
1

Identifying Emerging Phenomenon in Plant Long
Temporal Phenotyping Experiments

Jiajie Peng, Junya Lu, Donghee Hoh, Ayesha S Dina,
Xuequn Shang, David M Kramer, Jin Chen

Abstract—The rapid improvement of phenotyping capability,
accuracy, and throughput have greatly increased the volume
and diversity of phenomics data. A remaining challenge is an
efficient way to identify phenotypic patterns to improve our
understanding of the quantitative variation of complex pheno-
types, and to attribute gene functions. To address this challenge,
we developed a new algorithm to identify emerging phenomena
from large-scale temporal plant phenotyping experiments. An
emerging phenomenon is defined as a group of genotypes who
exhibit a coherent phenotype pattern during a relatively short
time. Emerging phenomena are highly transient and diverse, and
are dependent in complex ways on both environmental conditions
and development. Identifying emerging phenomena may help bi-
ologists to examine potential relationships among phenotypes and
genotypes in a genetically diverse population and to associate such
relationships with the change of environments or development.
We present an emerging phenomenon identification tool called
Temporal Emerging Phenomenon Finder (TEP-Finder). Using
large-scale longitudinal phenomics data as input, TEP-Finder
first encodes the complicated phenotypic patterns into a dynamic
phenotype network. Then, emerging phenomena in different
temporal scales are identified from dynamic phenotype network
using a maximal clique based approach. Meanwhile, a directed
acyclic network of emerging phenomena is composed to model the
relationships among the emerging phenomena. The experiment
that compares TEP-Finder with two state-of-art algorithms shows
that the emerging phenomena identified by TEP-Finder are more
functionally specific, robust, and biologically significant. The
source code, manual, and sample data of TEP-Finder are all
available at: http://phenomics.uky.edu/TEP-Finder/.

I. INTRODUCTION

Biomedical studies have been ushered into a new era by the
rapid development of large-scale genotyping and phenotyping
technologies [2], [8], [11], [13], [17]. Recent studies demon-
strate that by integrating both phenomics and genomics, we
can better understand organism behaviors and identify new
genes that govern phenotypes and response to the varying
environments [7], [9], [29]. More specifically, by analyzing
large-scale plant photosynthetic phenotype data, researchers
can identify complex aggregate phenotypic traits, and explore
the processes or genetic components that control a trait and the
essential conditions under which the trait emerge [15], [31].

The main computational challenge in omics data analysis
arises from its unsupervised nature. It is generally believed that
the emerging phenomena among multiple phenotypes mea-
sured across several genotypes (e.g., gene knockouts) reveals,
to a great extent, the common regulatory roles of the knocked
out genes in the biological system. An emerging phenomenon
refers to a phenotypic pattern that multiple genotypes have
correlated phenotype values during a serial of continuous time

Figure 1. A sample emerging phenomenon (shadowed area) identified in
a plant photosynthesis phenotyping experiment under fluctuating light condi-
tions (a). In the experiment, five genotypes (chloroplast-targeted single mutant
lines of Arabidopsis thaliana) were measured using three photosynthetic
phenotypes (ΦII , qESV , and qI). In the shadowed area (b,c,d), all the
genotypes have similar phenotype values.

points [8]. A sample emerging phenomenon in plant photosyn-
thesis phenotype data is shown in Figure 1. The experiment
was done under the fluctuating light conditions (between 0 and
1000µmolm−2s−1). Five selected genotypes (P1...P5) were
measured using three photosynthetic phenotypes, namely pho-
tosynthetic system II activity (ΦII ), photoprotection (qESV ),
and photoinhibition (qI ). The relative phenotype values were
calculated by comparing each genotype with the reference
(col-0) using logged fold change. The shadowed area indicates
an emerging phenomenon of the five plants between 12:30
and 14:30, during which, all the five genotypes have similar
phenotype values.

Emerging phenomena is universal in phenotyping exper-
iments esp. under dynamic environmental conditions. They
are highly transient and diverse, dependent in complex ways
on both environmental conditions and development [8]. Re-
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vealing emerging phenomena is vital towards the identifica-
tion of meaningful differences in biological function among
genotypes, which may help biologists to examine potential
phenome-genome relationships in a genetically diverse pop-
ulation and to associate such relationships with the change
of environments or development. It is, however, unclear what
specific patterns biomedical researchers should look for given
the complexity of the biological system and its responses to
environmental perturbations. Besides, the large variance in
phenotypes, due to the biodiversity and the variance in en-
vironmental distribution, adds more challenges to the already
difficult task [8], [11], [33].

To address this challenge, we propose a new tool called
Temporal Emerging Phenomenon Finder (TEP-Finder) as
the first approach to capture emerging phenomena with various
temporal scales and arbitrary phenotype variation shapes (see
Figure 2). TEP-Finder automatically transforms large-scale
phenomics data into emerging phenomenon patterns, thus
facilitates the translation of information into knowledge. TEP-
Finder has two phases. First, TEP-Finder encodes phenotype-
based relationships into a dynamic network using nonpara-
metric clustering and generates seeds. It then identifies all
the emerging phenomena in different temporal scales and
constructs a directed acyclic network of emerging phenomena.
To demonstrate the effectiveness of TEP-Finder, we applied
TEP-Finder on a large-scale plant photosynthesis phenotyping
experiment, and the results show that TEP-Finder can reliably
and accurately identify high quality emerging phenomena from
data. Comparing with the existing models, TEP-Finder has the
following advantages:
• TEP-Finder is the first approach to capture emerging

phenomena with diverse scales systematically;
• TEP-Finder constructs a network of emerging phenomena

to provides a graph-based representation of the complex
hierarchy of emerging phenomena;

• TEP-Finder successfully discovers emerging phenomena
in an Arabidopsis photosynthetic phenotyping experimen-
tal data with high biological significance.

II. BACKGROUND

An emerging phenomenon is defined as a group of geno-
types who has a pattern of correlated phenotypes in a serial
of continuous time points [8]. In the literature, given a set
of predefined patterns, the minimal genotype contributor set
can be identified using existing data mining techniques such
as association rule mining [16], [32] or subspace trajectory
clustering [1], [26]. However, given the unsupervised nature,
most emerging phenomena are not pre-definable. To our
knowledge, there is no existing algorithm exactly designed
for emerging phenomena identification. Tools, such as DHAC
and NPM [12], [19], may be slightly modified to achieve the
goal. Here we discuss two existing approaches with additional
steps adopted for emerging phenomenon discovery.

DHAC models how a network change with time [19].
Assuming that the edges in a network are conditionally
independent given group membership, DHAC uses a proba-
bilistic model to translate a hierarchical stochastic block to

Figure 2. The workflow of TEP-Finder. Given the temporal phenomics data, it
identifies significant seed phenomena in every time frame; by expanding each
seed to longer time frames, it discovers emerging phenomena that appear
and disappear subject to the change of environments or development; the
relationships among all the emerging phenomena are modeled by a directed
acyclic network called EP-DAG.

the dynamic domain, thus clustering a time-evolving network
based on the observations at several specific time points. The
rationale is that any node in a network cluster at a specific time
point should be influenced by clusters at nearby time points.
DHAC can be employed to group genotypes by matching
clusters across multiple time points with additional steps
that transform longitudinal phenomics data into a dynamic
network (called DHAC+). However, to facilitate dynamic
network clustering, DHAC considers global features on all
temporal points rather than local features. Subsequently, the
DHAC-based method cannot identify emerging phenomenon
at different temporal scales.

NPM is a non-parametric clustering method that can simul-
taneously cluster subjects with arbitrary cluster shapes [12].
NPM represents the phenotypes of each genotype in a se-
rial of continuous time points as a cloud of points. Each
point of the cloud corresponds to a vector in the sequential
phenotype measurements taken for the genotype. Two similar
shapes of clouds represent that two genotypes have a coherent
phenotype pattern in a given time frame. Note that NPM
is more advantageous than the Pearson correlation on the
identification of a set of genotypes with coherent phenomics
data. It is because Pearson correlation requires all the variables
to follow a normal distribution, which is not always held for
the phenomics data, while NPM does not make any assumption
about the underlying data distribution and thus is particularly
suitable for phenomics data analysis. NPM can be employed
to identify emerging phenomena by applying it repeatedly on
every time frame of a longitudinal phenomics dataset (called
NPM+). However, it is difficult to pre-define the time scale of
emerging phenomena or to identify the relationships between
overlapped emerging phenomena. Furthermore, NPM is not a
deterministic method so that the results are dependent on the
initialization and the selection of anchor points.

The unmet needs to effectively identify high-quality emerg-
ing phenomena necessitates the development of tools that
can automatically transform large-scale phenomics data into
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Figure 3. Illustrative example of the dynamic phenotype network construction.
Values in the table represent the co-occurrence frequencies of any two geno-
types being in the same cluster in three different time frames {T1, T2, T3}.
We add edge 〈Pj , Ph〉 to a slice of the dynamic phenotype network if the
corresponding co-occurrence frequency of genotypes Pj and Ph is greater
than a threshold (shaded blocks). The middle panel shows the dynamic
network, in each slice of which, the maximal cliques are displayed in the
right panel.

Figure 4. Illustrative example on extending a seed phenomenon to a longer
time frame starting from the same time point. (a) The maximal cliques of G1

are at the first level. Then they are joined with the maximal cliques of G2 and
G3 to generate longer emerging phenomena. (b) The result is pruned using
the procedure introduced in Section IV-B1.

emerging phenomenon patterns, thus facilitate the translation
of information into knowledge. To precisely identify emerging
phenomena with different temporal scales, we propose TEP-
Finder. In our experiment, TEP-Finder has been compared
with NPM+ and DHAC+. The results demonstrate that TEP-
Finder is better for capturing emerging phenomena and rela-
tionships among them.

III. DEFINITION OF EMERGING PHENOMENON

In a long temporal phenotype datasetM(P, T ), Ti is a time
frame associated with experimental environments, treatments,
and outcomes (Ti ∈ T ), and Pj is an genotype to study
(Pj ∈ P), e.g., a gene knockout or a inbred line. The
phenotype values of genotype Pj in time frame Ti are rep-

Figure 5. Illustrative example on EP-DAG construction. (a) Three sub-DAGs
are built based on different starting time points. (b) All of them are merged
into one DAG using the procedure introduced in Section IV-B3.

resented by a set of data points Di,j = {xi,j1 , . . . , xi,jm }. In the
plant photosynthetic phenotyping experiment using DEPI [8],
the phenotypes are mainly photosynthetic system II activity
(ΦII ), photoprotection (qESV ), and photoinhibition (qI ). An
emerging phenomenon ei is defined as follows (see example
in Figure 1).

Definition III.1. Emerging Phenomenon. Given the tem-
poral phenotype data M(P, T ), an emerging phenomenon
C(Pλ, Tλ) is a group of genotypes Pλ (Pλ ⊆ P) that exhibit
coherent phenomena during continuous temporal range Tλ
(Tλ ⊆ T ), where |Pλ| ≥ K1, |Tλ| ≥ K2, and the percentage
of significant phenotype values in e is greater than or equal to
K3. K1, K2, and K3 are user specified thresholds.

Note that in an emerging phenomenon C(Pλ, Tλ), certain
percentage of phenotype values of should be significantly
different from the reference. The definition does not require all
the phenotype values of C(Pλ, Tλ) to be significant because,
when the environmental conditions vary dynamically, pheno-
type values often periodically switch between significance and
insignificance (see Figure 1). Hence, it is more reasonable to
require a certain portion but not all of the phenotype values
to be significantly different from that of the reference. Since
A Priori does not apply, new algorithms are needed for the
identification of emerging phenomenon.

For a large-scale phenotyping experiment, the total number
of identified emerging phenomena could be large. To better
manage and use them, we construct an EP-DAG G defined as:

Definition III.2. Emerging Phenomenon DAG. An emerging
phenomenon DAG (EP-DAG) G is a directed acyclic net-
work (DAG), where each node in G represents represents an
emerging phenomenon C(Pλ, Tλ), and node C(Pi, Tj) is a
descendent of node C(Ph, Tk) if and only if Pi ⊃ Ph and
Tj ⊂ Tk.

The outputted EP-DAG is available in the OBO format.
It, once generated from data, can be visualized with Cy-
toscape [25] or OntoVisT [28]. It automatically supports
emerging phenomenon search, phenotype relationship identi-
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fication, and multiple phenotyping experiments comparison,
leading to improved computational efficiency and succinct
representation. To our knowledge, there is no existing work
focused on the construction of EP-DAGs.

IV. METHODS

To systematically identify emerging phenomena in long-
term phenotyping experiments and to examine the interactions
between emerging phenomena and dynamic environments in a
genetically diverse population, we introduce a new algorithm
called TEP-Finder. TEP-Finder has two phases. First, it
identifies seed phenomena in every time frame of a longi-
tudinal phenomics dataset, where a time frame is a predefined
minimal temporal range of any emerging phenomena. Second,
by expanding each identified seed phenomena to longer time
frames, TEP-Finder discovers emerging phenomena that ap-
pear and disappear subject to the change of environments or
time. Multiple emerging phenomena are then merged, pruned,
and connected to form a phenomenon network to facilitate
phenotype search, comparison, and functional analysis. The
diagram of the whole process is shown in Figure 2.

A. TEP-Finder Phase 1. Identifying Seed Phenomenon
An emerging phenomenon e is considered as the phenotypes

of multiple genotypes that have similar variation trends in a
continuous time period. Biologically, such time period can be
transient or can last for a relatively long time. To identify
e with varying length, we consider a seed-based approach.
Namely, we segment the whole experiment duration into
multiple time frames, each being the minimal temporal range
of any emerging phenomena. Then, at every time frame,
we seek seed phenomena that are potentially extendable to
a longer time period. The seed identification phase can be
divided into four steps.

1) Data Segmentation and Data Representation: Given
the temporal phenotype data M(P, T ), we segment T into
separated time frames with a fixed length m using the sliding
window approach. Here, the window width is the smallest tem-
poral period of any emerging phenomenon (e.g., 30 minutes)
that users can specify.

We adopt a meta-clustering approach to identify the re-
lationships among all the tested genotypes in each time
frame Ti [5], [18]. In the meta-clustering process, we re-
peatedly cluster the phenotype values of all the genotypes
P in Ti using non-parametric clustering with random anchor
points [12]. The center of non-parametric clustering is a cloud-
of-points representation. Since all the phenotype values are
collected in a relatively short time, we examine the dependence
among different phenotypes while ignoring the sequential or-
der among the values and simply characterizing the phenotypes
of genotype Pj in time frame Ti by the set of data points
Di,j = {xi,j1 , . . . , xi,jm }, which we refer to as cloud-of-points
representation.

2) Phenotype Clustering: Following the standard frame-
work of mixture models, we assume that there are K different
underlying distributions in time frame Ti, where each distribu-
tion is introduced to capture a different “shape” of the cloud-
of-points representation, and all the phenotype values observed

in the cloud-of-points representation are drawn independently
from one of the K distributions [10]. More specifically, let
f1(·), . . . , fK(·) be the density functions for the K underlying
distributions, and let p1, . . . , pK be the prior probabilities
for choosing each distribution. Then, for genotype Pj in
time frame Ti, the likelihood of observing the cloud-of-points
representation Di,j is then given by

Pr(Di,j) =
K∑
k=1

pk Pr(Di,j |fi,j) =
K∑
k=1

(
pk

m∏
h=1

fi,j(x
i,j
h )

)
(1)

Following the framework of maximum likelihood estimation,
we find the optimal density functions {fj(·)}Kj=1 by solving
the optimization problem

max
f1,...,fK ,P

n∑
j=1

log Pr(Dij) (2)

where Pr(Dij) is given in Equation 1, and n is the total
number of genotypes in M.

This optimization problem can be effectively solved by
employing NPM, a non-parametric clustering method for
phenomics data analysis [12]. Based on the Nadaraya-Watson
method for kernel density estimation [20], [24], [27] and
following the framework of maximum likelihood estimation,
NPM uses optimal density functions and applies a non-
parametric clustering technique to group genotypes into the
same cluster if their clouds-of-points share similar arbitrary
shapes. The non-parametric approach avoids the parametric
assumption of the underlying distribution so that NPM is
suitable to model the nonlinear interactions among multiple
phenotypes [12]. Since the clustering process is dependent on
the initialization and the selection of anchor points, we repeat
NPM multiple times to obtain all the meta-clustering results.

3) Dynamic Phenotype Network Construction: In this step,
we construct a dynamic phenotype network G(P, E , T ), where
P is the set of genotypes, T is the set of time frames, and E =
{E1, E2, ..., Ek} represents edges in different time frames. In
each time frame Ti, we check whether any two genotypes Pj
and Ph are frequently grouped into the same cluster in meta-
clustering. If the co-occurrence is greater than a predefined
threshold K4, we add edge 〈Pj , Ph〉 to Ei. In the dynamic
network G, while the nodes are identical, the edges vary over
time, indicating emerging phenomena emerge and disappear
with the change of time.

A running example is shown in Figure 3. In the example,
T = {T1, T2, T3} and P = {A,B,C,D,E, F,G}. Given the
frequency of concurrence of every two genotypes in T1, T2 and
T3 (the table on the left), and let K4 be 0.8, we identify all
the edges (shaded blocks) and construct the dynamic network
in the middle panel of Figure 3.

4) Seed Phenomena Identification: We identify the seed
phenomena by repeatedly applying a maximal clique based
approach on every time frame of the dynamic network
G(P, E , T ). Clique is a special structure such that any two
nodes in it are adjacent, implying a close relationship among
all the nodes that belong to the same clique. A maximal clique
is a clique that cannot be extended by including one more
adjacent node, meaning it is not a subset of a larger clique.
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More specifically, we adopt the Bron-Kerbosch algorithm
to identify all the maximal cliques [4]. The basic form of
the Bron-Kerbosch algorithm is the recursive backtracking
that searches for all maximal cliques in a given network. Its
performance has been further improved by defining a pivot
vertex set, allowing it to backtrack more quickly in branches
of the search that contain no maximal cliques [6], [30].

Let C be the set of all the maximal cliques in the dynamic
network G(P, E , T ), maximal clique C(Pj , Ti) ∈ C defines
a seed phenomenon with its genotype set being Pj and its
time frame being Ti. A running example is shown in the right
panel of Figure 3. The maximal cliques in T1 are C1,1 =
{A,B,C,D}, C1,2 = {D,E, F}, C1,3 = {D,F,G}.

B. TEP-Finder Phase 2. Extending from Seeds to Emerging
Phenomenon

After identifying all the seed phenomena in the minimal
time frames, we extend them to longer time frames. This phase
has four steps.

1) Emerging Phenomenon Identification: To identify
emerging phenomena, the general idea is to combine seed
phenomena in adjacent time frames. More specifically, for
C(Pj , Ti), which is the jth seed phenomenon in time
frame Ti, we join it with every seed in time frame Ti+1

C(Pk, Ti+1), resulting in C(Pj,k, Ti,i+1), where Pj,k repre-
sents the intersection of Pj and Pk. Then, we determine
whether C(Pj,k, Ti,i+1) is a new emerging phenomenon using
the following rules developed based on the definition of the
emerging phenomenon (see Definition III.2). The combina-
tion process will continue on the followed time frames (i.e.
Ti+2, . . . , Tn), until all the seed phenomena are examined.
• Discard C(Pj,k, Ti,i+1) if |Pj,k| < K1, is not an emerg-

ing phenomenon;
• Replace C(Pj , Ti) with C(Pj,k, Ti,i+1) if Pj,k = Pj ≥
K1.

• Replace C(Pk, Ti+1) with C(Pj,k, Ti,i+1) if Pj,k =
Pk ≥ K1.

• Accept C(Pj,k, Ti,i+1) as a new emerging phenomenon
if Sj,k 6= Sj and Sj,k 6= Sk and |Sj,k| ≥ K1

Following the example of the dynamic phenotype network
and maximal cliques in Figure 3, the emerging phenomenon
identification procedure starting from T1 is shown in Fig-
ure 4. In Figure 4(a), one of the seed phenomena that start
from T1 or T2 is P2 = C({D,E, F}, {T1}) and P4 =
C({C,E, F}, {T2}) respectively. The join of P2 and P4 is
P9 = C({E,F}, {T1,2}), which, according to Definition III.1,
is saved as an emerging phenomenon in time frame T1,2.
Similarly, for the other seeds in T1 and T2, we join them pair-
wisely and save all the qualified emerging phenomena (see
the blue colored notes in Figure 4(a)). Next, we join all the
emerging phenomena in time frame T1,2 with the seeds in T3,
resulting in the emerging phenomena in time frame T1,2,3. For
example, P18 = C({E,F}, {T1,2,3}) is the result by joining
P9 = C({E,F}, {T1,2}) and P14 = C({C,E, F,G}, {T3}).
Note that P18 replaces P9 since they have the same genotypes
and the time frame of P18 contains that of P9. Those who
do not qualify the definition of emerging phenomenon are
discarded (all the gray notes in Figure 4(a)).

2) Significance Test: Given the temporal phenotype data
M(P, T ), we compare the phenotype values of every geno-
type Pi with the reference using logged fold change, resulting
in the relative phenotype values. The reference could be
the wild-type in mutant experiments, the parental lines in
recombinant inbred line experiments, or the average of all the
genotypes in population experiments. Without losing general-
ity, all the significant phenomena can be identified using a user
given logged fold change threshold or with the computation
of the false discovery rate. Other significance tests can also be
applied for the same purpose. If the percentage of significant
phenotype values of an emerging phenomenon is less than
a user given threshold K3, the emerging phenomenon is
discarded.

3) EP-DAG Construction: To model the complex relation-
ships among all the emerging phenomena, we construct an
EP-DAG G. G is a DAG with a virtual root node Proot.
We first connect all the emerging phenomena found in any
individual time frame directly to Proot (see example in Fig-
ure 4(b)). Next, we add an edge pointing from every emerging
phenomenon to another one if the latter is generated by
joining the former with other ones and both of them start
from the same time frame. For example, in Figure 4(b),
an edge is pointing from P8 = C({A,B,C}, {T1,2}) to
P17 = C({A,C}, {T1,2,3}). Finally, we add an edge pointing
from one emerging phenomenon C(Pj , Ti) to another one
C(Ph, Tk), if Pj ⊂ Ph, Ti ⊃ Tk, and C(Ph, Tk) is not a
descendent of C(Pj , Ti). For example, we add edges pointing
from P5 to P8, P15 to P23, and P14 to P21 (see the dotted
edges in Figure 5(b)).

4) EP-DAG Pruning: Finally, to reduce the redundancy of
the emerging phenomenon, we merge the highly overlapped
emerging phenomena and remove emerging phenomena with
insignificant phenotype values. Note that if an emerging phe-
nomenon is discarded because it does not satisfy the user
given thresholds (e.g., the percentage of significant values less
than K3), its children will be redirect to its patent emerging
phenomena. See examples in Figure 4(a,b). Mathematically,
given two emerging phenomena C(Pj , Ti) and C(Ph, Ti) in
the same time frame, if |Pj - Ph| ≤ 1 and |Ph - Pj | ≤ 1,
we remove the two emerging phenomena and compose a new
one called C(Pj ∪ Ph, Ti). Meanwhile, the edges connecting
to C(Pj , Ti) and C(Ph, Ti) are redirected to C(Pj ∪ Ph, Ti).

V. RESULTS

A. Data Description

For performance evaluation, we used the long temporal plant
photosynthesis phenomics data in Gao et al [12]. The pheno-
typing experiment was carried out by testing 182 chloroplast-
targeted single mutant lines (each with at least four biological
replicates) of A. thaliana under dynamic environmental con-
ditions using DEPI [8]. Three kinds of phenotypes, i.e., pho-
tosynthetic system II activity (ΦII ), photoprotection (qESV ),
and photoinhibition (qI ) were collected at 112 time points. See
experiment details in [8].

TEP-Finder was implemented with Python 2.7. The follow-
ing parameters for TEP-Finder were used in the experiment:
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number of genotypes K1 = 5, number of time points K2 = 10,
percentage of significant phenomena K3 = 0.5, number of
time points per time frame 10, overlap rate between two
adjacent time frames 90%; number of runs of clustering per
time frame 100. The final results consist of 4,318 emerging
phenomena and an EP-DAG with 7,789 edges.

B. Methods to Compare

We compared TEP-Finder with NPM+ and DHAC+. The
latter two are the methods modified from NPM and DHAC
respectively (see Section II). The major difference in these
methods locates on the process of seed phenomenon identi-
fication. More specifically, NPM+ consists of the following
two steps. First, given the phenotype data M(P, T ), we
call NPM once at every time frame to obtain the clustering
results. Second, the clusters are used as the inputs to TEP-
Finder phase two (see Section IV-B). In DHAC+, we first
preprocess the phenomics data M(P, T ) using the phase one
of TEP-Finder, resulting in the dynamic phenotype network
G. Second, DHAC is adopted to identify seed phenomena
in G instead of searching for the maximal cliques. Finally,
the seed phenomena are used as the inputs to TEP-Finder
phase two (see Section IV-B). Note that the only difference
between NPM+, DHAC+, and TEP-Finder is how the seed
phenomena are identified. Comparing NPM+ and DHAC+
with TEP-Finder is critical because it can test whether our
meta-clustering followed with maximal clique approach is
appropriate to generate seeds, which form the basis for the
identification of emerging phenomena.

C. Performance Evaluation using GO Enrichment

An emerging phenomenon consists of a list of chloroplast-
targeted single mutant lines that exhibit coherent and signifi-
cant phenomena in a continuous time frame. It is expected that
the knockout genes would be involved in the same biological
process or have a similar molecular function. Therefore, we
tested whether the knockout genes in the same emerging
phenomenon are also enriched in Gene Ontology (GO). GO
includes three categories: biological process, molecular func-
tion, and cellular component. Given a set of genes and their
GO annotations, GO enrichment analysis identifies the over-
represented GO terms. In our experiment, data were down-
loaded from the GO website in March 2017, and clusterPro-
filer [34] was used for the enrichment test.

Figure 6(a) shows that the percentage of emerging phe-
nomena at each level of the EP-DAG using GO biological
process. Clearly, TEP-Finder is constantly better than DHAC+,
esp. at deep levels of the EP-DAG. The high performance on
deep levels is important because emerging phenomena at deep
levels often represent abnormal photosynthetic behaviors in a
relatively more extended time period. TEP-Finder and NPM+
have a similar trend, but TEP-Finder is still better than NPM+
on most of the cases. Specifically, the averaged percentage
of the enriched emerging phenomena of TEP-Finder is 0.80,
which is 0.70 for NMP+. Similar results are found on the
GO enrichment test on the molecular function category. In
general, the performance of TEP-Finder is higher than NPM+
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Figure 6. Evaluation of emerging phenomena using Gene Ontology en-
richment on biological process (a) and molecular function (b). The x-axis
represents the level of the EP-DAG. The y-axis represents the percentage of
the emerging phenomena enriched in at least one GO term. Blue, green, and
red represent the results of TEP-Finder, NPM+, and DHAC+.

and DHAC+ at each level of EP-DAG (Figure 6(b)). The
averaged percentage of the enriched emerging phenomena of
TEP-Finder is 0.66, while the values of NPM+ and DHAC+
are 0.56 and 0.43 respectively.

While the first experiment shows that TEP-Finder has more
enriched emerging phenomena than the other two, it is not
clear whether the enriched GO terms are at a shallow or deep
level of the GO. Therefore, in the second experiment, we
compared the distribution of the enriched GO terms among
the three methods. Since the first level of the EP-DAG is
the virtual root node, the comparison was carried out at the
second, third and fourth level. We only tested the first three
valid levels of EP-DAG because, in the results of DHAC+, the
number of emerging phenomena after three levels are too few
to compare. Figure 7 shows the cumulative distribution of the
GO biological process terms and the molecular function terms
at the first three valid EP-DAG levels. It is constant that there
are more deep-level enriched GO terms in TEP-Finder than
the other two.

D. Performance Evaluation using Gene Association

Given an EP-DAG, gene-to-gene similarity can be calcu-
lated based on the topological structure of the DAG. We
thereby test the correlation between EP-DAG based gene
similarities with the GO molecular function based gene simi-
larities. To calculate the gene-to-gene similarities based on the
EP-DAG, we adopted the widely used Resnik method [23].
Specifically, given any two genes gi and gj , we identify
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Figure 7. Cumulative distributions of identified emerging phenomena at different levels, which are enriched in Gene Ontology (GO) biological process
category (a) and molecular function category (b). The x-axis represents the level of GO. The y-axis represents the percentage of emerging phenomena enriched
at each GO level. The blue, green, and red line represent the result of TEP-Finder, NPM+, and DHAC+.

Figure 8. Two emerging phenomena found under strong fluctuating light conditions (between approximately 500µmolm−2s−1 (lower light) and
1000µmolm−2s−1 (higher light) four times repeated) have distinctively different photosynthetic phenotypes. Only two selected genotypes are shown for
each group. In the first emerging phenomenon (group A, orange), plants have constantly low photoprotection yet the PS II activity decreased with the increased
lights, indicating they are under stress. In the second one (group B, blue), less decrease of PS II activity and with high photoprotection as light increases,
indicating they are well accommodated with the rapid changes of light.

their least common ancestor term and calculate the gene-gene
similarity using sim(gi, gj) = log N

Ni
, where N is the total

number of genes in the ontology and Ni is the number of
genes annotated to the lowest common ancestor. The GO-

based gene similarities were calculated using a web service
named InteGO2 [21]. All the similarities were normalized to
the range of [0, 1].

Figure 9 shows the experimental results on the three net-
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Figure 9. Comparing GO-based similarity with the EP-DAG based similarity.
Gene pairs were clustered into 10 groups based on their GO-based similarities
(x-axis), and for each group of gene pairs, we calculated the averaged EP-
DAG based similarity (y-axis). Blue, green, and red represent the results of
TEP-Finder, NPM+, and DHAC+.

works constructed using TEP-Finder, NPM+, and DHAC+,
perspectively. In general, there is a strong correlation between
the gene-gene similarities based on TEP-Finder and based on
the GO. Specifically, the R2 score of TEP-Finder is 0.89, sig-
nificantly higher than that of the other two methods (i.e. 0.60
for NPM+ and 0.46 for DHAC+). This experiment suggests
that the EP-DAG built by TEP-Finder is well organized.

E. Biological Significance

Although we now have deep knowledge of the core pro-
cesses of photosynthesis, the “ancillary components” essential
for function in living cells under dynamic conditions are
largely unexplored [35]. Intriguingly, these ancillary compo-
nents probably evolved as plug-in functional modules to adapt
the core processes to different conditions. Understanding their
functions may allow us to combine these modules in different
organisms, to achieve rapid improvements in the photosyn-
thetic efficiency. The identification of the emerging phenomena
of chloroplast-targeted single knockouts may enable system-
atic analysis of genotype-phenotype connections and provides
a clue on the characterization of specific “ancillary processes”
that support efficient photosynthesis. Note that many of the
ancillary photosynthetic processes down-regulate the capture
of light energy, preventing photodamage but at the cost of
light-capture efficiency. From an evolutionary perspective,
these processes can be viewed as balancing needs for energy
and the avoidance of deleterious effects from photosynthesis.

We first analyzed the identified emerging phenomena from
the gene evolution perspective. Since essential genes are often
slow evolving compared with genes with nonlethal mutant
phenotypes, the genes identified only in the emerging phe-
nomena under fluctuating light varying conditions may evolve
faster than those in the emerging phenomena under smooth
light conditions. The ratio Ka/Ks, which measures the rela-
tive rates of synonymous and nonsynonymous substitutions at
a particular site, is often used for the estimation of evolutionary
rates [22]. In our experiment, the averaged Ka/Ks ratio of
the 50 genes appeared only in the emerging phenomena under

strong and smooth light conditions is 0.164, while the aver-
aged Ka/Ks ratio of the 45 genes identified uniquely under
fluctuating and strong light conditions is 0.192, significantly
higher than the former (permutation test, p-value=0.013).

We then analyzed the emerging phenomena from the per-
spective of photosynthetic functionality. Two emerging phe-
nomena (A and B) were categorized under the same strong
fluctuating light conditions in the middle of the day (be-
tween 500µmolm−2s−1 and 1000µmolm−2s−1 four times
repeated) due to distinctively different photosynthetic pheno-
types (Figure 8 and S2, A, orange; B, blue). The emerging phe-
nomenon A consists of mutant lines AT1G12250, AT1G80030,
AT4G24750, and AT5G03455. They are sensitive to fluctuat-
ing light, showing large extent of decreases in PS II activity
and decreases in qESV (photoprotection) under high light
intensity compared to the low light. Mutant lines in emerg-
ing phenomenon B (AT1G14590, AT1G54580, AT2G40400,
AT3G10470, AT4G31560, AT5G03455, AT5G39830) have
less extent of decreases in PS II activity with higher qESV
indicating less sensitivity to the fluctuating light. As the impor-
tant genes responsive to dynamic light conditions, sensitivity
of mutant would be increased. Thus, for mutant lines that are
shown a sensitive phenotype under the conditions, it indicates
that the mutated genes are responsible for maintaining robust
photosynthesis under the stress conditions. Hence, we hypoth-
esize that the genes in A may contribute to photoprotection in
response to natural light dynamics (see the selected samples
in Figure 8). According to the GO, these genes are involved
in arsenate reductase activity and the photosynthesis-related
biological processes, including arsenate reductase activity and
oxidation-reduction process. Most of them are related to
cellular redox balance, which are important for regulation
photosynthesis, yet mode of function of found genes in this
study is still partly remained elusive [3], [14]. This analysis
may provide new insights and open the new possibility to
understand how plants are adapted dynamic conditions. Mutant
lines in B stay high qE and minor decrease in PS II activity
in the high light indicating those mutants are less sensitive to
dynamic light conditions. It shows that the mutate genes in B
are less likely responsible to adapt fluctuating light conditions.
A functional analysis based on GO shows that these genes
are involved in cell cycle, cell division and protein complex
oligomerization, and protein folding fatty acid biosynthetic
process cytochrome b6f complex assembly. Also, the averaged
Ka/Ks ratio of A and B is 0.24 and 0.22 perspectively,
which is significantly higher than that of randomly selected
chloroplast-targeted genes (permutation test, p-value=0.024
and 0.013).

The biological analysis demonstrates that accurately identi-
fying emerging phenomena from plant phenotyping data may
be valuable towards the characterization of specific ancillary
processes that support efficient photosynthesis.

VI. DISCUSSION AND CONCLUSION

Comprehensive analysis of emerging phenomena is required
to improve our understanding of the quantitative variation
of complex phenotypes and to attribute gene functions [11].
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However, unlike frequent patterns, emerging phenomena may
re-occur frequently or may appear only once during an exper-
imental period, depending on the experimental design. TEP-
Finder is the first tool towards capturing the emerging phe-
nomena in large-scale longitudinal phenotyping experiments,
leading to the identification of the minimum set of distinct
actors needed to produce an undefined, complex aggregate
phenotypic trait. Particularly, TEP-Finder can identify emerg-
ing phenomena in different temporal scales from the data
and also can construct a directed acyclic network (EP-DAG)
for better data management. The Gene Ontology and gene-
gene association based performance evaluation show that TEP-
Finder is better than the existing tools regarding biological
significance.

An important component of TEP-Finder is the meta-
clustering that repeatedly calls NPM with random anchor
points for kernel density estimation. We tested whether the
meta-clustering approach can lead to more robust results.
Specifically, given the same input, we ran TEP-Finder and
NPM+ three times and calculated the differences between the
results of the three runs. Figure S1 shows the average number
of genes per emerging phenomenon (indicated by circle area)
at each level of the EP-DAG. In Figure S1(a), the three runs of
TEP-Finder are similar to each other, indicated by the highly
overlapped circles, whereas the three runs of NPM+, as shown
in Figure S1(b), are distinctively different. In summary, the
adoption of the meta-clustering approach ensures TEP-Finder
to be robust enough for emerging phenomenon mining.

A key parameter in capturing emerging phenomena is K3,
the percentage of significant phenotype values. Unlike K1 and
K2 that define the dimension of an emerging phenomenon,
which is common in pattern recognition, K3 is difficult to
specify. Here we fixed K1 and K2 and varied K3 to explore
rules for choosing K3. Table S1 indicates that with the increase
of K3, the EP-DAG becomes more concise (more shallow and
has less amount of nodes), and the majority of the removed
nodes are intermediate nodes. It suggests that to choose an
optimal K3, we can start with a high value and then gradually
reduce it. At the same time, we should check whether the leaf
nodes (which has the longest time frames) captures long-term
patterns. As a future work, we will develop new algorithms to
automatically optimize the parameters of TEP-Finder.
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[16] Jochen Hipp, Ulrich Güntzer, and Gholamreza Nakhaeizadeh. Algo-
rithms for association rule mining—a general survey and comparison.
ACM sigkdd explorations newsletter, 2(1):58–64, 2000.

[17] Sebastian Kuhlgert, Greg Austic, Robert Zegarac, Isaac Osei-Bonsu,
Donghee Hoh, Martin I Chilvers, Mitchell G Roth, Kevin Bi, Dan
TerAvest, Prabode Weebadde, et al. Multispeq beta: a tool for large-
scale plant phenotyping connected to the open photosynq network. Royal
Society open science, 3(10):160592, 2016.

[18] Pawan Lingras, Farhana Haider, and Matt Triff. Granular meta-clustering
based on hierarchical, network, and temporal connections. Granular
Computing, 1(1):71–92, 2016.

[19] Yongjin Park and Joel S. Bader. How networks change with time.
Bioinformatics, 28(12):40–8, 2012.

[20] Emanuel Parzen. On estimation of a probability density function and
mode. Ann.math.statis, 33(3):1065–1076, 1962.

[21] Jiajie Peng, Hongxiang Li, Yongzhuang Liu, Liran Juan, Qinghua Jiang,
Yadong Wang, and Jin Chen. Intego2: a web tool for measuring
and visualizing gene semantic similarities using gene ontology. BMC
genomics, 17(5):553, 2016.

[22] G. I. Peterson and J Masel. Quantitative prediction of molecular
clock and ka/ks at short timescales. Molecular Biology & Evolution,
26(11):2595–603, 2009.

[23] Resnik and Philip. Using information content to evaluate semantic
similarity in a taxonomy. pp. 448–453, 1995.

[24] Murray Rosenblatt. Remarks on some nonparametric estimates of a
density function. Annals of Mathematical Statistics, 27(3):832–837,
1956.

[25] Michael E Smoot, Keiichiro Ono, Johannes Ruscheinski, Peng-Liang
Wang, and Trey Ideker. Cytoscape 2.8: new features for data integration
and network visualization. Bioinformatics, 27(3):431–432, 2010.

[26] Mahdi Soltanolkotabi, Ehsan Elhamifar, Emmanuel J Candes, et al.
Robust subspace clustering. The Annals of Statistics, 42(2):669–699,
2014.

[27] P Sprent. Introduction to nonparametric estimation. Journal of the
Royal Statistical Society: Series A (Statistics in Society), 172(4):944–
945, 2009.

[28] Alok Kumar Srivastava and Narinder Singh Sahni. Ontovist: A general
purpose ontological visualization tool. Bioinformation, 6(7):288–90,
2011.

[29] Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton,
John Danesh, Paul Downey, Paul Elliott, Jane Green, Martin Landray,
et al. Uk biobank: an open access resource for identifying the causes of

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2018. ; https://doi.org/10.1101/454686doi: bioRxiv preprint 

https://doi.org/10.1101/454686
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

a wide range of complex diseases of middle and old age. PLoS medicine,
12(3):e1001779, 2015.

[30] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case
time complexity for generating all maximal cliques. In International
Computing and Combinatorics Conference, pp. 161–170, 2004.

[31] Peter M Visscher, Naomi R Wray, Qian Zhang, Pamela Sklar, Mark I
McCarthy, Matthew A Brown, and Jian Yang. 10 years of gwas
discovery: biology, function, and translation. The American Journal
of Human Genetics, 101(1):5–22, 2017.

[32] Christian H Weiß. Association rule mining. Wiley StatsRef: Statistics
Reference Online, pp. 1–6, 2014.

[33] Yifan Yang, Lei Xu, Zheyun Feng, Jeffrey A Cruz, Linda J Savage,
David M Kramer, and Jin Chen. Phenocurve: capturing dynamic
phenotype-environment relationships using phenomics data. Bioinfor-
matics, 33(9):1370–1378, 2017.

[34] Guangchuang Yu, Ligen Wang, Yanyan Han, and Qingyu He. clus-
terprofiler: an r package for comparing biological themes among gene
clusters. Omics A Journal of Integrative Biology, 16(5):284–287, 2012.

[35] Xin-Guang Zhu, Stephen P Long, and Donald R Ort. What is the
maximum efficiency with which photosynthesis can convert solar energy
into biomass? Current opinion in biotechnology, 19(2):153–159, 2008.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2018. ; https://doi.org/10.1101/454686doi: bioRxiv preprint 

https://doi.org/10.1101/454686
http://creativecommons.org/licenses/by-nc-nd/4.0/

