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Abstract
Conscious experience is dynamic, and its fluidity is particularly marked when attention
is not occupied by events in the external world and our minds are free to wander. Our
study used measures of neural function, and advanced analyses techniques to examine
how unconstrained neural state transitions relate to patterns of ongoing experience.
Neural activity was recorded during wakeful rest using functional magnetic resonance
imaging and Hidden Markov modelling identified recurrent patterns of brain activity
constituting functional dynamic brain states. Individuals making more frequent
transitions between states subsequently described experiences highlighting problem
solving and lacking unpleasant intrusive features. Frequent switching between states
also predicted better health and well-being as assessed by questionnaire. These data
provide evidence that the fluidity with which individuals shift through dynamic neural
states has an impact on the nature of ongoing thought, and suggest that greater
flexibility at rest is an important indicator of a healthy mind.

Introduction 1

William James (James, 1890) emphasised experience unfolds dynamically over time, 2

using the analogy of a "stream of consciousness". The fluidity of experience is clearly 3

illustrated by the fact that our attention tends to flit from topic to topic, particularly 4

when we are not focused on events in the external world (Smallwood and Schooler, 2006, 5

2015). Such "mind-wandering" is a broad class of experience (Seli et al., 2018) that is 6

common in daily life (Killingsworth and Gilbert, 2010), consistent across cultures 7

(Singer and McCraven, 1961) and declines with age (Giambra, 1989). Mind-wandering is 8

linked with improved creativity (Baird et al., 2012) and problem solving (Medea et al., 9

2016) suggesting that it may facilitate our ability to navigate the complex social 10

environment in which we exist (Stawarczyk et al., 2011; Smallwood and Schooler, 2015). 11
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In contrast, less flexible patterns of conscious thought can get "stuck" in a cycle of 12

intrusive rumination, with detrimental consequences. Unpleasant moods, for example, 13

can encourage patterns of negative thoughts about the past (Smallwood and O’Connor, 14

2011; Poerio et al., 2013) which in turn reduce subsequent mood (Ruby et al., 2013). 15

These studies highlight links with mental health since patterns of recurrent rumination 16

can maintain states of anxiety and depression (Watkins, 2008). It is apparent that 17

mind-wandering has both beneficial and detrimental associations and what dissociates 18

these two extremes may be the flexibility with which cognition dynamically unfolds over 19

time. 20

Recent advances in neuroimaging analysis make it possible to test the impact that 21

covert cycling through neural states has on patterns of ongoing experience. Traditional 22

functional connectivity analyses exploit temporal correlations in brain activity to 23

identify the spatial extent of large-scale distributed neural networks (Smith et al., 24

2013b). These networks are relevant to cognition given their associations with 25

population variation in intelligence and well-being (Smith et al., 2015; Finn et al., 2015), 26

as well as more specific cognitive factors such as cognitive flexibility (Vatansever et al., 27

2017) and creativity (Beaty et al., 2014). These traditional methods, however, describe 28

neural networks in a static (time-averaged) manner, and so do not explicitly address the 29

temporal profile of neural function. Contemporary research has begun to address the 30

dynamic properties of neural activity in a more direct manner using Hidden Markov 31

Modelling (HMM). This method identifies ’states’, defined as recurrent patterns of 32

neural activity, and studies have shown that states revealed in this manner track 33

cognitive processes during tasks (Gonzalez-Castillo et al., 2015), and at rest, relate 34

neural processing to cognitive flexibility, life satisfaction, anger and perceived stress 35

(Vidaurre et al., 2017b). By providing a quantified description of covert states and how 36

individuals transition between them, HMM allows us to test how the underlying neural 37

dynamics impact upon aspects of ongoing experience. 38

The current study mapped patterns of intrinsic neural activity using functional 39

Magnetic Resonance Imaging (fMRI) in a large cohort of individuals (N = 169) while 40

they rested in the scanner. We interrogated undisturbed wakeful rest, rather than 41

probing during a task (e.g. (Sormaz et al., 2018)) for two reasons. First, wakeful rest is 42

conducive to experiences such as mind-wandering (Smallwood et al., 2009). Second, the 43

absence of external interruptions during rest ensures that neural dynamics unfold in a 44

relatively natural way. At the end of the scan, participants retrospectively described 45

their experience, answering a set of questions based on those used in prior studies 46

exploring variability in static functional connectivity across subjects (Smallwood et al., 47

2016; Karapanagiotidis et al., 2017). In a separate session, participants completed a set 48

of validated measures of physical and mental health. Following the HMM inference of 49

the dynamic states, we calculated indices of the temporal flexibility of neural function 50

and the time spent in a particular state. We used these metrics as explanatory variables 51

in separate regression analyses examining their relationship to descriptions of subjective 52

experience reported at the end of the scan, as well as their links to the validated 53

measures of health and well-being. To foreshadow our results, individuals who made 54

more transitions between states described experiences emphasising problem solving and 55

fewer intrusive thoughts. They also scored higher on measures of health and well-being. 56

These data provide evidence that the fluidity with which an individual shifts through 57

unconstrained states is linked to the emergence of more apparently useful patterns of 58

ongoing thought. 59
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Results 60

Describing experience and well-being 61

In order to identify the measures of experience with the best reliability, we repeated the 62

resting state scanning session for a subset of our sample (N = 40) approximately 6 63

months later. This revealed 6 questions that were consistent across sessions (Fig. 1a): 64

normal thoughts (i.e. experiences that I often have, intraclass correlation coefficient = 65

0.28, p = 0.035), deliberate vs spontaneous thoughts (ICC = 0.27, p = 0.044), intrusive 66

thoughts (ICC = 0.29, p = 0.034), problem-solving thoughts (ICC = 0.454, p = 0.001), 67

thoughts about the here and now (ICC = 0.281, p = 0.036) and thinking in images 68

(ICC = 0.3, p = 0.026). We used these items in subsequent analyses. 69

Figure 1. Behavioural variables.
a) Test-retest reliability of responses
to items at the end of two rest-
ing state fMRI scans for 40 partici-
pants. Intraclass correlation coeffi-
cient (ICC) visualised using a word
cloud. Font size represents the ab-
solute ICC value and font colour its
sign (red for positive and blue for
negative values). * p < 0.05, ** p =
0.001. b) Component weights from a
principal component analysis on the
participants’ responses to physical
and mental health questionnaires. c)
Correlation between the 6 thought
probes that were significantly reli-
able in (a) and the component scores
from (b). Analyses controlled for
age, gender and motion during the
resting state fMRI scan.

To reduce the dimensional structure of the measures of physical and mental health, 70

we performed a principal components analysis decomposition with varimax rotation. 71

This identified three principal components with eigenvalues greater than 1 (Fig. 1b). 72

Component 1 loaded positively on measures of physical health and psychological 73

well-being and negatively on indices of depression and anxiety. Component 2 loaded on 74

self-consciousness, ADHD and rumination. Component 3 loaded on social anxiety and 75

autism. 76

Exploring links between measures of well-being and items describing experience at 77

rest, we found a positive correlation between normal patterns of thoughts with 78

component 1 (r = 0.17, p < 0.05), intrusive thoughts (r = 0.19, p < 0.05) and thinking 79

in images (r = 0.16, p < 0.05) with component 2 and a negative correlation of thinking 80

in images (r = -0.16, p < 0.05) with component 3 (Fig. 1c). However, none of these 81

associations were significant after controlling for multiple comparisons. 82

Describing neural dynamics 83

Recent work has highlighted that patterns of ongoing thought can be meaningfully 84

related to interactions between multiple large-scale networks (Golchert et al., 2017; 85

Hasenkamp et al., 2012; Mooneyham et al., 2017). To capture network-to-network 86

relationships, we conducted spatial independent component analysis (ICA) on the 87

resting state fMRI data, identifying 15 functional networks and then ran the HMM 88
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(variational Bayes) inference on their time courses (Vidaurre et al., 2017b). HMM allows 89

the whole multi-dimensional fMRI time course to be decomposed into a set of recurring 90

functional states, each characterised by unique patterns of network activity. In 91

determining the number of states for the HMM, we tested models with 7, 9 and 12 92

states and evaluated the stability of the decompositions by running the algorithm 100 93

times in each case. Models with fewer states were found to be generally more stable 94

(Fig. S3) hence we discuss the 7 state solution in the main body of our paper. Out of 95

the 100 runs of the algorithm, we selected the best solution (optimal HMM) according 96

to the free energy (Quinn et al., 2018), a measure related to the Bayesian inference 97

process that ranks the solutions based on their complexity and accuracy in representing 98

the data (see Methods). All 7 states as inferred by the optimal HMM are presented in 99

Figure S2. Our results utilise dynamic metrics inferred from this optimal HMM solution, 100

however they were also robust when taking into account the run-to-run variability 101

across all 100 models produced by the algorithm (Vidaurre et al., 2018) (see SI Results). 102

From the HMM decomposition, a number of summary metrics describing the 103

dynamics in the data can be extracted. The overall switching rate across states 104

(histogram shown in Fig. 2a), represents the lability of the dynamics. The transition 105

probabilities across states (see Fig. 2b) describe how likely transitions between different 106

states are. Several brain states have a high probability of transitioning into State 4 107

(µtS4 = 0.22) and, to a lesser degree, to State 3 (µtS3 = 0.17, the full asymmetric 108

transition probability matrix is presented in Fig. S4). Finally, the fractional occupancy 109

(FO) describes the proportion of time spent in each state. Most states had comparable 110

FO with the exception of State 5, which was lower than all other states (Fig. 2c). 111

Figure 2. Dynamic metrics. a) Histogram of subjects’ switching rate between all states. b)
The states’ transition probabilities as a thresholded graph, with edge width weighted by the
respective probability (the probabilities of staying in the same state are not shown). c) Bar plots
of the average fractional occupancy of each state over subjects (± 99.9% bootstrap confidence
intervals). d) Scatter plot of the average fractional occupancy of each dynamic state and its
similarity with the mean static functional connectivity across subjects.

As expected, relating the correlation matrix of each state with the group static 112

functional connectivity (i.e. the time averaged partial correlation matrix), we found that 113

the more time spent in a particular dynamic state, the more similar states were (in 114

terms of whole-brain connectivity) to the average static functional connectivity pattern 115

(p = 0.031) (Fig. 2d). This is consistent with the idea that the patterns of static 116

connectivity observed across the entire period of rest can be understood as the 117
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superposition of the dynamic states identified through the HMM. 118

Relationship between brain dynamics and ongoing experience 119

Having identified metrics that describe dynamic brain activity at rest, we tested 120

whether these relate to descriptions of subjective experience at the end of the scan. 121

Overall dynamics and ongoing experience 122

We used overall state switching rate during the resting state scan as an explanatory 123

variable in a multivariate GLM, combined with permutation testing, to determine 124

statistical significance. We identified a significant association with concurrent thoughts 125

at the end of the scan (p = 0.003) (Fig. 3, top). Follow-up univariate analyses and 126

permutation testing showed that increased switching between states was predictive of 127

less intrusive thoughts (r = -0.21, p = 0.014 uncorrected, p = 0.04 FDR-corrected for 6 128

tests (number of questions)), and more related to problem solving (r = 0.20, p = 0.005 129

uncorrected, p = 0.03 FDR-corrected) (Fig. 3, bottom). 130

Figure 3. Overall dynamics
associated with ongoing experi-
ence. Correlation coefficients
between thoughts and state
switching rate visualised using
a word cloud (top) and the as-
sociated scatter plots for the
significant relationships (bot-
tom). Font size in world cloud
represents the absolute correla-
tion value and font colour its
sign (red for positive and blue
for negative correlations). * p
< 0.05 (FDR-corrected).

Parallel analyses indicated similar associations with the switching rate for an HMM 131

decomposition of 9 states (p = 0.019) and 12 states (p = 0.0005) (SI Results), 132

demonstrating this relationship was robust to the number of a priori states selected. No 133

other questionnaire items showed a significant relationship with switching rate. 134

State-specific dynamics and ongoing experience 135

We also explored the relationship between the FO of the states and the descriptions of 136

ongoing experience. Using the FO of each state as an explanatory variable in separate 137

multivariate GLM, we found a significant relationship between the FO of state 3 and 138

the FO of state 5 with thoughts (p = 0.018 and p = 0.036 respectively, uncorrected) 139

(Fig. 4b). State 3 was dominated by three motifs of increased connectivity between (i) 140

the default mode (DMN) and language network, (ii) lateral and medial visual cortex 141

and (iii) the precuneus and saliency network. Whereas, state 5 was marked by strong 142

coupling between sensory systems (sensorimotor and auditory) (Fig. 4a). These results, 143

however, did not pass correction for multiple testing (p = 0.13, FDR-corrected for 7 144

tests (number of states)), rendering them less robust than the effects of the overall 145

dynamics and so we do not consider them in detail further. 146
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Figure 4. State-specific dynamics associated with ongoing experience. a) This panel presents
chord graphs of states 3 and 5 (left) along with their corresponding correlation matrices
(middle). The chord graphs were thresholded, for visualisation, at the 85th percentile of absolute
correlation values for each state. Red lines refer to positive and blue lines refer to negative
correlations, with edge width representing the magnitude of the correlation. Node size shows
the node’s "strength", computed as the sum of the absolute correlation of each network with
the rest of the brain. b) Correlation coefficients between thoughts and fractional occupancy
of state 3 (top) and state 5 (bottom) visualised using word clouds. Font size in world clouds
represents the absolute correlation value and font colour its sign (red for positive and blue
for negative correlations). Note, the relationship between the FO of the states and ongoing
experience does not pass correction for multiple comparisons.

Relationship between brain dynamics and measures of general 147

health and well-being 148

After demonstrating links between brain dynamics and reports of experience, we next 149

examined associations between dynamic neural metrics and measures of physical and 150

mental health. The analysis showed that state switching rate was related to well-being 151

(p = 0.04). In particular, increased dynamic brain activity, as identified by our temporal 152

classification, was linked with increased general health and psychological well-being and 153

with less depression and anxiety (Component 1 in Fig. 1b) (r = 0.20, p = 0.007 154

uncorrected, p = 0.02 FDR-corrected for 3 tests (number of PCA components), Fig. 5). 155

The FO of the HMM states was not significantly correlated with any of the 3 PCA 156

components. 157

Figure 5. Brain dynamics associated
with physical and mental health. Corre-
lation coefficients between PCA compo-
nents from the physical and mental health
scores and state switching rate and the
associated scatter plot for the significant
relationship with component 1. * p < 0.05
(FDR-corrected).
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Discussion 158

Consistent with the view that temporal dynamics are an integral aspect of unconstrained 159

cognition, we found the degree of switching between different intrinsic neural states was 160

associated with self-reported experiential states emerging during this period. Greater 161

flexibility was linked to less intrusive thoughts and more related to attempts at problem 162

solving, as well as better physical and mental well-being. In constrast, we found only 163

modest evidence relating patterns of experience to the occupancy of individual states. 164

These data support contemporary accounts of ongoing experience that emphasise 165

temporal dynamics as important for understanding patterns of concurrent experience 166

(Smallwood, 2013; Christoff et al., 2016; Kucyi et al., 2016), and we consider the 167

significance of this observation for our understanding of ongoing cognition. 168

Our study suggests the flexibility of intrinsic neural activity may be a mechanism 169

determining whether patterns of ongoing thought are linked to beneficial or deleterious 170

aspects of cognition and behaviour (Smallwood and Andrews-Hanna, 2013). More 171

transitions between neural states at rest was linked to patterns of experience that 172

emphasised problem solving. Autobiographical planning and problem solving are widely 173

accepted benefits that can emerge from unconstrained thought (Smallwood and 174

Schooler, 2015) which have been shown to help refine personal goals (Medea et al., 2016) 175

and reduce psycho-social stress (Engert et al., 2014). In contrast, individuals for whom 176

neural dynamics were inflexible reported experiences that were more intrusive in nature. 177

Intrusive thinking is central to multiple psychiatric conditions, including obsessive 178

compulsive disorder (Najmi et al., 2009), depression/rumination (Smith and Alloy, 179

2009) and post-traumatic stress disorder (de Silva and Marks, 1999). Critically, greater 180

switching between states at rest was also linked to better well-being. Together, our data 181

suggests that more flexible neural activity is linked to more beneficial associated 182

outcomes. 183

More generally, our study suggests that abstract properties of neural dynamics, such 184

as the ease of transition between states, can be psychologically relevant (Kucyi, 2017). 185

Previous studies have focused on the consistency of the states, for example, by 186

documenting their heritability (Vidaurre et al., 2017b). Others have examined the 187

influence of particular states on cognition and behaviour. Cabral and colleagues (Cabral 188

et al., 2017), for example, found higher cognitive performance for older individuals was 189

predicted by the prevalence of a global brain state. Our study found modest evidence 190

that particular experiences are related to states with specific neural motifs, however, we 191

found stronger evidence that eases of transition between states is linked to experience, 192

and health and well-being. Based on these findings, it will be important to understand 193

the manner through which the flexibility of cycling through different neural states 194

contributes to cognition and also whether this can change across the life cycle and with 195

clinical conditions. Studies have shown specific sequences of neural processing support 196

the expression, recognition and supression of mind-wandering in experienced meditators 197

(Hasenkamp and Barsalou, 2012), and so part of the flexibility we observe may reflect a 198

process implicated in the monitoring of ongoing thought (Schooler, 2002). More 199

generally, understanding how state transitions are constrained by cortical architecture 200

(Margulies et al., 2016) and influenced by the distributed activity of neuromodulators 201

(Harris-Warrick, 2011) are important questions for future research to address. 202

Finally, our demonstration that HMM can reveal covert neural states relevant to 203

patterns of ongoing thought constitutes an important methodological advance for the 204

study of ongoing conscious experience. Although famous for highlighting dynamics, 205

William James argued against introspection as an approach to understanding 206

experience, likening it to trying to "turn up the gas quickly enough to see the darkness" 207

(James, 1890). While the last two decades have seen increased interest in investigating 208

self-generated thoughts (Callard et al., 2013), we lack a method to study them in a 209
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manner that does not disrupt their natural dynamics (Konishi and Smallwood, 2016; 210

Kucyi, 2017). Our study shows that the HMM captures features of neural dynamics 211

that are relevant to ongoing thought in a manner that does not rely on introspective 212

information for their identification. The ability of the HMM to ’parse’ neural data into 213

underlying temporal states, without disrupting their evolution, provides a window into 214

how cognition unfolds without the concern that the disruptive nature of experience 215

sampling may contaminate it. We anticipate future studies will be able to apply this 216

method to gain unprecedented access to covert changes in cognition that are a pervasive, 217

yet poorly understood aspect of our mental lives. 218

Methods and Materials 219

Participants 220

206 healthy participants were recruited by advert from the University of York. Written 221

consent was obtained for all participants and the study was approved by the York 222

Neuroimaging Centre Ethics Committee. 37 participants were excluded from analyses 223

due to technical issues during the neuroimaging data acquisition, excessive movement 224

during the fMRI scan (mean framewise displacement > 0.3 mm and/or more than 15% 225

of their data affected by motion) (Power et al., 2014) or not completing the whole 226

battery of behavioural tasks, resulting in a final cohort of N = 169 (111 females, µage = 227

20.1 years, σage = 2.3). 228

Behavioural methods 229

We sampled the participants’ experiences during the resting state fMRI scan by asking 230

them at the end of the scan to retrospectively report their thoughts, using a series of 231

self-report questions. These items were measured using a 4-scale Likert scale with the 232

question order being randomised (all 25 questions are shown in Table S1). In order to 233

assess the participants’ physical and mental health, we administered well-established 234

surveys at a later separate session outside of the scanner. Details about each 235

questionnaire are presented in SI Methods. Analyses controlled for age, gender and 236

motion during the resting state fMRI scan. 237

Neuroimaging methods 238

MRI data acquisition 239

MRI data were acquired on a GE 3 Tesla Signa Excite HDxMRI scanner, equipped with 240

an eight-channel phased array head coil at York Neuroimaging Centre, University of 241

York. For each participant, we acquired a sagittal isotropic 3D fast spoiled 242

gradient-recalled echo T1-weighted structural scan (TR = 7.8 ms, TE = minimum full, 243

flip angle = 20◦, matrix = 256x256, voxel size = 1.13x1.13x1 mm3, FOV = 289x289 244

mm2). Resting-state functional MRI data based on blood oxygen level-dependent 245

contrast images with fat saturation were acquired using a gradient single-shot 246

echo-planar imaging sequence with the following parameters TE = minimum full (≈19 247

ms), flip angle = 90◦, matrix = 64x64, FOV = 192x192 mm2, voxel size = 3x3x3 mm3
248

TR = 3000 ms, 60 axial slices with no gap and slice thickness of 3 mm. Scan duration 249

was 9 minutes which allowed us to collect 180 whole-brain volumes. 250
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fMRI data pre-processing 251

Functional MRI data pre-processing was performed using the Configurable Pipeline for 252

the Analysis of Connectomes (C-PAC) (Craddock et al., 2013). Pre-processing steps 253

included motion correction by volume realignment (Friston 24-Parameter Model) 254

(Friston et al., 1996), nuisance signal regression of the 24 motion parameters calculated 255

in the previous step plus five nuisance signals obtained by running a principal 256

components analysis on white matter and cerebrospinal fluid signals using the CompCor 257

approach (Behzadi et al., 2007), slice time correction, temporal filtering 0.009-0.1 Hz, 258

spatial smoothing using a 6mm Full Width at Half Maximum of the Gaussian kernel 259

and normalisation to MNI152 stereotactic space (2 mm isotropic) using linear and 260

non-linear registration (boundary-based registration) (Greve and Fischl, 2009). No 261

global signal regression was performed. 262

Group-ICA spatial maps and time series 263

Following pre-processing, the neuroimaging data were masked by a 20% probabilistic 264

whole-brain grey matter mask, temporally demeaned, had variance normalisation 265

applied (Beckmann and Smith, 2004) and were fed into the MIGP algorithm (Smith 266

et al., 2014). The output of MIGP, which is a very close approximation to running PCA 267

on the temporally concatenated data, was then fed into group-ICA using FSL’s 268

MELODIC tool (Beckmann and Smith, 2004), where spatial-ICA was applied, resulting 269

in 16 distinct group-ICA spatial maps (SI results, Fig. S1). These group spatial maps 270

were subsequently mapped onto each subject’s pre-processed data by running the first 271

stage in a dual-regression analysis, which produced one time series per map per 272

participant. After removal of one artefactual component, the remaining 15-dimensional 273

time series for each participant with µ = 0 and σ = 1 were concatenated to form a (180 274

x 169) x 15 matrix and used as input for subsequent analyses. 275

Hidden Markov model 276

To characterise the dynamics of neural activity, we applied a hidden Markov model to 277

the concatenated time series of the ICA networks. The inference of the model 278

parameters was based on variational Bayes and the minimisation of free energy, as 279

implemented in the HMM-MAR toolbox (Vidaurre et al., 2016). The HMM’s inference 280

assigns state probabilities to each time point of the time series (i.e. reflecting how likely 281

is each time point to be explained by each state) and estimates the parameters of the 282

states, where each state has its own model of the observed data. Each state can be 283

represented as a multivariate Gaussian distribution (Vidaurre et al., 2017a), described 284

by its mean and covariance. As we were primarily interested in identifying changes in 285

functional connectivity, we chose to discount changes in absolute signal level and defined 286

the states by their covariance matrix. Inference was run at the group level, such that 287

the state descriptions are defined across subjects. This allowed us to discover dynamic 288

temporal patterns of whole-brain functional interactions along with their occurrence 289

(state time series) and transition probabilities for the duration of the whole resting state 290

fMRI scan. Detailed information about the HMM implementation and the variational 291

Bayes inference can be found in (Vidaurre et al., 2017b,a; Baker et al., 2014). Fractional 292

occupancy was defined as the proportion of time spent on each state and switching rate 293

as the total number of switches from one state to any other. All analyses controlled for 294

age, gender and motion during the resting state fMRI scan. 295
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Static functional connectivity 296

Network modelling was carried out by using the FSLNets toolbox. We calculated the 297

partial temporal correlation between the 15 components’ timeseries creating a 15 ÃŮ 15 298

matrix of connectivity estimates for each participant. To improve the stability of the 299

estimates of partial correlation coefficients, a small amount of L2 regularisation was 300

applied (Smith et al., 2013a). The connectivity values were converted from Pearson 301

correlation scores into z-statistics with FisherâĂŹs transformation (including an 302

empirical correction for temporal autocorrelation). In order to test the similarity 303

between the correlation matrices (NxN) of each dynamic state and the mean static 304

partial correlation matrix (NxN), we kept the lower diagonal of each matrix, 305

"unwrapped" it to a vector of length 105 ((N*N - N)/2), Fisher’s z transformed its 306

values and calculated the pairwise correlations. 307
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