Microbial Cells Harboring a Mitochondrial Gene Are Capable of CO2 Capture

Yanchao Zhoua,*, Lan Ouyanga,*, Xiao Yia,*, Tao Ganab,*, Jinhuan Qia,*, Yulin Wan,*, Yuchuan Wangc, Shanshan Ana, Yunfan Shia, Wei Yanga, Wenze Chen,*, Zhiyao Luo,a, Jing Lia,d, Jun Luo,e, Xiren Nuertai,a, Xiang Zha,a, Fan Yanga, Beibei Zhao,a, Weiwei Zhang,a, Zi-Wei Ye,f, Xiaoxiao Zhang,a, Shaoping Wenga, Qiuyun Lia, Weiguo Caoad & Jianguo Hea

aState Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Biomedical Center, Lab of Microbial Metabolic Engineering and Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
bDepartment of Biotechnology, School of Basic Medicine, Gannan Medical University, Ganzhou 34100, China.
cSchool of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
dDepartment of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.
*Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, USA.
fDepartment of Microbiology, The University of Hong Kong, China.

*These authors contributed equally to this work.

Correspondence and requests for materials should be addressed to Q.L. (lsslqy@mail.sysu.edu.cn), W.C. (wgc@clemson.edu) or to J.H. (lsshjg@mail.sysu.edu.cn)
ABSTRACT Global warming is escalating with increased temperatures reported worldwide. Given the enormous land mass on the planet, biological capture of CO$_2$ remains a viable approach to mitigate the crisis as it is economical and easy to implement. In this study, a gene capable of CO$_2$ capture was identified via selection in minimal media. This mitochondrial gene named as \textit{OGI} encodes the OK/SW-CL.16 protein and shares homology with cytochrome oxidase subunit III of various species and PII uridylyl-transferase from \textit{Loktanella vestfoldensis} SKA53. CO$_2$ capture experiments indicate that δ^{13}C was substantially higher in the cells harboring the gene \textit{OGI} than the control in the nutrition-poor media. This study suggests that CO$_2$ capture using engineered microorganisms in barren land can be exploited to address the soaring CO$_2$ level in the atmosphere, opening up vast land resources to cope with global warming.

IMPORTANCE Global warming crisis is deteriorating with increased CO2 levels in the atmosphere each year. Action must be taken before catastrophic consequences occur in the not-so-distant future. Biological capture of CO2 is a feasible approach to alleviate the current crisis. We have identified a mitochondrial gene which demonstrated CO2 utilization capability. Data presented in this study suggest that CO2 capture using engineered microorganisms can be harnessed to address the ever-rising CO2 level in the atmosphere.

KEYWORDS CO2 capture, OK/SW-CL.16, δ^{13}C, cytochrome oxidase subunit III
It is widely believed that the combustion of fossil fuel contributes to the rising
CO₂ level in the atmosphere, by a surge of estimated 100 ppm since its pre-industrial
level¹. Global temperature has risen by more than half a degree in the past 50 years as
a result of greenhouse gas emissions. Current technologies for carbon capture and
storage and chemical fixation of CO₂ are varied². The amount of CO₂ captured
relative to the magnitude of CO₂ emitted and energy required are two major concerns.
From this point of view, biological CO₂ capture is a viable approach with minimal
energy demand. Here we describe the cloning of a mitochondrial gene which is able
to capture CO₂, and the engineered microbes showed great potential in addressing the
global warming issues.

Results

To search for genes that can capture CO₂, we constructed and screened a random
DNA library. The effort has ended with a sequence from an unknown DNA library,
which shares homology with the genome of Homo sapiens haplogroup H63
mitochondrion (Supplementary Fig. S1) and gave rise to Escherichia coli colonies in
nitrogen free media. More importantly, these colonies were later shown to be able to
grow on carbon deficient media. Supplement in rich media Luria Broth with vitamin
C was essential for the successful sequencing of the positive clone pOG, suggesting
that the OG-encoded protein might catalyzes a stressful oxidative reaction. The
protein encoded in the subclone pOG1 is identical to a known protein OK/SW-CL.16³,
which shares homology with PII uridylyl-transferase from L. vestfoldensis SKA53
and cytochrome oxidase subunit III from Macaca mulatta (Supplementary Fig. S2).
The OK/SW-CL.16 protein harbors a class I PxxP motif, a predicted
actinin-interacting region, and a RIM1-like sequence³. Previous study has shown that
OK/SW-CL.16 acted as a binding partner for actinin-4³.

Yeast extract was included in carbon-free media to allow proton traffic and
attenuate osmotic pressure since its peptide and protein constituency are rich in
charged amino acids and hydrogen bond donors and acceptors (Supplementary Fig.
S3 and S4). Without supplement of minimal amount of proteins and peptides, pOG1 grew very poorly in carbon free nutrition-poor liquid media (Supplementary Fig. S3).

The commercially available 13C-Urea Breath Test was based on the release of CO$_2$ by urease4,5. It was adapted in this study to investigate the potential capacity of CO$_2$ capture using our clones. Isotopic measurements at the end of carbon fixing experiments (Fig. 1; Supplementary Tables S1-S8) indicate that δ^{13}C was substantially different between the clones harboring OG1 gene and the control clone in both *E. coli* and *Saccharomyces cerevisiae* (Fig. 1A and 1D), suggesting that the clones harboring OG1 gene may have higher assimilation rate toward CO$_2$. Since microbial cells were submerged in 50 ml liquid media without shaking, it suggests that engineered microbial cells might be able to capture CO$_2$ under surface soil. ATP supplement diminished the CO$_2$ fixing activity of the pOG1 clone (Fig. 1A). Although a clone pOGDR1 obtained from directed evolution had significantly higher δ^{13}C than pOG1 clone at pH 8.0, its δ^{13}C value was lower than that of pOG1 clone at pH 7.0 (Fig. 1G and 1J; Table 1), suggesting that proton traffic may be integral in CO2 capture.

Treatments with the carbonic anhydrase inhibitor acetazolamide generated no difference in δ^{13}C patterns between pOG1 groups and pSK- groups (p=0.567; Fig. 2, S9 and S10), suggesting that spontaneous hydration of CO$_2$ was present. Alternatively, the *E. coli* carbonic anhydrase may be insensitive to acetazolamide. *OG1* was highly expressed in engineered *E. coli* host cells, which was determined via Realtime fluorescent quantitative PCR (Fig. 3; Supplementary Tables S11 and S12).

Discussion

The subclone pOG1, identical to a known protein OK/SW-CL.16, shares homology with numerous proteins including Cytochrome c oxidase subunit III. It is a constituent of the multi-subunit cytochrome c oxidase, and part of the respiratory chain of mitochondria and aerobic bacteria6,7. It catalyzes the following reaction:

$$4 \text{cytochrome c}^{+2} + 4 \text{H}^+ + \text{O}_2 \rightleftharpoons 4 \text{cytochrome c}^{+3} + 2 \text{H}_2\text{O}$$
The utilization of the four protons above might be tied to the hydration of CO₂ below, which leads to dissociation of protons and generation of bicarbonate acid.

\[\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{CO}_3 \rightleftharpoons \text{H}^+ + \text{H}_2\text{CO}_3^- \]

Bicarbonate acid could be assimilated as carbon source⁸, and accumulated protons could be utilized by OGI protein in the aforementioned first reaction coupled with second reaction via proton traffic to produce water molecules without generating excessive osmotic pressure.

The pOG1 clone was initially isolated in nitrogen free media. Although acetylene reduction assays indicated no obvious nitrogen fixation activity with pOG1 clone, weak activity may arise endogenously in the host upon the potential regulation by the OK/SW-CL.16 protein that shares homology with PII uridylyl-transferase, which acts as regulator of the cellular nitrogen and carbon status in prokaryotes and plants⁹, such as NifA activity regulation and ammonium-dependent post-translational regulation of nitrogenase in H. seropedicae¹⁰.

\[\text{UTP} + [\text{protein-PII}] \rightleftharpoons \text{diphosphate} + \text{uridylyl-[protein-PII]} \]

In response to nitrogen limitation, the uridylylated PII protein promotes deadenylylation of glutamine synthetase (GlnA), consequently activates the enzyme and stimulates NtrC-dependent promotors¹¹.

The P108T substitution in pOGDR1 had profound impact on carbon fixing outcome in media with different pH values. The \(\sigma_{22} \) elements of the \(^{13}\text{C} \) chemical shift anisotropy for the deprotonated carboxyl groups indicate stronger hydrogen bonding of carbonyl oxygen in threonine than that in either proline or serine¹². The electron-withdrawing inductive effect of the hydroxyl oxygen atom renders the hydroxyl oxygen in β-branched threonine less chemically active than its counterpart in serine, for instance, in the formation of hydrogen bonds. These properties will impact enzyme catalysis by the protein of OK/SW-CL.16 variant as a whole. The potentially non-casual connection between respiration chain or ATP’s effect and CO₂ usage suggests that the mitochondrial genome may harbor other genes for CO₂ capture. Another potential application of the OGI gene would be serving as a selective marker
by growing on carbon deficient minimal media and replacing antibiotic selective markers in constructed plasmid.

Given the minimal nutrition it requires and potential regulation by soil ions and other substances on proton traffic, the pOG1 clone could be dispersed in barren lands to capture large amount of atmospheric CO2 to cope with escalating global warming crisis.

Methods

Cloning and Subcloning of the gene capable of CO2 capture. Chimeric DNA fragments encoding S. cerevisiae α-factor secretion signal and random peptides were generated from PCR amplifications of pPICZαA (Invitrogen, Carlsbad, CA, USA) linearized with BamH I. The two primers were: (1) GCGGATCCAAAAATGAGATTTCCTTCAA;(2)CGTCTAGATCAACCN(T/C)(G/C/T)N(T/C)(G/C/T)N(T/C)(G/C/T)ACAN(T/C)(G/C/T)N(T/C)(G/C/T)

ACAN(T/C)(G/C/T)N(T/C)(G/C/T)AGATCTTTTCTCGAGAGATACCC. PCR reactions were performed using Pfu and Taq DNApolymerases (Takara, Dalian, China) in the presence of 2.5% pyrrolidone (Tokyo Kasei Kogyo Co. Ltd., Chuo-ku, Japan). After a preheating step at 94 °C for 2 min, PCR amplification was performed with 40 cycles of incubation at 95 °C for 20 s, 20 °C for 60 s and 72 °C for 30 s, and a final extension at 72 °C for 5 mins. PCR product was ethanol precipitated and dried. Double digestion with Xba I and BamH I was subsequently conducted for 5 h. pYES2/CT-ADH2 Vector13 was triple digested with BamH I, Xho I and Xba I14, and then ligated with double digested PCR product at 6 °C overnight. Ligation mixture was electroporated to E. coli ORIGAMI cells (Novagen, Madison, WI, USA) at 12.5 kV/cm, followed by plating to nitrogen fixation media (M9 media with NH4Cl removed, and supplemented with 1% sucrose as carbon source)15. One colony appeared after growing at 30 °C for 3 days. The positive clone pOG was unable to
grow after 3-month storage at the -20 ºC freezers, and subsequently revived by 1-min UV irradiation in a laminar hood followed by plating to nitrogen fixation media described above. It was then successfully sequenced only after adding 5 mg/L Vitamin C to LB for cell propagation. pOG was subsequently amplified with Taq DNA polymerase with the following 2 primers:

\[
\text{F0: GACGGTATCGATAAGCTTGATATCGAATTCATGACCCCTAACAGGGG} \\
\text{C; PB2: ACTAGTGAGTCCTGACTATGAGGTGCTAGGTTGATTGATAC} \\
\text{TCCTGATGC.} \\
\]

After a preheating step at 94 ºC for 3 mins, PCR amplification was performed with 35 cycles of incubation at 95 ºC for 20 s, 42 ºC for 45 s and 72 ºC for 90 s, and a final extension at 72 ºC for 5 mins. The PCR product was purified with the QIAquick gel extraction kit (QIAGEN, GmbH, Hilden, Germany) per manufacture's instruction. Both PCR amplicons and SK- vector were double digested with EcoRI and BamHI at 37 ºC for 4 h, which were subsequently purified with the QiaQuick kit. Ligation was carried out at 16 ºC overnight before electroporating into E. coli MG1655 cells. Positive clone pOG1 was identified after plasmid sequencing.

\[^{13}\text{C-CO}_2\text{ assimilation assays.}\] pSK- clone and pOG1 clone in MG1655, and MG1655 cells were inoculated to LB respectively, and propagated at 37 ºC at 120 rpm for 19 h. The cell pellets were washed once with sterile water and resuspended in sterile water. 4 OD (600 nm) of cells were inoculated to 50 ml CO2 capture media (0.02% YNB (Yeast Nitrogen Base, nitrogen free, Amresco, Inc., Solon, Ohio), 0.01 % ammonia sulfate, 0.04% yeast extract, pH 8.0 adjusted with NaOH) with ampicillin (60 mg/L) or no ampicillin for MG1655. Six layers of cheese cloth were used as caps to allow CO2 in. Vacuum desiccator was adapted for use with atmosphere inside. CO2 was released by hydrolysis of 6 mg urea-\[^{13}\text{C}\] (99 atom %, Sigma Aldrich, Missori, USA) by 0.2 mg of urease from Jack Bean (Tokyo Chemical Industry Co. Ltd., Chuo-ku, Tokyo, Japan) in PBS (pH 7.4) in a total volume of 150 µl. The apparatus was sealed with Vaseline, and cells were cultured inside for 96 h at 30 ºC. E. coli MG1655 cells was cultured outside of the device with ordinary airtight cap at the same temperature.
and with the same incubation time. Subsequently absorbance at 600 nm was measured.

Bacteria were centrifuged for 10 min at 7084 x g, and the pellets were washed with 20-30 ml of sterile water and mixed well followed by centrifugation for 5 min at 7084 x g. Pellets were transferred to 1.5 ml Eppendorf tubes followed by drying at 60 ºC for 1 h. For S. cerevisiae: Sample PYE2OG1 clone and control pYES2/CT/α-Factor clone in INVSc1 were divided into two groups with five replicates each. 5 OD (600 nm) of cells were inoculated to 50 ml CO₂ capture media (0.02% YNB, 0.01 % ammonia sulfate, 0.04% yeast extract, pH 8.0 adjusted with NaOH, adding 1x amino acids concentrate of final concentration before use) with ampicillin (100 mg/L). 100 x amino acids concentrate (Ura⁻) contained 5 g Adenine, 5 g leucine, 5 g tryptophan and 2.5 g histidine per liter. CO₂ was released by hydrolysis of 6 mg urea-¹³C (99 atom %, Sigma Aldrich, Missori, USA) by 0.2 mg of urease from Jack Bean (Tokyo Chemical Industry Co. Ltd., Chuo-ku, Tokyo, Japan) in 10 mM PBS (pH 7.4) in a total volume of 150 µl. The rest is as described above.

Determination of stable carbon and nitrogen isotope ratio. Experiments were carried out in the Environmental Stable Isotope Lab, Chinese Academy of Agricultural Sciences¹⁶. 2-4 mg of sample was weighed in a tin foil cup, and was subsequently introduced into the elemental analyzer (Vario PYRO cube, Elementar, Germany) through an automatic sampler, where the sample was burned and reduced into pure CO₂ and N₂. The gases were further diluted in a dilution apparatus, and measured in the stable isotope ratio mass spectrometer (IsoPrime100, Isoprime, England). The detailed running parameters were as follows: Elemental Analyzer: Burner temperature: 1020 ºC; Reducing furnace temperature: 650 ºC; He carrier gas flow rate: 230 mL/min. Dilution Apparatus: He dilution pressure: 4 bar; CO₂ reference gas pressure: 8 psi; N₂ reference gas pressure: 8 psi. Mass Spectrometer: CO₂ reference gas was calibrated via USGS24 (δ¹³C_PDB = -16‰) through two point corrections, and the results were corrected by USGS24 and IAEA600 (δ¹³C_PDB =
-27.5‰). N₂ reference gas was calibrated via IAEA N1 (δ¹⁵Nair = 0.4‰), and the results were corrected by IAEA N1 and USGS43 (δ¹⁴Nair = 8.44‰).

Liquid culture in carbon fixing media with or without yeast extract. Carbon fixing medium A contained 0.2 g/L YNB, 0.1 g/L ammonia sulfate, 0.4 g/L yeast extract, with sodium hydroxide adjusting pH equal to 8.0, supplemented with 100 μg/ml ampicillin. Medium B was as above but free of yeast extract. Two samples designated pOG1 and SK- in E. coli MG1655 were propagated overnight in LB medium with 100 μg/ml ampicillin at 37 °C and aerated by shaking at 220 rpm. Cultures were centrifuged for 10 min at 6000 rpm and washed with sterile ultrapure water twice after reaching logarithmic phase. The washed bacteria with OD₆₀₀nm of 0.2 were inoculated into carbon fixing medium with 100 μg/ml ampicillin. Each group had four replicates. OD₆₀₀nm was determined after incubation at 30 °C for 3 days (Supplementary Fig. S3).

pH tolerance test. Carbon fixing medium contained 0.2 g/L YNB, 0.1 g/L ammonia sulfate, 0.4 g/L yeast extract, with sodium hydroxide adjusting pH equal to 5.0, 6.0, 7.0, 8.0 and 9.0 respectively. Bacterial cultures were propagated overnight in LB medium with 100 μg/ml ampicillin at 37 °C with shaking at 180 rpm. Cultures were centrifuged for 5 min at 6000 rpm and washed with sterile ultrapure water twice after reaching logarithmic phase. The washed bacteria with OD₆₀₀nm of 0.01 were inoculated into carbon fixing media with 100 μg/ml ampicillin. Each sample had three replicates with 5 ml liquid media in the tubes. OD₆₀₀nm was determined after incubation at 30 °C for 12 h (Supplementary Fig. S4).

Construction of a S. cerevisiae/E. coli Shuttle Vector. pOG1 in E. coli was propagated overnight in LB medium with 100 μg/ml ampicillin at 37 °C at 220 rpm. OGI gene was amplified with AlphaOG1 primer 5'-TCTCTCGAGAAAAGAATGACCCCTAACCAGGG and 3OG1 primer...
5'-GATCTAGACTATGGTGAGCTCAGG. The PCR mixture (50 μl) consisted of 5 μl of 10x PCR Buffer (Mg²⁺ plus), 1 μl of template, 1.5 μl of 10 mM dNTP mix, 1μl of 10 mM upstream primer, 1 μl of 10 mM downstream primer, 0.3 μl of Taq enzyme (5 U/μl), and sterilized distilled water up to 50 μL. PCR conditions were as follows: 2 min initial denaturation at 94 ºC; then 35 cycles of 95 ºC for 20 s, 55 ºC for 45 s, 72 ºC for 90 s; and finally 60 s at 72 ºC. PCR products were purified by Gel&PCR purification kit (Promega, Madison, WI, USA). The PCR amplicons and pYES2/CT/α-factor (Changsha Yingrun Biotechnology Co., China) were digested with Xho I and Xba I for 4 hours at 37 ºC, followed by inactivation at 70 ºC for 10 minutes and ligation at 16 ºC. The ligation products were purified via Gel&PCR purification kit, and electroporated into E. coli DH5α, which was then plated on a LB agar plate supplemented with 100 μg/ml ampicillin and incubated overnight at 37 ºC. The positive colonies were verified by PCR followed by sequencing. The resultant plasmid was designated pYES2OG1.

Directed evolution. pOG1 clone in E. coli was propagated overnight in LB medium with 100 μg/ml ampicillin at 37 ºC at 220 rpm. OGl gene was amplified with OG1F0 primers 5'-TCGAATTCATGACCCCTAACAGGG and OG1R0 primers 3'-AGTGGATCCCCCGGGCTGCAGCTATGGTGAGCTCAGG. Instant Error-prone PCR Kit was a product of Beijing Tianenze Gene Technology Co., Ltd. (Beijing, China). The Error-Prone PCR mixture consisted of 5 μl of 10x Error-Prone PCR mix, 5 μl of 10x Error-Prone PCR proprietary dNTP, 5 μl of 5mM MnCl₂, 1 μl of template, 0.5 μl of 10μM upstream primer and downstream primer each, 0.6 μl of Taq DNA polymerase (5 U/μl), and sterilized distilled water up to 50 μl. Error-Prone PCR conditions were as follows: 40 cycles of 98 º for 10 s, 55 ºC for 55 s, 72 ºC for 60 s. PCR products were purified by Gel&PCR purification kit. Both PCR amplicons and pSK- vector were double digested with EcoRI and BamHI at 37 ºC for 4 h, followed by inactivation at 80 ºC for 15 minutes and ligation at 16 ºC. The ligation products were purified and recovered by Gel&PCR purification kit, and electroporated into E.
coli DH5α cells, followed by plating on a LB agar plate supplemented with 100 μg/mL ampicillin and incubating overnight at 37 °C. The positive colonies were verified by colony PCR followed by sequencing. The resultant plasmid was named pOGDR1, pOGDR2, pOGDR3, pOGDR4, pOGDR5, pOGDR6, pOGDR7, pOGDR10. After an initial one-sample screening via isotopic experiment, clones with higher carbon fixing activities were further investigated in subsequent experiments.

Real-time fluorescent quantitative PCR. The experiment was contracted with FitGene BioTechnology Co., LTD (Guangzhou, China). Briefly, an aliquot of the six samples were collected at the end of a 4-day carbon fixing experiment. RNA was extracted using RNAprep Pure Cell/Bacteria Kit according to the instructions of the manufacturer (TIANGEN Biotech Co., Ltd, Beijing, China). The RNA purity was determined by UV spectrophotometer SMA4000 (Merinton, China). The RNA was added to the gDNA adsorption column and centrifuged at 10000 g for 1 min at room temperature for removal of genomic DNA. The RNA was thermal denatured at 65 °C, and immediately cooled on ice for 2 min, and used as template for reverse transcription. Synthesis of cDNA was performed in 10 μL reactions per manufacturer's instructions. After the reaction, the cDNA was diluted 5 times with sterilized deionized water and kept at -20 °C. Real-time fluorescent quantitative PCR was then conducted. 20 μl PCR reactions containing template cDNA, 1x Bestar® SybrGreen qPCR Mastermix, 1x ROX, 0.2 μM of each primer, and sterilized distilled water were performed in an ABI7500 thermal cycler (Life Technologies, Carlsbad, CA, USA). The cycling conditions comprised 2 min polymerase activation at 95 °C, 45 cycles at 95 °C for 10 seconds, 60 °C for 34 s (Fluorescence signal acquisition) and 72 °C for 30 s. In the end of the cycle, melting curve from 60 °C to 98 °C was obtained. The specificity of the amplifications was verified by melt curve analysis. Gene expression levels were normalized (ΔΔCt analysis) to 16S rRNA gene expression levels from the same sample. Gene expression from relative real-time quantitative PCR experiment was determined using 2^ΔΔCT method. All data are
expressed as the means ± standard deviation.

Treatments with carbonic anhydrase inhibitor acetazolamide on CO2 capture.

pSK- clone and pOG1 clone in *E. coli* MG1655 were each divided into two groups according to the presence (+) or absence (-) of 50 µg/ml acetazolamide (Sigma, Missori, USA) in the media. Each group had three duplicates. CO2 capture experiment was conducted as aforementioned.

Statistical analyses. Statistical analyses were performed using SPSS 22.0. The experiments were evaluated using the Univariate General Linear Model or independent samples-T test when data were normal distributed or approximately normal distributed after examining with Shapiro-Wilk tests. The alpha level for all tests was 0.05. Games-Howell post hoc tests were conducted when equal variance was not assumed.

The OG sequence in the original positive clone has been deposited in GenBank with the accession number of KX255659. *OG1* sequence is identical to a GenBank sequence with the accession number NC_012920, ranging from 9251 to 9655 bp. Its encoded protein OK/SW-CL.16 was previously deposited in GenBank with the accession number of BAB93516.

Data Availability. All data generated or analyzed during this study are included in this published article and its Supplementary Information file.
References

10. Noindorf, L. et al. Role of PII proteins in nitrogen fixation control of
Herbaspirillum seropedicae strain SmR1. BMC Microbiol. 11, 8 (2011).

Acknowledgements

This work was supported by grants from the Guangzhou Science and Technology Program (201804010328); Guangdong Science and Technology Program (2016B020204001, 2008B020100001); Guangdong Natural Science Foundation (S2011010004264); The National Natural Science Foundation of China (30370799) and The Science and Technology Transformation Program of Sun Yat-sen University (2019) to Q. Liu; Open Fund of Laboratory (20160215) at Sun Yat-sen University of China to X. Zhu; The National Natural Science Foundation of China (31330080), China Agriculture Research System (47) to J.H.; The National Natural Science Foundation of China (21601209) to Y.C.W. We thank technical help and suggestions from M. Jia, J. Zhou, Q. Zhi, Z. Tan, G. Yu, S. Li and S. Wang. Manuscript proofreading by Y. Shi is appreciated.
Figure 1. $\delta^{13}C$ and $\delta^{15}N$ for CO₂ capture experiments

A, B, C. Effects of ATP usage on $\delta^{13}C$, $\delta^{15}N$, OD600nm post-carbon capture. Orders of the rest of the panels are likewise. **D.** $\delta^{13}C$ with *S. cerevisiae* clones. **G.** $\delta^{13}C$ by clones obtained via directed evolution. From A to I, all were propagated in media at pH 8.0. **J.** $\delta^{13}C$ from clones propagated in media at pH 7.0. Statistical evaluations for $\delta^{13}C$ are as follows (univariate General Linear Model, two tailed, and n = 3 unless specified): **A.** 0.041 (pOG1: ATP vs absence of ATP). **D.** 0.001 (pYES2OG1 vs pYES2/CT/α-Factor; n=5). **G.** 0.012 (pOG1 vs pOGDR1; Games-Howell post hoc tests). **J.** 0.032 (pOG1 vs pSK-; Games-Howell post hoc tests), 0.047 (pSK- vs pOGDR1; Games-Howell post hoc tests). The data were presented as average values with one standard deviation.
Figure 2. A, B, C. Effects of acetazolamide usage on δ^{13}C, δ^{15}N, OD600nm post-carbon capture.

Treatments with carbonic anhydrase inhibitor acetazolamide (n=3). (+): Presence of 50 µg/ml acetazolamide in the media. (-): No acetazolamide in the media. The data were presented as average values with one standard deviation.
Figure 3. *OG1* gene expression in *E. coli* clones post-CO₂ capture.

A. δ¹³C. B. δN₁⁵. C. OD₆₀₀nm post-CO₂ capture. D. Relative gene expression of *OG1* in the ratio of gene expression in pOG1/pSK- clones in *E. coli* MG1655 cells. Statistical evaluations for δ¹³C are as follows (two tailed, and n=3): A. 0.015 (pOG1 vs pSK-; univariate General Linear Model). D. 0.008 (pOG1 vs pSK-, t test). The data were presented as average values with one standard deviation.
Table 1. Mutants from directed evolution

<table>
<thead>
<tr>
<th>Name</th>
<th>GenBank Accession no.</th>
<th>Site in the OG1 gene</th>
<th>DNA Base mutation</th>
<th>Amino acid substitution</th>
</tr>
</thead>
<tbody>
<tr>
<td>pOGDR1</td>
<td>MF968946</td>
<td>322</td>
<td>C>A</td>
<td>P108T</td>
</tr>
<tr>
<td>pOGDR2</td>
<td>MF968952</td>
<td>237</td>
<td>T>C</td>
<td>Nonsense mutation</td>
</tr>
<tr>
<td>pOGDR3</td>
<td>MF968947</td>
<td>113</td>
<td>A>G</td>
<td>N38S</td>
</tr>
<tr>
<td>pOGDR4</td>
<td>MF968948</td>
<td>289</td>
<td>A>G</td>
<td>I97V</td>
</tr>
<tr>
<td>pOGDR5</td>
<td>MF968949</td>
<td>389,96</td>
<td>A>C, T>C</td>
<td>H130P</td>
</tr>
<tr>
<td>pOGDR6</td>
<td>MF968950</td>
<td>389</td>
<td>A>C</td>
<td>H130P</td>
</tr>
<tr>
<td>pOGDR7*</td>
<td>JX462739</td>
<td>269</td>
<td>A>G</td>
<td>Q90R</td>
</tr>
<tr>
<td>pOGDR10</td>
<td>MF968951</td>
<td>169</td>
<td>C>T</td>
<td>H57Y</td>
</tr>
</tbody>
</table>

The pOGDR7 shares homology with Homo sapiens isolate P75 mitochondrion (GenBank Accession no.: JX462739)