-level protein model was 
employed in which each residue is represented by a single pseudo-atom at the position of its C𝛼 atom. The 
conformational dynamics of the protein were governed by a Gō-type potential energy function14,15 that was 
parameterized to reproduce the experimental folding free energies of the isolated wild-type protein and circular 
permutant of the protein.6  
 
 
4. Results  
 
As described above, our new method of rate-constant estimation reduces the impact of transient effects by 
making use of the probability distribution of event duration times that correspond to simulated pathways of the 
rare event.  Given that the transient effects are due to the presence of pathways with non-negligible event 
durations,  our new method 𝑘G%& quickly converges to the steady-state value when provided with the entire 
distribution of event durations𝑔C%&estimated from all simulation data (~10 ns vs ~75 ns for the new method and 
original WE strategy, respectively) (Fig. 1a-b).  
 
To test the real-world utility of our  new method, we examined the evolution of 𝑘G%&as a function of the 
molecular time, where at any given time the estimate 𝑔C%& is based only upon simulation data generated up to 
and including that time. The new method yields substantially faster convergence of the rate constant kAB for 
switching between states A and B for the protein-based Ca2+ sensor (Fig. 2). In particular, as compared to the 
original WE strategy, a steady-state value of 𝑘%& is attained in ~⅓ the molecular time that is required when 
using the original WE strategy (~25 ns vs ~75 ns for the new method and original WE strategy, respectively); 
the molecular time is N𝜏 where N is the number of WE iterations and 𝜏 is the fixed time interval of each 
iteration. Importantly, this comparison suggests that the new method enables accurate estimate of rate 
constants using only a fraction of the simulation time previously necessary. 
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Figure 1 | Effect of barrier crossing times on calculation of the rate constant. a, Comparison of the rate 
constant 𝑘%&for switching of the protein-based Ca2+ sensor from state A to state B using the original WE 
strategy and the new method (via the estimate 𝑘G%&) in the present study, as plotted as a function of molecular 
time, or N𝜏 where N is the number of WE iterations and 𝜏 is the fixed time interval of each iteration. b, The 
cumulative probability distribution 𝐺G%& of event duration times of switching pathways generated by the same 
simulation depicted in panel (a).  
 

 
Figure 2 | Comparison of simulation times necessary to achieve converged estimate of the rate 
constant. The red line indicates 𝑘G%&(𝑡), where for a given time 𝑡 the distribution of event durations is estimated 
using only data up to time 𝑡. The black line indicates the naïve estimate 𝑘%& =〈𝑓%&(𝑡)〉5, and the gray line 
indicates 𝑘%& =〈𝑓%&33〉, the average flux after the simulation has achieved steady state at 100 ns as 
determined from the distribution of event durations in fig. 1b. The shaded region highlights the range of 
converged estimates, defined here as the final value of 〈𝑓%&33〉plus or minus an error margin of 50%.  
 
5. Conclusions 
 
We have developed a new method for calculating rate constants within the framework of the WE strategy that 
reduces the impact of transient effects on rate-constant estimation. While the method requires that the WE 
simulation of the rare-event process samples a substantial portion of the event duration distribution (e.g., 𝑡 
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such that ∫50 𝑔%&(𝜏)𝑑𝜏	 ≥ 	0.5), our proof-of-principle test indicates that the method enables accurate 
estimation of the rate constant using a fraction of the simulation time required by a previous method. 
Importantly, this method accounts for systematic error when using data from the entire simulation -- even 
before the molecular time exceeds the maximum event duration time.  
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