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Abstract  12 

Determining how ant colonies optimize foraging while mitigating disease risk provides insight into how 13 

the ants have achieved ecological success. Fungal infected cadavers surround the main foraging trails of 14 

the carpenter ant Camponotus rufipes, offering a system to study how foragers behave given the persistent 15 

occurrence of disease threats. Studies on social insect foraging behavior typically require many hours of 16 

human labor due to the high density of individuals. To overcome this, we developed deep learning based 17 

computer vision algorithms to track foraging ants, frame-by-frame, from video footage. We found 18 

foragers can be divided into behavioral categories based on how straight they walk across the trail. Eighty 19 

percent of ants walk directly across the trail, while 20% wander or circle when crossing the trail. 20 

Departure from the main trail encourages exploration of new areas and could enhance discovery of new 21 

food resources. Conversely, results from our agent-based model simulations suggest deviation from a 22 

straight path exposes foragers to more infectious fungal spores. Consistency in walking behavior may 23 

protect most ants from infection, while the foragers with increased exposure due to their mode of walking 24 

could be a sufficient number of new hosts to sustain disease in this environment.  25 

 26 
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Introduction 27 

Resource acquisition drives animals into new territories, while threat avoidance limits where animals 28 

move. A consistent threat is the presence of infectious propagules of parasites and these are hypothesized 29 

to be major determinants of the distribution of animals in the wild1. Examples of animals avoiding 30 

pathogen contaminated areas span diverse taxa, from mammals to insects, implying anti-parasite behavior 31 

is widespread1–5.  Central place foragers are interesting in the context of parasite avoidance as they must 32 

obtain food while avoiding threats with the additional constraint of returning to a defined location after 33 

each trip. For volant central place foragers, like wasps, bees, bats and birds, much of the trip is through 34 

the air likely reducing contact with infectious material. However, for taxa which walk on the ground (e.g. 35 

ants), encounters with parasite propagules are presumably higher6. To effectively study such pressure, it is 36 

crucial to use systems where we can study foragers in nature, surrounded by their naturally occurring 37 

pathogens. 38 

 The foraging strategies of ants range from workers searching and retrieving food entirely 39 

independently to obligately in a group7. Chemical trails commonly facilitate group foraging, and in some 40 

cases, these chemical trails develop into semi-permanent trails known as ‘trunk trails’8. Trunk trails 41 

stimulate research interest largely from the perspective of the self-organization behavior of ants, such as 42 

how ants regulate traffic9–11. Trunk trails have also been studied from the perspective of their temporal 43 

and spatial dynamics as well as their energetic value in terms of efforts expended and resources 44 

obtained12,13. Yet, studies have not investigated how utilizing the same trails day after day impacts the 45 

exposure of ants to parasitism. Moreover, studies on ant foraging have largely occurred in a laboratory 46 

setting, and of the work that took place in the field, most studies relied on human observation or 47 

manipulated the environment in some way (see references in Supplementary Table S1). An ant species 48 

that forages collectively and predictably in time and space would be useful to assess the relationship 49 

between trail behavior and disease risk. 50 

A potential system is the carpenter ant Camponotus rufipes in southeastern Brazil, which forms 51 

trunk trails lasting for multiple months14,15. Colonies of this ant were recorded as having a chronic 52 
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infection by the fungal parasite Ophiocordyceps camponoti-rufipides across 20 months16,17. This fungus 53 

manipulates foragers to leave the nest and die biting the underside of a leaf 17,18. To complete its lifecycle, 54 

the fungus must grow out of the ant cadaver and form a fruiting body that releases spores onto the ground 55 

below that will infect other ants18. Cadavers are found attached to leaves surrounding the ant nest17. The 56 

chronic nature of infection at the colony level means the spores of the pathogen are continuously in the 57 

environment from the perspective of the foragers. The spores are curved and large (80-95 microns16) 58 

implying they do not travel far and land on the nearby trails once released from ant cadavers that hang 59 

above trails. Spores germinate to produce infectious secondary spores on hairs (capilliconidia) which 60 

attach to ants as they walk over them19. Thus, infection does not require a spore to hit an ant as it walks on 61 

a trail below a cadaver. Instead, the trail substrate itself serves as the source of contamination. 62 

Foragers of the carpenter ant C. rufipes mostly collect nectar from hemipteran secretions and 63 

extrafloral sources14,20. The exploitation of a stable resource suggests that all foragers will emerge to walk 64 

directly to the food source, utilizing trails near the colony entrance as a highway15. Evidence from other 65 

systems demonstrate trunk trails as well organized for traffic flow10. Traffic is bi-directional on the trunk 66 

trails of C. rufipes. Thus, we expect an even mixture of inbound and outbound ants as this is hypothesized 67 

to increase flow21. If colonies can regulate the number of foragers on the trail to create a steady flow, we 68 

expect forager speed to remain approximately constant throughout the foraging period as foragers are not 69 

limited by the density of ants on the trail. Lastly, we are interested to see how the individual walking 70 

behavior observed influences the likelihood of an ant encountering an infectious spore.  71 

We set out to study trails of seven C. rufipes colonies in their undisturbed rainforest habitat with 72 

both food sources and pathogens occurring at natural levels. We devised a system of recording trails using 73 

infrared lights and modified cameras to contend with the nocturnal foraging of this species. To overcome 74 

observer bias and ensure a larger body of data from which patterns may emerge, we used machine 75 

learning to automate ant tracking. This provided us with a powerful dataset from which the movement 76 

pattern of ants throughout a foraging period can be examined. We then characterized the forager 77 

trajectories on speed, straightness, and direction. Based on these measurements, we were able to classify 78 
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ants on the trail into behavioral groups. Using an agent-based model based on our data, we suggest a 79 

mechanism for the maintenance of disease in this system.  80 

 81 

Methods  82 

Study site 83 

Fieldwork took place at the Research Station of Mata do Paraíso, Universidade Federal de Viçosa, Minas 84 

Gerais, Southeast Brazil (20°48’08 S 42°52’31 W) between 10 and 25 January 2017. The carpenter ant 85 

Camponotus rufipes is abundant in this area, forming trails lasting multiple months14,15. Trails of C. 86 

rufipes are typically found on ‘bridges’ composed of woody debris, lianas and tree branches and are 87 

rarely directly on the forest floor15. Ants forage at night and activity peaks in the early evening15.  88 

 89 

Trail filming 90 

Trails from seven different C. rufipes nests were filmed between 10 and 25 January 2017. Nests were 91 

selected based on their location and structure. Only nests found above the ground with nest material 92 

clearly visible were used. Trails were filmed before a branching point from the main trail so that ants 93 

were filmed coming directly from or towards the nest. In the case where multiple trails came from one 94 

nest, the busiest trails were selected. The width of the branches filmed ranged from 0.8 cm to 7 cm (mean 95 

± standard deviation; 2.97 cm ± 2.53) and the length of the area filmed for all branches was 96 

approximately 15 cm.  97 

GoPro cameras (model: HERO 3+, GoPro, Inc., San Mateo, USA) with a modified infrared filter 98 

(RageCams.com, Michigan, USA) were used for filming. Stakes were placed 30 centimeters from the 99 

trails and 30 cm medium trigger clamps (DWHT83140, DeWalt, Towson, USA) were attached to the 100 

stakes. Cameras were attached to clamps so that cameras were approximately 30 centimeters above the 101 

trails looking down at the ants walking on the trails (Supplementary Fig. S1). An additional camera was 102 

placed on the stake, looking sideways at the ants, to allow another perspective for behavioral analysis. 103 

Filming lasted from 19:30 to 00:00 for 4-7 nights for each trail (Supplementary Table S2). Timing of 104 
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filming was based on previous work showing activity begins around 19:30 and peaks around 21:0015. 105 

Infrared lights (IR30, CMVision, Houston, USA) were connected 12-Volt 7Ah batteries (UP1270, 106 

UniPower, São Paulo, Brazil) to allow illumination of the trail without disturbing the behavior of the ants. 107 

The camera batteries lasted for approximately 1.5 hours, so the battery was changed once in the middle of 108 

a filming period. Slight adjustments in where the trail was positioned in the video view would sometimes 109 

occur at this time. Figure 1a shows an example image of a trail filmed and images of the remaining trails 110 

filmed are found in Supplementary Figure S2. 111 

 112 

Automated ant tracking 113 

A total of 78 hours and 56 minutes of video were recorded for seven colonies across four nights 114 

(Supplementary Table S2). We developed a machine learning approach to process and analyze these 115 

videos using a deep learning based segmentation model that identified ants as they came onto the screen 116 

and tracked them as they moved across the screen.  117 

Our automatic ant tracking method contains two main processes: (1) detecting ants in each image 118 

frame of all videos, and (2) building ant trajectories for every video based on the detected ants. 119 

Commonly, deep learning schemes require a large amount of labeled ground truth data for model training. 120 

Since our dataset is quite large (> 8 million image frames), we aimed to generate sufficient labeled data 121 

for training our deep learning model without incurring excessive human labeling effort. Also due to the 122 

large size of our dataset, common active learning based sample selection methods (e.g.22) are not efficient. 123 

The goal of ant detection is to build ant movement trajectories and since ant trajectories normally span 124 

multiple consecutive frames in videos, detected ant positions in earlier frames assist with ant detection in 125 

later consecutive frames. That is, while ant detection forms a basis for building ant trajectories, 126 

trajectories of detected ants may also help ant detection. Hence, we designed our trajectory building 127 

procedure such that it not only can track detected ants but also can provide cues to indicate where (which 128 

frames and locations) there might be inconsistencies in ant trajectories and difficult scenarios for ant 129 

detection (e.g. densely clustered ants). We used such cues to select difficult cases from the frames for 130 
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labeling to improve the deep learning detection model as well as the ant detection results. Therefore, our 131 

detection-tracking method consists of two rounds (with the second round improving the detection and 132 

tracking results of the first round), and each round performs two major steps, ant detection and trajectory 133 

building, as described below. 134 

 135 

(1) Ant detection. This aims to detect ants in all the frames of the videos. We applied a novel object 136 

detection and segmentation model, Mask R-CNN 23, to automatically detect ants in every frame. 137 

 138 

(2) Ant trajectory building. Given the detected ants in each frame, the next step is to form ant trajectories 139 

that connect detected ants frame-by-frame in videos. We formulated this ant trajectory building problem 140 

as a transportation problem, that is, between every two consecutive frames in each video, we find an 141 

optimal transportation (for ants) that corresponds to real movement of ants. In this transportation 142 

formulation, each detected ant in frame K can be viewed as a ‘supplier’ and each detected ant in frame 143 

K+1 can be viewed as a ‘receiver’. The dissimilarity (based on spatial distance and appearance 144 

difference) between ants in two consecutive frames is a measure of how much ‘cost’ it would take to 145 

transport (move) one ant in frame K to another in frame K+1. The objective is to transport detected ants 146 

(as many as possible) in frame K to frame K+1 with the minimum total cost. Optimal transportation based 147 

tracking methods are known to be effective for tracking sets of moving and changing objects in image 148 

sequences24,25. 149 

 150 

In the first round, we randomly selected frames to label as training data. This allowed us to quickly and 151 

unbiasedly obtain data samples for training a decent detection model. We then applied the trained model 152 

to all of the frames to produce ant detection results. Next, we conducted trajectory building on detected 153 

ants to form the ant trajectories. Besides tracking ant movement, our trajectory building procedure in the 154 

first round also provided cues for identifying inconsistencies in ant trajectories and difficult cases in the 155 

frames for ant detection. In the second round, we applied training data selection to those difficult cases to 156 
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find additional frames for labeling, and the enlarged training dataset thus obtained was used to re-train the 157 

Mask R-CNN detection model. The re-trained detection model was then applied to all the frames to 158 

produce the final ant detection results, which were used to build the final ant trajectories in the videos.  159 

To identify difficult cases for additional training data selection, we used the following set of 160 

measures to capture possible errors in ant detection and trajectory results. (i) Ant speed: At a place where 161 

ants usually do not move very fast but a fast movement is suggested by the optimal transportation 162 

solution, this instance might indicate an error in ant detection. (ii) Missing ants in the middle part of a tree 163 

branch: When the optimal transportation solution does not find a corresponding ant instance in the next 164 

frame in the interior section of a tree branch, it might suggest a missing data point in ant detection. (iii) 165 

Ant identification (ID) switching: Each detected ant was assigned an ID number; when multiple ants are 166 

seen at spatially close interaction and slight changes on the dissimilarity scores among these ants give 167 

largely different solutions for the optimal transportation problem, this might suggest an ant ID switch 168 

error. Based on these observations and measures, our trajectory building process can help identify 169 

difficult detection and tracking cases for additional training data selection to improve model performance.  170 

Overall, our automatic ant detection and tracking method extracted the x and y coordinates in 171 

pixels of detected ants in every frame and assigned each ant an identification number (Fig. 1a; 172 

Supplementary Video S1). Ant identification numbers were used to form ant trajectories used in further 173 

analysis.  174 

 175 

Error assessment  176 

To assess the accuracy of the computer model, we watched a subset of videos and determined the error 177 

rate. GoPro cameras automatically divide footage into 26-minute-long videos, so one night of footage at a 178 

single trail has 6 to 10 videos. This provides a way of checking the accuracy of the computer tracking at 179 

random points throughout a night. We first error checked videos from the middle of the night (when the 180 

trails should be busiest) to determine if the data from that colony was high enough quality to use in our 181 

analysis. If the error rate was sufficiently low, we continued to error check all videos and nights for that 182 
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colony. To error check, we counted the number of ant trajectories with errors out of the first 15-30 tracked 183 

ants. The number of ant trajectories checked varied because videos from early in the foraging period 184 

sometimes had fewer ants.  185 

To ensure consistency in the type of ant trajectories that were analyzed, trajectories beginning in 186 

the middle of the field of video view were removed. This created uniformity between all colonies and 187 

nights in the type of ants that were compared as it focused on the ants that made it from one end of the 188 

trail to the other completely in the view of the video.  189 

 190 

Trajectory analysis  191 

We used R version 3.4.4 and RStudio version 1.1.447 for all analyses26,27. Ant location data was frame-192 

by-frame, so we used the native frame rate of the cameras (29.97 or 25 frames per second; the default 193 

setting of the cameras varied) to convert the time in frames to seconds and then used the start times of 194 

each video to convert it to real time (Supplementary Table S2). To convert ant location data from pixels 195 

to centimeters, we placed a ruler in each video to determine the conversion factor (Supplementary Fig. 2).  196 

 To determine how individual ants were moving, we calculated the following variables: average 197 

speed, overall direction, time on the trail, and straightness. Average speed was taken as the total distance 198 

an ant travels while in the video over the time it takes for them to travel that distance. Overall direction 199 

was whether the ant headed away from or towards the nest which we determined based on where the ant 200 

entered and exited the video view. A variety of measures are used to determine the straightness or 201 

tortuosity of an animal’s movement path 28,29. Ant movement on trunk trails is expected to move in an 202 

oriented direction, and not be a random search path, thus we used the simplest measure, the straightness 203 

index 29. The straightness index (ST) is a ratio between the net displacement and total path length: 204 

    ST = d/L; 205 

where d = the distance between the beginning and end of the path and L = total 206 

path length. 207 

 208 
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Agent-based model 209 

To assess the influence of foraging style on disease risk, we developed an agent-based model in NetLogo 210 

6.0.230 based on the walking style of the ants in our videos (full details in Supplementary Materials). This 211 

model tested how walking straight influences the hypothetical number of spores an ant picks up. Spore 212 

density varied from 10% to 100% of the patches in the environment covered in spores. We varied spore 213 

density in 10% increments, leading to 10 different spore density conditions. The straightness of an ant 214 

varied from 0 to 1 in 0.01 increments, leading to 101 different straightness scores. The model was run 30 215 

times for each combination of parameters (1010 total combinations) leading to a total of 30300 runs.  216 

 217 

Statistical analysis 218 

A linear mixed-effects models fit was used to assess whether the speed of ant changes over a foraging 219 

period. The model was generated using the lmer function in the R package’ lme4’31, with speed as the 220 

fixed effect and colony and date as the random effects. The package ‘lmerTest’32 was used to generate p-221 

values. We checked the plotted residuals to ensure homoscedasticity prior to utilizing the results of the 222 

model. We used linear regression to analyze the results of the agent-based model, with the straightness 223 

value as the predictor of proportion of spores picked up in the environment with a log transformation to 224 

control for skew.  225 

 226 

Data Availability 227 

The original videos and data analyzed in this study will be accessible through ScholarSphere 228 

(https://scholarsphere.psu.edu/) upon publication of this study.  229 

 230 

 231 

 232 

 233 

 234 
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Results 235 

Automated tracking performance 236 

The automated tracking of ants in video frames resulted in 20,230,585 data points on ant movement. The 237 

model had two types of accuracy against which it can be judged, relative to a human. The first is species 238 

accuracy (detection accuracy) which is a measure of how well the model recognized the correct species of 239 

ant. The model correctly detected C. rufipes ants with an accuracy of 97.86%. The model picked up other 240 

insects or species of ants on the trail (false positive) or failed to detect a C. rufipes ant as it went across 241 

the trail 2.14% of the time.  242 

The second accuracy measurement is tracking accuracy. The computer had to detect C. rufipes 243 

ants and follow them as they moved across the screen. If an ant moved in a straight line this required the 244 

computer to recognize and track that ant for about 4 seconds or 120 frames. The computer assigned 245 

identification numbers to individual ants to follow an ant as it travelled across the screen. The machine 246 

learning model sometimes made errors in doing this. The computer may switch identification numbers 247 

when ants walked too closely together (Supplementary Video S2). The average tracking accuracy for all 248 

colonies was 78.70%. The tracking accuracy was the lowest for MP2 (40.0%), MP11 (31.7%), and MP17 249 

(50.6%). Identification number switches commonly happened in colonies MP2 and MP11. These trails 250 

were very thin and introduced more challenges in determining the trajectories of individual ants, so they 251 

were removed from further analysis. We have additionally removed MP17 as an obstruction in the trail 252 

led to ants departing from the branch and walking underneath leaves (Supplementary Video S3). Ants 253 

disappearing under leaf debris made it difficult to track an individual ant. We have made all videos and 254 

data available as we expect improved future machine learning models can make use of them.  255 

The exclusion of these colonies brought the size of the dataset to 8,505,784 data points on ant 256 

movement from four colonies: MP1, MP6, MP10, and MP16. The large reduction of the number of data 257 

points from the elimination of 3 colonies can be attributed to the errors in these branches, where the 258 

density of individuals in congested areas lead to a false inflation of the number of ants and overall data 259 

points. The data points from the 4 included colonies represents the movement data for 64,499 ants. The 260 
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average tracking accuracy of the remaining colonies was 81.39% (MP1: 72.0%; MP6: 82.1%; MP10: 261 

77.2%; MP16: 92.1%). Most errors were due to an identification number switching to a different ant 262 

(8.28%). The high error rate for MP1 could be attributed to the darkness of the videos causing the model 263 

to miss part of an ant’s trajectory or failing to detect an ant in the dark areas of the trail. If we consider 264 

only the errors where a number is on a wrong ant or a number is not on an ant, the accuracy improves 265 

greatly (overall: 90.94%; MP1: 91.5%; MP6: 88.8%; MP10: 86.6%; MP16: 96.3%). We are mainly 266 

concerned with the direction and shape of trajectories, and the main error that impacts an individual ant’s 267 

trajectory is when ants switch to the wrong identification number, so the second calculation of accuracy 268 

rate is more reflective of this.  269 

 270 

Collective movement pattern 271 

Most ants walk on the same area of the available trail space (Fig. 1). Ants often follow each other, 272 

walking across the same area (Supplementary Video S4). The trail usage pattern is consistent between 273 

nights (Fig. 1c). The mean speed of all ants from all colonies and nights was 5.19 cm/s ± 1.61 (standard 274 

deviation). The average speed of the colonies ranged from 4.74 cm/s to 5.62 cm/s and within colony 275 

variability in speed was similar between colonies (mean (cm/s) ± standard deviation; MP1: 4.99±1.69; 276 

MP6: 5.62±1.60; MP10: 4.88±1.53; MP16: 4.74±1.41). The results of the linear mixed effects model 277 

showed that ant speed decreases by 0.50 cm/s ± 0.07 (standard error) throughout the night (t(96.45) = -7.12, 278 

p < 0.0001) (Supplementary Fig. S3).  279 

 280 

Individual movement pattern 281 

Although most ants walked on the same area of the branch (Fig. 1b-c), there was a subset of ants that 282 

walked differently based on the straightness score (Fig. 2). Based on the behavioral analysis of videos, 283 

ants that had a straightness score of close to one walked straight across the trail as was expected (Fig. 2b; 284 

Supplementary Video S5). We found that 80.8% of ants had a straightness score from 0.75 to 1 (n = 285 

Figure 1. 
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50,813). We labelled these ants as ‘direct walkers’. Ants with an intermediate straightness score typically 286 

made it from one end of the trail to the other, but spent time wandering and covering more area of the trail 287 

(Fig. 2b; Supplementary Video S5). We labelled these ants as ‘wanderers’. They represent 13.0% of ants 288 

and had a straightness score from 0.25 to 0.75 (n = 8,194). By contrast, 6.2% of ants had a straightness 289 

score of less than 0.25 (n=3,869). These ants with a very low straightness score typically circled on the 290 

trail consequently entering and exiting on the same side of the video view (Fig. 2c; Supplementary Video 291 

S5). We labelled these ants as ‘circlers’.  292 

 The wanderers and circlers constituted the minority of records (13% and 6.2% respectively). We 293 

observed these two behavioral phenotypes regardless of whether there were other ants in the area 294 

(Supplementary Video S5). These ants often stopped and groomed or antennated the trail or air 295 

(Supplementary Video S6). However, direct walkers were also observed stopping and grooming their 296 

antennae (Supplementary Video S7). There was a significant effect of straightness group on time spent on 297 

the trail for all three groups (Fig. 3e; one-way ANOVA; F(2, 64495) =14350, p < 0.0001). Post hoc 298 

comparisons using the Tukey Test indicates circlers did not spend more time on the trail (mean=8.1 299 

seconds, SD=6.85) than wanderers (mean=7.58 seconds, SD=3.59), but both spent significantly more 300 

time on the trail than direct walkers (mean=3.88 seconds, SD=1.42).  301 

 302 

Temporal movement pattern 303 

The flow of all three groups of ants (direct walkers/wanderers/circlers) in and out of the nest was 304 

approximately the same throughout the night (Fig. 3). There is a large increase in the number of direct 305 

walkers on the trail throughout the night, while the number of wanderers and circlers throughout the night 306 

is relatively constant. 307 

 308 

Agent-based model 309 

Based on the results obtained from our agent based model, walking straight significantly decreases the 310 

proportion of potential spores an ant picks up in an environment (linear regression: F(1, 30298)=5,458, p < 311 
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0.0001; Fig. 4a). The three different groups of foragers differed in the number of spores they pick up in 312 

the environment regardless of spore density (F(2, 30297)=21,208, p < 0.0001; Fig. 4b). Circlers pick up 313 

significantly more spores than wanderers and wanderers may pick up significantly more spores than direct 314 

walkers (Tukey Test; p < 0.0001).   315 

 316 

Discussion 317 

Our study utilized an unobtrusive filming set-up to record behavioral data on more than 64,000 ants 318 

moving in a rainforest at night in an area of high disease pressure. The study design facilitated the capture 319 

of natural ant behavior unaffected by either a laboratory environment or proximity to human observers. 320 

Combining this approach with computer vision techniques increases the scale at which we can study 321 

animal behavior. Using computer vision and deep learning we collected approximately 20 million ant 322 

movement data points from 80 hours of nighttime video. A previous study, using humans to score the 323 

positions of ants in each frame, required approximately 1,600 hours of human work to create a dataset of 324 

6.9 million data points (Modlmeier et al., in review). Advances in camera technology improving our 325 

nighttime recording capabilities along with increased computing power allowing machine learning to 326 

identify individuals promotes research on natural animal behavior. 327 

For our study on ant behavior in the context of disease transmission, the scale of this data 328 

detected higher level patterns likely unobservable with a less detailed dataset. Our data shows ants 329 

flowing in and out of the nest at approximately the same rate (Fig. 3). Work on harvester ants 330 

(Pogonomyrmex barbatus) has shown that the feedback from returning foragers stimulates inactive 331 

foragers to leave on a new trip33. Our even flow rate also validates work on Argentine ants (Linepithma 332 

humile) showing ants exiting and entering the nest at approximately the same rate in the summer34. Ant 333 

colonies operate through local interactions and without centralized control, so there is no authority 334 

controlling when ants leave and return to the nest35,36. The lack of centralized control combined with the 335 

even flow rate gives insight into the processes occurring within a nest, with returning foragers likely 336 

stimulating new foragers to leave the nest. 337 
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Given that there is no centralized plan for foraging, it is impressive that the same foraging pattern 338 

arises on different days (Fig. 1c). This consistent trail usage pattern, along with most ants walking straight 339 

across the trail (Fig. 2a) likely emerges from the use of a chemical trail, which this species of ant (C. 340 

rufipes) is known to use37. For ants to walk on the same area of the trail on different nights, the trail 341 

pheromone must either persist between foraging periods or foragers repeatedly reinforce the fastest route 342 

across the branch each night. While rare, we observed some ants on these trails during the daytime, and 343 

other studies have observed C. rufipes foraging during the day20. This could allow the trail to be 344 

reinforced around the clock. Alternatively, laboratory studies have demonstrated ants as preferentially 345 

selecting the shortest route to food38,39. The path that receives more pheromone will be reinforced 346 

quicker40. Thus, each night the portion of the trail that ants walk on fastest could reach a higher 347 

concentration of trail pheromone quicker, leading to the pattern observed. 348 

The texture of the tree branch could also drive the space usage pattern, as substrate and landscape 349 

features impact ant locomotion41,42. Loreto et al. (2013) demonstrated, in the same population we studied, 350 

that C. rufipes foragers in this environment prefer to walk on woody debris because they walk faster on 351 

this material than on the forest floor (see Supplementary Video S8 for an example of how ants are 352 

impeded on the forest floor). The type of wood could also make a difference, with ants preferring to walk 353 

on areas of the trail that are least restrictive to their movement. Another pattern emerged through 354 

investigation of the straightness index of the ants. As expected, the straightness index of most ants was 355 

close to one (80.8%; n=50,813), indicating that they walked directly across the trail (Fig. 2). Ants may 356 

prefer on the path that deviates the least from their original direction of travel43. Straighter individual 357 

paths enhance information spread and increase the chance that an ant will find food44,45, perhaps making 358 

this pattern beneficial to the collective colony in resource acquisition.  359 

Despite the dominance of ants walking straight across the trail, a proportion of foragers wandered 360 

before making it across the trail and another group circled the trail and headed back in their original 361 

direction (Supplementary Video S5). Other species of ants provide evidence of different roles within 362 

foragers, such as patrolling, trail maintenance, and defense. Patrollers in harvester ants are the first to 363 
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leave the nest in a foraging period and determine which trails the colony will use that day46. However, if 364 

the subtypes in this study were patrollers, we would expect there to be more of them at the beginning of 365 

the night which is not the case (Fig. 3). The leaf cutting ant Atta cepahlotes, which also forms consistent 366 

trails, has a special class of foragers involved in trail maintenance13,47. Ants were observed carrying leaves 367 

(Supplementary Video S9), although this could be for nest material and not trail cleaning. Another role 368 

could be maintaining the pheromone trail. For example, Atta sexdens minims help with the pheromone 369 

trail instead of food transport47. Ants were observed dragging their gaster on the trail likely depositing 370 

trail pheromone (Supplementary Video S10). However, it seems unlikely wanderers and circlers were 371 

involved in maintaining the pheromone trail, as they should walk straight across the trail to ensure the 372 

pheromone trail was on the most direct path.  373 

The subtypes could also be involved in defense. Wanderers and circlers spent more time on the 374 

trail (Fig. 2c) and were observed stopping and antennating (Supplementary Video S8). Smaller workers 375 

hitchhike on leaf fragments carried by larger workers in Atta colombica leaf-cutting ants, and this likely 376 

serves as a defense against parasitoid Phorid flies48. Flies, that could possibly be parasitoids, were 377 

observed closely following ants on the trail and in some cases appearing to land which may indicate 378 

laying eggs on the ants which later become endoparasitoids (Supplementary Video S11) although the 379 

prevalence of parasitoid flies attacking C. rufipes is unknown. We have observed adult ants infected by 380 

decapitating phorid flies in our study area (Supplementary Video S12). 381 

Conversely, the forager variation in walking straight may not indicate different roles within the 382 

colony and instead demonstrate differences in response plasticity, as individuals may differ in their 383 

detection of the pheromone trail. Bumblebees (Bombus terrestris) vary in their antennal sensitivity to 384 

odors and different behavioral thresholds have been found for castes of the ant Pheidole pallidula49,50. 385 

Heterogeneity can be beneficial to the collective colony in tasks such as selecting a new nest51. In the 386 

context of trunk trail foraging, it could encourage exploration and increase the chance of discovery of 387 

high value food items. Camponotus rufipes typically uses trunk trails to exploit dependable food 388 

resources such as hemipteran secretions or extrafloral secretions. If the colony always remains on the 389 
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trunk trails, they might deplete their dependable source of food and not have a suitable alternative. 390 

Argentine ants are able to adapt trails in response to resource availability52. We suggest wandering and 391 

circling as a mechanism for C. rufipes ants to similarly respond to changes in resource availability. We 392 

filmed only a small area of the foraging trails, providing a brief snapshot of an ant’s behavior. To know 393 

whether wanderers or circlers are more likely to wander from the trail and discover new food resources, 394 

one would need to follow individual ants during an entire foraging trip, which was beyond the scope of 395 

this study.  396 

Following individual ants for their entire foraging trip would also clarify whether the straightness 397 

groups represent fixed behavioral groups or if they just demonstrate variation in individual behavior over 398 

time. Campos et al. (2016) studied the activity patterns of Aphaenogaster sensilis ants and found foraging 399 

trajectories to be descriptively similar with individual temporal activity patterns showing greater 400 

variation. In the context of our study, perhaps all ants engage in wandering or circling behavior on these 401 

trails, and it is related to their temporal activity pattern and not their behavioral role.  402 

Regardless of whether these are fixed subtypes within the colony, variability in walking behavior 403 

could impact the maintenance of disease in this environment. Fungal infected cadavers surround these 404 

trunk trails, likely dropping spores directly onto the trails below17. It is not possible to quantify the 405 

abundance and distribution of micron sized spores on trails in a forest, but the long term tracking of 406 

cadaver abundance and the proximity to the trails implies spore presence on the foraging trails17. 407 

According to our simulations, walking in a straight line reduces a forager’s risk of picking up spores (Fig. 408 

4). If all ants walked in exactly the same straight line, this could prevent the disease cycle from 409 

continuing, especially since the first ants would initially clear all of the spores off. Yet, this does not 410 

occur as the circlers and wanderers deviate from the straight path increasing their probability of picking 411 

up spores and maintaining a chronic infection of the colony. 412 

If the risk of infection is larger for the circlers and wanderers (Fig. 4), why do these subgroups 413 

still exist? Social insects have members of the colony known as scouts that assist in discovering and 414 

recruiting the colony to new food sources54–57. The wandering and circling behavior observed in this study 415 
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could reflect the individual ant’s role in food discovery, instead of food retrieval. Colonies with this 416 

variability in forager behavior are perhaps better able to obtain resources, improving their reproductive 417 

success and maintaining the diversity in forager behavior. Simultaneously, it allows persistence of the 418 

fungal parasite in the system, but the loss these ants is likely not enough to have a selective impact on the 419 

colony, as it is only a small percentage of foragers as suggested by Loreto et al. (2014). In the harvester 420 

ant Pogonomyrmex owyheei, less than 10% of the colony foraged and it was usually less than 6% at one 421 

time58. Reproductive success was also hardly impacted when harvester ant foragers were restricted from 422 

foraging59 implying colonies usually gather more than enough food and fitness would likely not take a 423 

huge hit from the loss of a few foragers. Scharf et al (2017) additionally demonstrated that colony fitness 424 

(as measured through the number of reproductive individuals produced) remained unchanged from 425 

parasitic infection. In our system, relatively few foragers appear to be infected and killed by the parasite17. 426 

In addition, the density of spores in the trails could be very low, since the trail network occupies less than 427 

2% of the nest surrounding area15. Understanding the direct relationship between ant cadavers (from 428 

where spores are shot) and the trails (where new hosts are found) would improve our agent-based model 429 

predictions and help to understand the importance of wanderers and circlers for colony disease risk 430 

management. 431 

Although these behavioral subtypes are only a small proportion of the colony, that small 432 

proportion could be more than enough ants to sustain a parasitic fungus. Understanding how variation in 433 

behavior influences pathogen risk provides information on the factors that shape the distribution of 434 

animals in time and space. Computational techniques serve as a way to collect large datasets on animal 435 

behavior, where one can begin to unearth the complex interactions between an animal and its habitat. 436 

 437 

 438 

 439 
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Figures 440 

 441 

Figure 1. Trail image, trajectory overlay, and collective movement pattern. (a) Example image of a 442 

trail filmed taken from GoPro footage from colony MP1. Ants are labeled with identification numbers.  443 

(b) All of the trajectories from a single night of footage (January 14) at colony MP1. Each line across the 444 

trail represents a different ant, with the different colors distinguishing between different ant tracks. (c)  445 

The trail space from (a) was divided into a grid with each square representing approximately 1cm2. The 446 

number of times an ant walks into a square of the grid was calculated and the darker colors represent                      447 

areas of the trail that ants walked over more. Each heatmap represents a different date (January 11 448 

through January 14) from approximately the middle of the night to control for differences in the timing of  449 

filming. Different scales were used for each night, due to variance in the number of ants that walked 450 

across the trail.  451 

 452 
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 453 

 454 

Figure 2. Different behavioral groups based on straightness score. (a) Histogram showing the 455 

distribution of straightness scores for all nights and colonies. (b) Example trajectories for a circler, 456 

wanderer and direct walker highlighted over all of the trajectories shown in Figure 1b. The straightness 457 

score (St) for that trajectory is included above. (c) Mean time spent moving across the trail in seconds for 458 

each different behavioral group and colony ± standard error of the mean. Different points within a 459 

behavioral group represent different colonies. Superscripts indicate groups as significantly different (p < 460 

0.0001).  461 

 462 
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 463 

 464 

 465 

 466 

Figure 3. Distribution of different behavioral groups over time. Mean number of ants per minute in 467 

each behavioral group in a 30-minute period going either away from the nest or towards to the nest. 468 

Averaged across all nights for each colony. Right side numbers represent different colonies.  469 

 470 

 471 

 472 

 473 
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 475 

 476 

 477 

 478 

 479 

 480 

 481 

Figure 4. Risk of spore exposure for different behavioral groups. (a) Mean proportion of 482 

spores picked up as simulated ants in the agent-based model walk across the trail with different 483 

straightness scores (b) Data from (a), with straightness divided into behavioral groups. 484 

Superscripts indicate groups as significantly different (p < 0.001).  485 

 486 
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 490 
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