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Abstract  

Statistical theory indicates that a flexible model can attain a lower generalization error than an 

inflexible model, provided that the setting is appropriate. This is highly relevant in the context of 

mortality risk prediction for trauma patients, as researchers have focused exclusively on the use of 

generalized linear models for risk prediction, and generalized linear models may be too inflexible 

to capture the potentially complex relationships in trauma data. Due to this, we propose a machine 

learning model, the Trauma Severity Model (TSM), for risk prediction. In order to validate TSM's 

performance, this study compares TSM to three established risk prediction models: the Bayesian 

Logistic Injury Severity Score, the Harborview Assessment for Risk of Mortality, and the Trauma 

Mortality Prediction Model. Our results indicate that TSM has superior performance, and thereby 

provides improved risk prediction.  
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Highlights: 

• We propose an ensemble machine learning model for trauma risk prediction. 

• A hyper-parameter search scheme is proposed for model development.  

• We compare our model to established models for trauma risk prediction.  

• Our model improves over established models for each performance metric considered. 
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1. Background 

Trauma is a global healthcare epidemic, accounting for 9.2% of all deaths and 10.9% of 

disability-adjusted life-years [1]. The potential impact of trauma injuries on one's quality of life 

has inspired several studies on how we can improve the quality of trauma care, and consequently 

improve trauma patient outcomes. However, several of these studies require that we take a trauma 

patient's injury severity (risk of mortality) into account, and there is no consensus as to which risk 

prediction model is most appropriate for use [2-9]. 

Interestingly, careful consideration of the methodologies used to develop these risk prediction 

models indicates that regardless of which model is most appropriate, there may be room for 

substantial improvement in the quality of risk prediction. One reason for this is that several risk 

prediction models have been developed from small data sets [2-5], which implies that these 

models may not represent the population appropriately [10]. Another reason is that every model 

developed from a large data set thus far has been a generalized linear model [6-9], and 

generalized linear models may be insufficient for capturing the potentially complex relationships 

that exist within trauma data.  

For these reasons, our objective is to develop a risk prediction model from machine learning 

algorithms with data from the National Trauma Data Bank (NTDB) and to compare its 

performance to the performance of other established risk prediction models. This is achieved by 

comparing three established risk prediction models – the Bayesian Logistic Injury Severity Score 

(BLISS) [7], the Harborview Assessment for Risk of Mortality (HARM) [8], and the Trauma 

Mortality Prediction Model (TMPM) [9] – to a new machine learning model for risk prediction. 

This machine learning model is the Trauma Severity Model (TSM). 
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2. Methods 

2.1. Data Summary and Processing 

This study was performed using data from the NTDB for patients hospitalized in 2008, 2009, 

2010, and 2012. The NTDB is currently the largest aggregation of trauma data in the United 

States and provides patient demographics, hospital demographics, ICD-9-CM diagnoses codes 

(ICD-9 codes), general trauma assessments, hospital identifiers, physiology values, and in-

hospital mortality [11]. The data set initially consisted of 2,865,867 patient records from 884 

hospitals and 7,283 ICD-9 codes. 

Risk prediction with this data set was formalized as a binary classification task. The input 

variables considered were patient demographics (age and gender), ICD-9 codes, and general 

trauma assessments (comorbidities, Glasgow Coma Scale response scores prescribed by a 

physician, injury mechanism, injury type, and intent of trauma). All input variables except age are 

treated as binary indicators specifying whether or not a patient had that particular condition. For 

Glasgow Coma Scale response scores, the eye response score is represented by 5 binary indicators 

(4 for response scores and 1 for not provided in the dataset), the verbal score is represented by 6 

binary indicator variables (5 for response scores and 1 for not provided in the dataset), and the 

motor score is represented by 7 binary indicators (6 for response scores and 1 for not provided in 

the dataset). Response scores are treated as binary indicators to improve the performance of the 

linear models. The output variable is a binary indicator specifying whether or not the patient died 

prior to discharge from a hospital. 

To ensure that model comparison is fair, we closely followed the data cleaning procedure from 

TMPM's study, which is in accordance with the data cleaning procedures from BLISS and 

HARM's studies. For patient selection, this involved excluding patients that had burns or an ICD-
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9 code unrelated to trauma (e.g., poisoning, drowning, or suffocation) (193,606), were admitted to 

a hospital that did not maintain complete documentation of relevant trauma diagnoses (655,440), 

were missing data (for age, comorbidities, gender, injury mechanism, injury type, intent of 

trauma, and outcome) (335,980), had pre-hospital mortality (60,234), were transferred to another 

hospital (848,885), were discharged to hospice care or another acute care hospital (16,429), 

withdrew care (18,395), or were less than one year old (47,693).  

There are 2 differences between the patient selection process in this study and that in TMPM's 

study. One difference is how we selected hospitals from which we selected patients. In TMPM's 

study, the data set consisted of patients from hospitals that admitted at least 500 patients during   

at least 1 year of the study (hospitals with “substantial trauma experience”) [9]. We instead used 

all patients that were admitted to any hospital that kept complete records of all ICD-9 codes that 

were considered relevant in TMPM’s study. The reasoning for this is that some trauma centers 

that would qualify as having substantial trauma experience omitted relevant ICD-9 codes from 

their registry, and this could harm each model's ability to provide accurate risk predictions [12]. 

Another difference is that TMPM's study ensured complete documentation only for age, gender, 

and outcome when determining which patients to include. We extended this to also ensure 

complete documentation for comorbidities, injury mechanism, injury type, and intent of trauma. 

The reasoning for this is that (1) no additional patients were excluded because of these criteria, (2) 

this information is typically known at the time of admission and is relevant in determining patient 

outcome, and (3) no risk prediction model has ever given consideration to such a combination of 

variables. 

Once the patient selection process was completed, an ICD-9 code combining procedure was 

performed, which followed the ICD-9 code combining procedure in TMPM's study exactly 
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(please see [9] for an overview of this procedure). This ICD-9 code cleaning procedure was 

followed by an additional pre-processing step that combined any ICD-9 code that appeared fewer 

than 5 times with the closest corresponding ICD-9 code (based on expert consensus). This 

consisted of combining a specific injury with a more general injury; an open injury with a closed 

injury; or a group of highly similar injuries that were poorly represented to one single injury. This 

additional pre-processing step improved the performance of all models in this study. 

The patient selection process kept 1,385,795 patient records out of 2,865,867 patient records and 

2,033 ICD-9 codes out of 7,283 ICD-9 codes. The ICD-9 code cleaning procedure from TMPM's 

study collapsed these 2,033 ICD-9 codes into 1,272 binary indicators representing ICD-9 codes. 

Combining ICD-9 codes that appeared fewer than five times with what was determined to be the 

closest corresponding ICD-9 code collapsed these 1,272 binary indicators into 1,234 binary 

indicators. There are 74 other variables that represent patient demographics, general trauma 

assessments, and patient outcome, which leaves us with a sparse 1,385,795 by 1,308 matrix (all 

variables are binary indicators except age, which is numeric). Table 1 provides a brief summary 

of the demographics for this processed data set. 

 

2.2. Experimental Setup 

We considered two experiments for this study. The first experiment developed TSM, BLISS, 

HARM, and TMPM using information pertaining to ICD-9 codes in the processed data set as 

input variables (HARM and TMPM utilize dimensionality reduction procedures on ICD-9 codes). 

This first experiment will be referred to as the “ICD-9 experiment.” The second experiment 

developed TSM, BLISS, HARM, and TMPM using patient demographics (age and gender), 

information pertaining to ICD-9 codes, and general trauma assessments (comorbidities, Glasgow 
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Coma Scale response scores, injury mechanism, injury type, and intent of trauma) in the 

processed data set as input variables. The second experiment will be referred to as the “augmented 

experiment.”  

To ensure appropriate model development and assessment for these experiments, the processed 

data set was randomly divided into a training set for model development (60% of the entire data 

set), a validation set for optimizing model performance (20% of the entire data set), and a test set 

for model assessment (20% of the entire data set). Model development was performed using the 

h2o [13] and sandwich [14] packages in the R statistical software (Version 3.3.1) [15]. 

Optimizing model performance concerns minimizing log-loss (LL) on the validation set for these 

experiments [16]. 

 

2.3. Model Development 

2.3.1. BLISS 

BLISS utilizes Bayesian logistic regression for risk prediction. To re-develop BLISS for this 

study, two different Bayesian logistic regression models for each experiment, where the prior 

distribution (a Laplace prior or a Gaussian prior) was varied. The model that had the lowest LL on 

the validation set was selected as BLISS for that experiment.  

 

2.3.2. HARM 

HARM is a logistic regression model that takes advantage of the hierarchical structure of ICD-9 

codes to reduce dimensionality. Specifically, ICD-9 codes and patient demographics are 

combined together to create new variables (based on expert consensus) that replace ICD-9 codes 

and patient demographics. These new variables are selected as the input variables for HARM 
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using forward selection [16].  

To develop HARM for this study, HARM's variable combining procedure was followed as 

closely as possible with the processed data set – the NTDB does not account for diagnoses related 

to chronic obstructive pulmonary disease and ischemic heart disease, which correspond to three 

input variables in the original HARM model. Input variables in the data set that were not dealt 

with in HARM's original study were still considered for the forward selection procedure, but these 

input variables were not combined with any other input variable. For the ICD-9 experiment, ICD-

9 codes that were not replaced and new variables for ICD-9 codes were considered as input 

variables. For the augmented experiment, new variables for ICD-9 codes and patient 

demographics; ICD-9 codes and patient demographics not replaced; and general trauma 

assessments were considered as input variables. Forward selection was performed until LL on the 

validation set no longer improved for each experiment. 

 

2.3.3. TMPM 

TMPM is a probit regression model that maps ICD-9 codes to numeric severity values (“MARC 

values”) in order to reduce dimensionality (please see [9] for an overview of TMPM's model 

development). There is only one difference between our model development procedure for 

TMPM and that specified in its original study. TMPM was originally developed using 

information pertaining to a patient's five largest MARC values as input variables. We instead used 

forward selection to select the input variables for TMPM. For the ICD-9 experiment, every 

MARC value a patient may have as well as first-order interactions between the five largest 

MARC values were considered for forward selection. For the augmented experiment, the same 

input variables in the ICD-9 experiment as well as patient demographics and general trauma 
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assessments were considered for forward selection. Forward selection was performed until LL did 

not improve on the validation set. We found that this forward selection procedure improved LL of 

TMPM relative to following TMPM's model development procedure exactly. 

 

2.3.4. TSM 

TSM was developed using stacked generalization [17, 18]. Our approach to stacked 

generalization followed this sequence. First, several machine learning models, or base models, are 

created from four machine learning algorithms: logistic regression with the elastic net penalty 

[20], random forests [21], gradient boosted machines [22], and feed-forward neural networks 

[23]. The feed-forward neural networks were developed with the AdaDelta optimizer [24] and the 

Hogwild stochastic gradient update scheme [25]. During the training process, five-fold cross-

validation was used to gather approximate out-of-sample risk predictions (cross-validated risk 

predictions) from each base model. Each base model’s cross-validated risk predictions are then 

combined to create a “meta-learner training set,” which is used to develop a higher-level model (a 

meta-learner). For clarity, the meta-learner training set consists of each base model's cross-

validated risk predictions as the input variables, and a binary indicator specifying whether or not 

the corresponding patient died prior to discharge as the output variable. 

The meta-learner for TSM is a gradient boosted machine, which was developed using an 

exhaustive grid search where the only hyper-parameter varied was the maximum depth the trees 

in a gradient boosted machine were allowed to grow (from 1 to 16 with an increment of 1). All 

other hyper-parameters were set to their default values in h2o except the learning rate (which was 

set to 0.05), the annealing parameter for the learning rate (which was set to 0.99), and the number 

of trees developed (the default early stopping protocol in h2o was used with the validation set to 
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determine how many trees to develop) [25]. The gradient boosted machine with the lowest LL on 

the validation set was selected as the meta-learner for TSM. 

 

2.3.5. TSM Hyper-Parameter Search Procedure 

A benefit of using stacked generalization with cross-validation is that the meta-learner for TSM is 

developed from the same patients used to develop its base models. This allows appropriate 

comparison between TSM’s base models, TSM’s meta-learner, BLISS, HARM, and TMPM. 

However, in order to ensure appropriate model comparison, strong performing base models must 

be developed, which depends on the configuration of the hyper-parameter space for a hyper-

parameter search procedure. This can be problematic in practice, as a hyper-parameter space is 

user-defined, and the user may configure the hyper-parameter space inappropriately [26]. To 

avoid this potential issue, we propose the following search procedure for hyper-parameter 

optimization. 

First, a manual search is performed to determine an initial hyper-parameter space configuration 

for a machine learning algorithm. Then, machine learning models are developed using a random 

search for hyper-parameters within this initial configuration [27]. After 5 models are developed 

from this initial hyper-parameter space (10 for neural networks due to its larger number of hyper- 

parameters), a checking procedure is performed. For clarity when describing the sequence of this 

checking procedure, hyper-parameters denote the inputs of a machine learning algorithm, input 

values denote the hyper-parameters used to develop a machine learning model, and hyper-

parameter interval denotes a dimension of a hyper-parameter space. (1) The top 2 performing 

models are selected based on their LL on the validation set (3 for neural networks). (2) The input 

values of these selected models are examined to determine where they lie on their corresponding 
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hyper-parameter intervals. (3) For every hyper-parameter interval where the corresponding input 

values of all selected models are in the top (or bottom) quarter of their hyper-parameter intervals, 

shift these hyper-parameter intervals such that the top (or bottom) quarter of these original hyper-

parameter intervals now represents the bottom (or top) quarter of new hyper-parameter intervals.  

If none of the hyper-parameter intervals shift after 5 (10) models are developed, then this 

checking procedure is performed after each subsequent model is developed and the checking 

procedure will give consideration to all models developed in this hyper-parameter space. If a 

hyper-parameter interval does shift, then the checking procedure is not performed until 5 (10) new 

models are developed, and the checking procedure will only give consideration to the models 

developed in this new hyper-parameter space. For this study, this search procedure was performed  

until 40 models were developed from each machine learning algorithm except neural networks, 

from which 80 models were developed. Table 2 provides the initial hyper-parameter space 

configuration of each algorithm. 

 

2.3.6. Machine Learning Model Calibration 

Naively assessing the probabilistic calibration of each model in this study may be problematic, as 

non-linear machine learning models (random forests, gradient boosted machines, and neural 

networks) can have poor probabilistic calibration when the outcome event is rare, which Table 1 

indicates [28, 29]. To avoid this potential issue, a balanced training set was developed for creating 

these non-linear models (all non-linear base models and meta-learner for TSM). This involved 

randomly over-sampling patients in the training set until the balanced training set was 

approximately 5 times the size of the original training set, and the number of patients who 

survived care was approximately the same as the number of patients who did not survive care 
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[30]. Further, the base model from each non-linear algorithm that had the lowest LL on the 

validation set as well as the meta-learner for TSM were re-calibrated using isotonic regression 

before assessing their performance on the test set [28]. These isotonic regression models were 

developed with the prediction outputs of these models on the validation set. 

 

2.4. Model Assessment 

The performance of the established risk prediction models; TSM; and the logistic regression 

model developed with the elastic net penalty, random forest, gradient boosted machine, and 

neural network in TSM’s ensemble that has the lowest log-loss on the validation set (selected base 

models) are evaluated with six performance metrics, which may be divided into three groups: 

threshold metrics, rank metrics, and probabilistic calibration metrics (calibration metrics). The 

threshold metrics are classification accuracy (ACC) and F-score (FSC). These metrics are 

computed based on whether or not a risk prediction is above a user-specified threshold value. 

ACC and FSC range from 0 to 1, where larger values indicate better performance. A threshold of 

0.5 was used when computing these metrics [31]. 

The rank metrics used in this study are the area under the receiver operating characteristic curve 

(ROC) [32] and the area under the precision-recall curve (APR) [33]. Rank metrics depend on the 

ordering of outcomes, and not the actual risk predictions. Provided that this ordering is preserved, 

the range of a model’s risk predictions does not affect its rank metric. These metrics measure how 

well positive cases (survival) are ordered before negative cases (mortality) and can be viewed as a 

summary of model performance across all possible thresholds. The ROC statistic may range from 

approximately 0.5 to 1, and APR may range from 0 to 1. Larger values indicate better 

performance. 
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Calibration metrics assess how well a risk prediction corresponds to a patient's true risk of 

mortality. The calibration metrics considered in this study are log-loss (LL) [16] and the Hosmer-

Lemeshow statistic (HL) [34]. For these metrics, smaller values indicate better performance, 

where 0 represents perfect probabilistic calibration. 

In addition to assessing the models with these performance metrics, calibration curves [34] and 

precision-recall curves [35] were developed for model assessment. The 10 largest variable 

importance measures from the selected base models of the augmented experiment were also 

compared [15, 36]. Model assessment was performed using the boot [37, 38], Metrics [39], and 

ResourceSelection [40] packages in the R statistical software. Variable importance measures were 

gathered using the h2o package [13]. 

 

3. Results 

3.1. Model Performance and Variable Importance 

The performance metrics of each model from the ICD-9 experiment (where only information 

pertaining to ICD-9 codes in the processed data set was considered as input variables) are 

displayed in Table 3. For the ICD-9 experiment, TSM demonstrates an improvement over BLISS, 

HARM, and TMPM for each performance metric. TSM also demonstrates an improvement over 

its base models for nearly every performance metric (the selected random forest model has better 

HL). The performance metrics of each model from the augmented experiment are displayed in 

Table 4. Every model greatly improved in performance when augmented to account for patient 

demographics (age and gender) as well as general trauma assessments (comorbidities, Glasgow 

Coma Scale response scores, injury mechanism, injury type, and intent of trauma). But, TSM 

outperforms every other model for each performance metric. No single base model in TSM’s 
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ensemble consistently outperforms all other base models for every performance metric in each 

experiment. BLISS outperforms TSM’s base models for most performance metrics in each 

experiment. 

The 10 largest variable importance measures from the selected base models of the augmented 

experiment are displayed in Figure 1. Each model ranks the significance of their input variables 

differently. But, a Glasgow Coma Scale eye response score of 1 and a patient’s age were amongst 

the 10 largest variable important measures for all selected base models. In general, each selected 

base models heavily relies on information pertaining to head trauma at the time of admission 

when predicting patient outcomes. The models differed in that the selected logistic regression 

model developed with the elastic net penalty placed a large variable importance measure on neck 

sprains; the random forest placed a large variable importance measure on congestive heart failure; 

the gradient boosted machine placed a large variable importance measure on lung injury; and the 

neural network placed a large variable importance measure on being physically struck by a person 

or object.  

The calibration curves of TSM, BLISS, HARM, and TMPM models from the ICD-9 experiment 

are displayed in Figure 2; the calibration curves of TSM, BLISS, HARM, and TMPM models 

from the augmented experiment are displayed in Figure 3. TSM and BLISS consistently provide 

well-calibrated prediction outputs, whereas TMPM and HARM do not provide well-calibrated 

prediction outputs for the ICD-9 experiment. The precision-recall curves of TSM, BLISS, 

HARM, and TMPM models from the ICD-9 experiment are displayed in Figure 4; the precision-

recall curves of TSM, BLISS, HARM, and TMPM models from the augmented experiment are 

displayed in Figure 5. TSM generally displays higher precision and recall than BLISS, HARM, 

and TMPM for all thresholds in both experiments.  
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Figure 6 shows the performance of our hyper-parameter search scheme for the ICD-9 experiment, 

and Figure 7 shows the performance of our hyper-parameter search scheme for the augmented 

experiment. Figure 6 demonstrates that our hyper-parameter search scheme was particularly 

successful when developing random forest models, as hyper-parameter space shifts correspond to 

decreasing LL on the validation set. Figure 7 shows that no hyper-parameter space shifting 

occurred during this experiment. Table 5 displays the hyper-parameters of the selected machine 

learning base models from each experiment (the models with lowest LL on the validation set). 

The maximum tree depth hyper-parameter of the meta-learner selected for TSM was 1 in both 

experiments.  

 

3.2. Discussion 

Trauma is the leading cause of death for people younger than 44, and the fourth leading cause of 

death for all age groups in the United States [41]. As healthcare spending has grown to 17.8% of 

the Gross Domestic Product, it is increasingly important to take the cost of care into consideration 

when improving the quality of trauma care [42]. But in order to achieve the goals of improving 

the quality of trauma care while controlling the cost of care, we must utilize the best possible risk 

prediction models in trauma system evaluations. If risk prediction can be improved, so too can the 

quality of trauma care, as better risk prediction models allow for a better evaluation of novel 

treatments, interventions, and policies. This study demonstrates that TSM, a machine learning 

model, outperforms established risk prediction on every performance metric considered in this 

study. 

There is controversy regarding the utility of machine learning in healthcare [43]. This is in part 

motivated by several studies that compared generalized linear models to individual machine 
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learning models for risk prediction, often with contradictory results [44-47]. This phenomenon is 

in part due to the fact that no single algorithm is inherently better than all others – depending on 

the performance metric and the complexity of the data, the best predictive model may be 

developed from any algorithm [48, 49]. This claim is evidenced by the results of this study, as 

TSM’s base models outperform established risk prediction models on some performance metrics, 

while established risk prediction models outperform TSM’s base models on other performance 

metrics. 

What separates an ensemble machine learning approach, such as stacked generalization, from a 

methodology where a single model is selected and assessed is that, if performed appropriately, 

stacked generalization will utilize its base models' strengths while compensating for their 

weaknesses. As a result, it is likely that a well-designed ensemble machine learning model 

developed from stacked generalization will obtain better predictive performance than any base 

model in its ensemble [17, 18, 50-52]. This is also indicated by the results in this study, as TSM 

outperforms its base models on nearly every performance metric. 

The challenge with developing a well-designed ensemble machine learning model is that the 

ensemble must consist of base models that have strong predictive performance (ensemble 

strength) as well as base models that provide different prediction outputs for the same conditions 

(ensemble diversity). Our hyper-parameter search scheme attempts to address both of these, as a 

random search can provide both ensemble strength and ensemble diversity with regards to a 

hyper-parameter space, and hyper-parameter space shifting attempts to improve hyper-parameter 

space configuration if the optimal hyper-parameters lie beyond the initial hyper-parameter space 

configured.  

While our hyper-parameter search scheme worked for this study, our search scheme is not 
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guaranteed to work for all settings, as it is dependent on the sensitivity of the initial hyper-

parameter space configured as well as the state of the random number generator. Issues pertaining 

to sensitivity may be addressed by taking careful measures to configure an appropriate initial 

hyper-parameter space. Issues pertaining to random number generation may be addressed by 

developing a large number of models, examining a large number of models with regards to a 

small portion of each hyper-parameter interval, and specifying a small distance to shift a hyper-

parameter interval. 

A potential concern with the results of this study is that our hyper-parameter search procedure 

may have been insufficient due to BLISS outperforming the non-linear base models on most 

performance metrics. But, this is a consequence of re-calibrating these non-linear models. In 

particular, due to the tradeoff between discrimination and probabilistic calibration [53], the ROC 

of the random forest, gradient boosted machine, and neural network base models selected for 

model assessment diminished. Although this improved the probabilistic calibration of these 

models, some models, such as the selected gradient boosted machine in the ICD-9 experiment, 

were so poorly calibrated that their overall performance appeared poor when re-calibrated.  

While this study highlights the strengths of developing an ensemble machine learning model, 

most medical studies do not require anything more sophisticated than a generalized linear model. 

This is due to their low computational cost, their simple functional form (which captures the 

underlying relationships in most medical data sets), and the interpretability as well as consistency 

of their weights. Arguably, generalized linear models could still be considered most appropriate 

for mortality risk prediction with trauma patients, as the established risk prediction models have 

strong predictive performance, and it is currently unknown whether or not TSM will display a 

clinically significant improvement over these established risk prediction models in other settings.  
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However, as modeling problems with healthcare data become increasingly complex, non-linear 

machine learning algorithms should be considered, as they can automatically find non-linear 

relationships in data [16]. Generalized linear models, on the other hand, would require extensive 

feature engineering for such data, and depending on the setting such measures will not result in 

the development of a model that performs as well as a model developed from machine learning 

algorithms. This claim is partly validated by our results, as HARM, which is developed using 

extensive feature engineering based on clinical intuition and expert consensus, generally had 

worse performance metrics than TSM’s base models. Further, the variable importance measures 

of the non-linear models from Figure 1 reflect reality, as firearm injuries (ranked highly by the 

random forest) as well as vehicular accidents (ranked highly by the neural network) are 

considered significant variables in predicting patient outcome [11]. This indicates that the variable 

importance measures of non-linear machine learning models can also have value in studies 

necessitating interpretability. 

To address a major concern with the use of machine learning algorithms in healthcare, these 

results do not imply that the prediction outputs of machine learning models should replace expert 

opinion. But, the use of machine learning models with expert opinion can greatly improve patient 

care in a variety of settings, as indicated in [54]. 

 

4. Conclusions 

The Trauma Severity Model improves over established risk prediction models for every 

performance metric considered in this study, which gives it prognostic value in trauma system 

evaluations. The hyper-parameter search scheme proposed for this study performed well and 

developed strong performing machine learning models. The performance of an ensemble machine 
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learning model on a well-studied problem in epidemiology indicates that ensemble machine 

learning approaches may be fruitful for other complex problems in healthcare. 
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Demographic Characteristics 

Age (Interquartile Range) (23, 61) 

Male (%) 63.93 

Number of Hospitals* 713 

Mortality before Discharge (%) 3.77 

Racial Characteristics 

White (%) 64.52 

Black or African American (%) 16.17 

Hispanic|| (%) 12.74 

Asian (%) 1.93 

Native American/Native  
Hawaiian/Pacific Islander (%) 

0.79 

Other (%) 10.82 

Not Recorded (%) 5.77 

 (*) Specific hospital demographics not displayed due to this information changing each year in  
       NTDB. 
(||) Hispanic is denoted as an ethnicity in NTDB data, not race. 

Table 1: Demographics for the processed data set. 
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Hyper-parameter ICD-9 experiment Augmented experiment 

Logistic Regression with Elastic Net Penalty 

ɑ 𝓤(0, 1)a 𝓤(0, 1) 

λ 10 𝓤d (-10, -1) 10 𝓤d (-10, -1) 

Random Forest 

#Trees 𝓤d(50, 150)a 𝓤d(50, 150) 

MNLb 𝓤d(1, 75) 𝓤d(1, 75) 

NVSc 𝓤d(40, 150) 𝓤d(40, 150) 

Max. Tree Depth 𝓤d(1, 50) 𝓤d(60, 180) 

Gradient Boosted Machine 

#Trees 𝓤d(10, 80) 𝓤d(10, 80) 

Max. Tree Depth 𝓤d(1, 15) 𝓤d(1, 15) 

Learning rate 𝓤(0.05, 0.50) 𝓤(0.05, 0.50) 

Annealing  𝓤(0.850, 0.999) 𝓤(0.850, 0.999) 

Neural Networks 

#Hidden layers 𝓤d(1, 4) 𝓤d(1, 4) 

#Neurons 𝓤d(1, 211-#Hidden Layers) 𝓤d(1, 211-#Hidden Layers) 

Activation function ReLU or Hyperbolic Tangent ReLU or Hyperbolic Tangent 

Dropout ratesd 𝓤(0, 0.33) 𝓤(0, 0.33) 

Epochs 𝓤d(10, 10,000) 𝓤d(10, 10,000) 

⍴e 𝓤(0.75, 0.999) 𝓤(0.75, 0.999) 

𝜀e 10𝓤(-12, -3) 10𝓤(-12, -3) 

 
(a) 𝓤(a, b) denotes uniform continuous distribution from a to b, 𝓤d(a, b) denotes uniform  
      discrete distribution from a to b. 
(b) MNL: minimum number of observations in a leaf.  
(c) NVS: number of variables used in each split.  
(d) The dropout rate was allowed to differ for each hidden layer, as this improved predictive 
performance. 
(e) Hyper-parameters from the AdaDelta optimizer. 

Table 2: Initial hyper-parameter space configured for each machine learning algorithm. The 

number of trees in a random forest was not allowed to shift during our hyper-parameter search 

procedure. 
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Model ACC FSC ROC APR HL LL 

TSM 
0.968 

(3.368∙10-4) 
0.404 

(5.172∙10-3) 
0.912 

(1.556∙10-3) 
0.489 

(5.387∙10-3) 
84.400 

(17.183) 
0.098 

(8.597∙10-4) 

BLISS 
0.967 

(3.420∙10-4) 
0.369 

(5.097∙10-3) 
0.900 

(1.747∙10-3) 
0.448 

(5.518∙10-3) 
556.357 
(38.350) 

0.108 
(9.439∙10-4) 

HARM 
0.965 

(3.426∙10-4) 
0.299 

(4.798∙10-3) 
0.866 

(2.027∙10-3) 
0.378 

(5.021∙10-3) 
140.257 
(22.619) 

0.114 
(9.230∙10-4) 

TMPM 
0.966 

(3.421∙10-4) 
0.336 

(5.135∙10-3) 
0.898 

(1.753∙10-3) 
0.435 

(5.450∙10-3) 
154.692 
(40.537) 

0.105 
(9.221∙10-4) 

PLM 
0.966 

(3.419∙10-4) 
0.371 

(5.076∙10-3) 
0.899 

(1.749∙10-3) 
0.448 

(5.511∙10-3) 
529.964 
(37.479) 

0.108 
(9.462∙10-4) 

RF 
0.967 

(3.369∙10-4) 
0.364 

(5.132∙10-3) 
0.899 

(1.727∙10-3) 
0.452 

(5.224∙10-3) 
77.420 

(16.719) 
0.104 

(8.880∙10-4) 

GBM 
0.966 

(3.475∙10-4) 
0.313 

(5.254∙10-3) 
0.887 

(1.896∙10-3) 
0.420 

(5.439∙10-3) 
2510.427 
(60.227) 

0.114 
(7.794∙10-4) 

NN 
0.966 

(3.452∙10-4) 
0.291 

(5.111∙10-3) 
0.902 

(1.678∙10-3) 
0.434 

(5.419∙10-3) 
305.524 
(29.035) 

0.104 
(8.563∙10-4) 

 

Table 3: Model comparison for the ICD-9 experiment. Standard error of the metric is denoted in 

the parenthesis. TSM consistently has superior performance under each performance metric 

except for the HL statistic, which was attained by the random forest base model. PLM, RF, GBM, 

and NN denote logistic regression with the elastic net penalty, random forest, gradient boosted 

machine, and neural network, respectively. 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 29, 2018. ; https://doi.org/10.1101/210575doi: bioRxiv preprint 

https://doi.org/10.1101/210575
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 28 

Model ACC FSC ROC APR HL LL 

TSM 
0.976 

(2.964∙10-4) 
0.621 

(4.277∙10-3) 
0.965 

(7.936∙10-4) 
0.696 

(4.485∙10-3) 
23.341 

(14.147) 
6.889∙10-2 

(7.165∙10-4) 

BLISS 
0.975 

(2.925∙10-4) 
0.601 

(4.235∙10-3) 
0.957 

(9.828∙10-4) 
0.665 

(4.795∙10-3) 
95.063 

(17.530) 
7.498∙10-2 

(7.676∙10-4) 

HARM 
0.973 

(2.972∙10-4) 
0.564 

(4.353∙10-3) 
0.955 

(9.914∙10-4) 
0.631 

(5.086∙10-3) 
115.840 
(16.765) 

7.810∙10-2  
(7.416∙10-4) 

TMPM 
0.973 

(2.992∙10-4) 
0.573 

(4.378∙10-3) 
0.958 

(9.118∙10-4) 
0.643 

(4.771∙10-3) 
135.461 
(84.870) 

7.577∙10-2  
(7.472∙10-4) 

PLM 
0.974 

(2.949∙10-4) 
0.593 

(4.291∙10-3) 
0.955 

(1.007∙10-4) 
0.653 

(4.862∙10-3) 
96.256 

(16.654) 
7.599∙10-2  

(7.719∙10-4) 

RF 
0.974 

(2.996∙10-4) 
0.577 

(4.456∙10-3) 
0.957 

(8.913∙10-4) 
0.653 

(4.641∙10-3) 
40.772 

(21.683) 
7.608∙10-2  

(7.449∙10-4) 

GBM 
0.974 

(3.063∙10-4) 
0.561 

(4.569∙10-3) 
0.957 

(9.171∙10-4) 
0.641 

(5.060∙10-3) 
135.050 
(18.694) 

7.644∙10-2  
(7.136∙10-4) 

NN 
0.971 

(3.193∙10-4) 
0.540 

(4.528∙10-3) 
0.955 

(1.052∙10-4) 
0.598 

(5.322∙10-3) 
39.630 

(12.818) 
7.780∙10-2  

(7.608∙10-4) 

 

Table 4: Model performance comparison for the augmented experiment. Standard error of the 

metric is denoted in the parenthesis. TSM consistently has superior performance under each 

metric. PLM, RF, GBM, and NN denote logistic regression with the elastic net penalty, random 

forest, gradient boosted machine, and neural network, respectively. 
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Hyper-parameter ICD-9 Experiment Augmented Experiment 

Logistic Regression with Elastic Net Penalty 

λ 10-4 10-4 

𝛼  0.845 0.720 

Random Forest 

#Trees 83 138 

MNLa 29 70 

NVSb 70 107 

Max. Tree Depth 157 71 

Gradient Boosted Machine 

#Trees 80 66 

Max. Tree Depth 15 8 

Learning rate 0.670 0.250 

Annealing 0.962 0.984 

Neural Network 

#Neurons (41, 42, 12, 49) (13, 60, 35, 62) 

Activation function ReLU ReLU 

Dropout rates (0.15, 0.03, 0.28, 0.31) (0.02, 0.01, 0.23, 0.32) 

Epochs 163 91 

⍴ 0.978 0.991 

ε  3.162∙10-10 10-10 

(a) MNL: minimum number of observations in a leaf.  
(b) NVS: number of variables used in each split.  
 
Table 5: Hyper-parameters of the selected base models from each experiment. 
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Figure 1: 10 largest variable importance measures of the selected base models from TSM’s 

ensemble for the augmented experiment. The selected logistic regression model developed with 

the elastic net penalty is denoted by (a), random forest by (b), gradient boosted machine by (c), 

and neural network by (d). Further, GCS denotes Glasgow Coma Scale, CT denotes cause of 

trauma, LC denotes loss of consciousness, NLC denotes no loss of consciousness, U denotes 

unknown, and SH denotes subdural hemorrhage. 

 

 

 

 

 

(a) (b) 

(c) (d) 
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Figure 2: Calibration curves for TSM, HARM, BLISS, and TMPM models from the ICD-9 

experiment. The grey line represents perfect probabilistic calibration. TSM and TMPM provide 

well-calibrated prediction outputs. 

 

 

 

 

 

 

 

 

 

 

Figure 3: Calibration curves for TSM, HARM, BLISS, and TMPM models from the augmented 

experiment. The grey line represents perfect probabilistic calibration. Every model provides well-

calibrated prediction outputs. 
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Figure 4: Precision-recall curves for TSM, BLISS, HARM, and TMPM models from the ICD-9 

experiment. TSM generally had higher precision and recall for all thresholds. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Precision-recall curves for TSM, BLISS, HARM, and TMPM models from the 

augmented experiment. TSM generally had higher precision and recall for all thresholds. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 29, 2018. ; https://doi.org/10.1101/210575doi: bioRxiv preprint 

https://doi.org/10.1101/210575
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 33 

 

 

 

 

 

 

 

 

Figure 6: Log-loss on the validation set (validation LL) for the model that had the lowest 

validation LL after each iteration of our hyper-parameter search procedure from the ICD-9 

experiment. The hyper-parameter space shifted four times for the random forest algorithm, and 

each shift is associated with a decrease in validation LL. Shifts are denoted by a black triangle 

(▲). 

 

 

 

 

 

 

 

 

 

Figure 7: Log-loss on the validation set (validation LL) for the model that had the lowest 

validation LL after each iteration of our hyper-parameter search procedure from the augmented 

experiment. The hyper-parameter space did not shift for any hyper-parameter search.  
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Summary: 

Previous studies on trauma mortality prediction from ICD-9 codes (800-959.9) have focused on 

the use of generalized linear models for risk prediction. Although this has resulted in beneficial 

mortality prediction models, there are a variety of other algorithms that may lead to the 

development of a model with even better predictive performance. In this study, we have 

developed several predictive models from different machine learning algorithms, and we have 

compared their predictive performance to the performance of established, widely used trauma risk 

prediction models. Our results indicate that these individual machine learning models have 

comparable performance to the established trauma risk prediction models. However, combining 

these machine learning models into an ensemble (using stacked generalization) leads to the 

development of a model with better predictive performance than the established trauma risk 

prediction models for each performance metric considered. Previously, stacked generalization has 

seldom been considered in this setting. This study indicates that intensive data-driven approaches 

can improve our ability to predict mortality risk of trauma patients, and thereby delineate patients 

in need of aggressive care. 
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