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Haplotype-based variant callers, which consider physical
linkage between variant sites, are currently among the
best tools for germline variation discovery and genotyp-
ing from short-read sequencing data. However, almost all
such tools were designed specifically for detecting com-
mon germline variation in diploid populations, and give
sub-optimal results in other scenarios. Here we present
Octopus, a versatile haplotype-based variant caller that
uses a polymorphic Bayesian genotyping model capable of
modeling sequencing data from a range of experimental
designs within a unified haplotype-aware framework. We
show that Octopus accurately calls de novo mutations in
parent-offspring trios and germline variants in individuals,
including SNVs, indels, and small complex replacements
such as microinversions. In addition, using a carefully
designed synthetic-tumour data set derived from clean
sequencing data from a sample with known germline hap-
lotypes, and observed mutations in large cohort of tumour
samples, we show that Octopus accurately characterizes
germline and somatic variation in tumours, both with and
without a paired normal sample. Sequencing reads and
prior information are combined to phase called genotypes
of arbitrary ploidy, including those with somatic muta-
tions. Octopus also outputs realigned evidence BAMs to
aid validation and interpretation.

Haplotype-based approaches have emerged as the method of
choice for calling germline variants because these methods are
robust to alignment errors from read mappers and have better
signal-to-noise characteristics than positional approaches1–7.
However, existing haplotype-based variant callers have several
limitations. First, existing tools are sub-optimal for many prob-
lems as most implement models that assume either diploidy1–3

or constant copy number4–6, and assume that samples are se-
lected from an idealized population of unrelated individuals.
Such models are appropriate for calling germline variants in
small cohorts, but provide a poorer fit to data generated in
other experimental designs, such as studies involving samples
with known relatedness such as paired tumours, single-cells,
and parent-offspring trios, or in pooled tumour and bacterial
sequencing where samples are often heterogeneous. These lim-
itations cause researchers to implement custom pipelines that
may integrate various callers and involve post hoc filtering and

interpretation8–16. Second, existing haplotype-based methods
suffer from windowing artifacts as variants are evaluated in in-
dependent non-overlapping regions. This can lead to false calls
in complex regions where reads support variants that fall out-
side the region being evaluated. Third, existing methods do not
make a clear distinction between the haplotype sequence sup-
ported by the read data, and the mutation events that gave rise
to it. This makes it challenging to assign appropriate prior prob-
abilities to these haplotype sequences, because different sets of
mutations can have very different biological plausibility, despite
giving rise to the same haplotype sequence. Fourth, haplotype-
based methods, by nature, are able to physically phase variants,
but existing tools are limited to phasing diploid genotypes, and
none report potentially clinically relevant17 phase information
for somatic mutations with respect to germline variants or other
somatic mutations.

To meet the growing demand for variant calling in diver-
gent experimental designs, we designed an algorithm that
can accommodate distinct genotype models within a unified
haplotype-aware framework. We took inspiration from particle
filtering18 and developed a novel haplotype inference procedure
that typically produces longer haplotypes than other methods,
reducing the chance of windowing artifacts and improving the
signal-to-noise ratio, resulting in more accurate variant calls.
Furthermore, our method can propose and compare haplotypes
composed of distinct sets of mutation events that nevertheless
result in identical sequence, allowing us to consider the bio-
logical plausibility of mutations. We propose a probabilistic
phasing algorithm that leverages both prior and read informa-
tion, and can phase genotypes with arbitrary ploidy, including
those that contain somatic mutations.

We present an implementation of our algorithm, Octopus,
written in C++. We show that Octopus is more accurate
than specialized state-of-the-art tools on several common ex-
perimental designs: germline calling in individuals; de novo
calling in parent-offspring trios; and somatic variant calling
in tumours, with and without paired normal samples. Oc-
topus is freely available under the MIT license at https:

//github.com/luntergroup/octopus.
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Figure 1 Overview of the unified haplotype-based algorithm, showing joint calling of two samples with the population calling model. Two SNVs (blue
and red) are detected from read pileups, a deletion from local re-assembly, and a third SNV (yellow) from input VCF. The first two SNVs are added
to the haplotype-tree, which then contains four haplotypes. After computing likelihoods for read-haplotype pairs, the haplotype posterior distribution
computed by the calling model is used to prune the haplotype-tree by removing one haplotype (containing just the blue SNV). Next, the haplotype-tree
is extended with the deletion, and the process repeats. The polymorphic calling model is shown in the green box. Only the population genotype model
(Online Methods) is shown, in plate notation. Calling models also compute any model-specific inferences, such as de novo or somatic classification.

RESULTS
A unified variant calling algorithm

Octopus accepts sequencing data in the BAM and CRAM
formats, and performs internal pre-processing, including PCR
duplicate removal and adapter masking. Candidate variants
are identified from the reads using a combination of local re-
assembly and pileup inspection with repeat awareness. In ad-
dition, variants from existing VCF files may also be considered.
Haplotypes are then constructed exhaustively using a tree data
structure (with nodes representing alleles and root-to-tip paths
representing haplotypes) that is dynamically pruned, extended,
and collapsed based on partial read evidence (Fig. 1). Calls are
made once there is sufficient confident that haplotypes repre-
sented in the haplotype-tree explain all surrounding reads suffi-
ciently well. Haplotype likelihoods are computed for each read
and haplotype using a hidden Markov model (HMM) with con-
text aware single nucleotide variant (SNV) and indel penalties.
These likelihoods are the input to a polymorphic genotype call-
ing model, the form of which depends on the experiment that
generated the sequencing data (Table 1). Although calling
models are responsible for calling variants, genotypes, and any
other model specific inferences, each must be able to compute
posterior distributions over haplotypes and genotypes, which
are used for updating the haplotype-tree and for phasing, re-
spectively. Variants are phased by evaluating the entropy of
the computed genotype posterior distribution. Variant calls are
then filtered, either with hard filters or a random forest classi-
fier. Octopus optionally creates realigned evidence BAMs after
calling by assigning and re-aligning reads to called haplotypes.

Germline variants in individuals

To assess germline calling accuracy, we called variants in
three well-characterized Genome in a Bottle (GIAB)19 sam-
ples: HG001 (NA12878), HG002 (NA24385), and HG005

(NA24631), in addition to the synthetic-diploid (Syndip) sam-
ple CHM1-CHM1320 that includes a validation set compiled
using an approach orthogonal to that used for the GIAB
truth sets. To account for different sequencing conditions we
tested several HG001 and HG002 replicates, including two li-
braries prepared using the 10X Genomics Chromium protocol
(Supplementary Note 1). We downloaded publicly available
BAM files for the two 10X libraries (from GIAB) and for CHM1-
CHM13 (from the Broad institute). BWA-MEM21 was used to
map all other data from raw FASTQ files. We compared Oc-
topus to GATK46, DeepVariant3, Strelka22, FreeBayes5, and
Platypus1. We ran each caller according to the authors’ recom-
mended settings (Supplementary Note 2). We trained Octo-
pus’ random forest classifier using three independent NA12878
replicates (Supplementary Note 1) to filter variants. De-
fault filters were used for DeepVariant and Strelka2. For Free-
bayes and Platypus, we tried recommended hard filters, but
found that this deteriorated performance as quantified by the
F-measure (the harmonic mean of precision and recall), so we
did not apply filters other than those based on variant or geno-
type quality (QUAL and GQ). Similarly, we found that using
VQSR filtering for GATK4 - as recommended by the best prac-
tice guidelines - degraded performance, so we only used QUAL
for filtering GATK4 calls. All calls were evaluated with RTG
tools vcfeval22.

Octopus had the highest F-measure on all tests other than
the HG005 test (Fig. 2b and Supplementary Table 1). Per-
formance differences were marginal between Octopus, Deep-
Variant, and Strelka2 on the two Precision FDA Truth tests and
GIAB HG005 test, all of which use data from GIAB sequenced
on the Illumina HiSeq 2500 platform. Octopus substantially
outperforms other callers on the two 10X Genomics samples,
which have lower coverage and shorter read lengths than the
other samples (Supplementary Note 1), in addition to bar-
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Figure 2 Germline variant calling accuracy. Comparison of Octopus with other methods on PrecisionFDA Truth Challenge HG001, GIAB 10X HG001,
PrecisionFDA Consistency Challenge Garvan, Platinum Genomes HG001, PrecisionFDA Truth Challenge HG002, GIAB 10X HG002, GIAB HG005, and
Syndip (CHM1-CHM13). The average sequencing depths of each dataset are approximately 50x, 34x, 40x, 50x, 50x, 25x, 50x, and 45x, respectively.
All comparisons to the GIAB (version 3.3.2) and CHM1-CHM13 (version 0.5) truth sets were performed using RTG Tools vcfeval (version 3.9.1).
a Precision-recall curves showing accuracy on all test sets. Scoring metrics used to generate curves were RFQUAL (Octopus), GQ (DeepVariant),
QUAL (GATK4), GQX (Strelka2), GQ (FreeBayes), and QUAL (Platypus). The dots show typical PASS thresholds: 3 for Octopus, DeepVariant,
and Strelka2; 20 for GATK4, FreeBayes, and Platypus. b F-Measures at PASS thresholds for each test set. c Proportions of true indels called in
comparison to the number in the truth set by indel length. Positive lengths are insertions; negative lengths are deletions. Top: GIAB HiSeq tests
(PrecisionFDA Truth Challenge HG001 & HG002, and GIAB HG005). Bottom: Syndip. The Syndip validation set has a larger range of indel sizes
than the GIAB validation sets.

coded library preparation. It is unclear why Strelka2 does not
perform well on these data. Octopus also had considerably bet-
ter performance on the Precision FDA Consistency and Syndip
tests, both of which use data from the Illumina HiSeq X Ten
platform, but were sequenced in different laboratories (Garvan
institute and Broad institute, respectively). The HiSeq X Ten
data had higher error rates than the other data, suggesting

that Octopus is more robust to noise than other methods.

Contrary to common practice, we did not stratify our eval-
uation into SNVs and indels, because the true mutations that
results in a haplotype are generally uncertain. For example, a
sequence change of ...AAACCC... to ...AACCCC... could be
explained either by a single SNV, or two homopolymer indels.
We found that the representation used for the ground truth is
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Table 1 Description of Bayesian calling models

Model name Class Description

Individual* Germline Calls germline variation in an individual with
known ploidy. Haplotypes are expected to
be observed at a frequency proportional to
their copy number.

Population Germline Jointly calls germline variation in two or
more samples with known ploidy but un-
known relationship. Uses a joint genotype
prior that can improve power to detect vari-
ation compared with individual calling by
sharing information between samples.

Trio* Germline
De novo

Jointly calls inherited and de novo germline
variation in a diploid parent-offspring trio.
By explicitly modelling inheritance patterns
and de novo mutations, the model has
higher power compared with typical joint
calling. Allosome calling is supported.

Cancer* Germline
Somatic

Jointly calls germline and somatic varia-
tion in paired tumour-normal or tumour only
samples. The number of somatic haplo-
types and their frequency are inferred from
the data and used to call variants. Multiple
tumours from the same individual may be
called jointly.

Polyclone Germline Calls variation in an unknown mixture of
haploid clones. Such samples often arise
in bacterial or viral sequencing data where
multiple clones may form due to sample con-
tamination, mixed infection, or in-host evo-
lution. The number of haplotypes and their
frequency are inferred from the data.

* Evaluated in this article.

biased towards the tools used to derive it. To demonstrate this,
we compared the proportion of indels classified as true on the
basis of haplotype matches, with the number of indels in the
respective truth sets for the two Precision FDA Truth tests and
GIAB HG005 tests. We observed that Octopus had on average
1:5% more ’true’ indels than the total number of indels in the
validation sets, while all other callers called at most 0:5% fewer
true indels than in the validation set (Fig. 2c), despite there
being less than 0:1% difference in overall sensitivity between
Octopus and DeepVariant on these three tests. This apparent
contradiction is due to Octopus having made indel calls in re-
gions where other tools - and the validation sets - call SNVs,
that result in the same haplotype sequence. We observed sim-
ilar behaviour in the Syndip test for indel lengths up to 5bp
(Fig. 2c).

Microinversion detection

Octopus calls complex replacements when an observed se-
quence cannot be satisfactorily explained in terms of simple
SNVs and indels. Microinversions are one such complex re-
placement that involve the inversion of small (e.g. 3 − 100bp)
tracts of DNA. Microinversions have not been comprehensively
studied, likely due to calling difficulties, but have been sug-
gested to play a role in evolution23 and disease, including can-

cer24. A method developed to identify microinversions reported
an average of 3:8 per individual in 1000G data24. We identi-
fied a total of 152 microinversions ranging from 3 to 98 bp in
the four NA12878 high-coverage replicates, of which 104 were
called in at least three of the replicates and 75 were called in
all four. We also found 103 microinversions in the NA24385
Precision FDA Truth sample, including a 3 bp inversion in a
coding region of TTC6. The majority of called microinversions
appear polymorphic; 72 of those detected in NA24385 were
also called in NA12878.

Some of the microinversions called by Octopus have dbSNP
entries. However, most also have decomposed entries (SNVs
and indels) that are more commonly reported. For example, a
3 bp microinversion called by Octopus in NA12878 in a splice
site of LIMD1 - a possible tumour suppressor - has a dbSNP
entry (rs71615396). However, there are also entries for 3 SNVs
(rs62242177, rs62242178, rs63132361) composing the microin-
version. The SNV entries have frequency meta-information
while the microinversion does not. Similarly, a 27 bp microin-
vserion in the 3’-UTR of PREPL, a gene linked with congen-
ital myasthenic syndrome, has a dnSNP entry (rs71416108)
without frequency information, but also has several decom-
posed entries, including SNVs and indels, supporting conflict-
ing representations of the microinversion (e.g. rs368481611,
rs373223610, rs1281267686), with frequency information.

De novo mutations in parent-offspring trios

Random germline de novo mutations resulting from imperfec-
tions in the DNA replication process during meiosis provide the
necessary genetic variation for evolution, and are causative of
several Mendelian and polygenic diseases25–27. The number of
de novo mutations per genome duplication event is estimated
to average around 70 per meiosis in humans28. However, there
is uncertainty in this estimate because accurate calling of de
novo mutations remains challenging12–15,28.

To assess de novo calling performance, we ran Octopus us-
ing the trio calling model on whole-genome data from a pre-
viously characterized WGS500 parent-offspring trio1. We se-
lected these data as the libraries were prepared directly from
blood rather than cell lines. We compared calls made by all
other tools evaluated for the germline analysis, set up for joint
calling (Supplementary Note 2). In addition to the 63 de
novo mutations previously Sanger validated in this sample, we
manually identified a further 33 mutations by inspecting un-
filtered de novo calls made by three or more callers, as well
as all passing de novo calls from Octopus and GATK4, using
realigned BAMs that both GATK4 and Octopus are able to

Table 2 De novo mutations called in WGS500 trio.

TP SNVs TP Indels FN SNVs FN Indels FP

Octopus 72 13 3 8 10
DeepVariant 70 0 5 21 10; 306
Strelka2 75 5 0 16 1; 548
GATK4 46 4 29 17 90
FreeBayes 73 5 2 16 339
Platypus 72 4 3 17 163
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generate (Supplementary Fig. 1).

Only Octopus and GATK4 called a plausible number of de
novo mutations (Table 2). Platypus and FreeBayes called
approximately 2x and 3x more de novo mutations than the
maximum expected. DeepVariant and Strelka2, despite being
the two most accurate germline callers behind Octopus, called
considerably more false positive de novo mutations than the
other tools, demonstrating that strong germline calling perfor-
mance does not guarantee accurate de novo calls. While we
are confident the performance of the other callers could be im-
proved with additional filtering, it is not always obvious how
this is best achieved. For example, filtering DeepVariant calls
by GQ resulted in almost complete loss of sensitivity before the
number of false positives fell below 100 (GQ: 46, TP SNV: 9,
TP INDEL: 0, FP: 90), while for Strelka2 we found that accu-
racy was highly sensitive to filtering by GQX (72 TP and 106
FP for GQX ≥ 22; 50 TP and 41 FP for GQX ≥ 23).

Synthetic tumours

Comprehensive evaluation of somatic mutation calls is chal-
lenging because there is no gold standard reference material to
compare with, and different tumour types have distinct muta-
tion profiles29. Although calls may be manually validated to
obtain an estimate of the false positive rate, it is not straight-
forward to estimate sensitivity as the ground truth remains
uncertain. Although attempts have been made to accurately
characterize somatic mutation profiles in real tumours by man-
ual inspection30, this process is limited by the sensitivity of
existing tools, and is too time consuming to perform across
a range of tumour types. An alternative strategy is to mix
reads from unrelated individuals to create virtual tumours2,31.
However, this approach is unlikely to yield data with realistic
mutation profiles, error profiles, and haplotype structure. A
third approach is to spike mutations directly into raw sequenc-
ing reads from healthy tissue, which was the approach taken
by the ICGC-TCGA-DREAM challenge32.

We designed an unbiased and comprehensive somatic muta-
tion calling performance test by improving the method used by
the ICGC-TCGA-DREAM challenge to ensure that synthetic
tumours would have realistic mutation profiles, error profiles,
and haplotype structure (Fig. 3). We created two synthetic tu-
mours by applying this method to reads from GIAB’s NA12878
high-coverage Illumina data (Supplementary Note 3). The
first was derived from skin cancer mutations using a mutation
rate of 1=kb (299; 873 mutations) and spike-in frequencies uni-
formly sampled between 2:5% and 50%, while the second was
derived from breast cancer mutations using a mutation rate
of 1=Mb (5; 956 mutations) and spike-in frequencies uniformly
sampled between 0:5% and 20% (Supplementary Fig. 2).
We used uniform spike-in frequencies, rather than simulating
sub-clonal architecture, so that we could more thoroughly as-
sess sensitivity across a range of variant allele frequencies. The
average read depths were 60x and 65x for the synthetic skin
and breast tumours, respectively. Independent normal samples
were created from leftover reads with average depths of 30x and
35x for the synthetic skin and breast tumours, respectively.

NA12878

2. Assign reads to germline haplotypes

3. Realign reads to germline haplotypes

4. Sample PCAWG tumour-specific calls 

5. Spike PCAWG mutations onto reads

VAF = 30%VAF = 15%

6. Remap spiked reads

1. Select sample with known germline

Figure 3 Overview of synthetic tumour creation. We used germline se-
quence data from a sample for which high-quality germline haplotypes
are available (NA12878), and assigned and realigned reads to these hap-
lotypes (Online Methods). This ensures that mutations are spiked onto
consistent germline haplotypes and minimizes spike-in errors due to indels.
We used spike-in mutations from tumour-specific whole-genome somatic
mutation calls from the pan-cancer analysis of whole genomes (PCAWG)
consortium 33 to ensure realistic somatic mutation profiles. Mutations
were spiked in using a modified version of BAMSurgeon 32 (Online Meth-
ods). Reads were merged and remapped before variant calling to remove
all realignment information.

Somatic mutations in paired tumour-normal samples

We evaluated the accuracy of Octopus at calling somatic mu-
tations in tumour-normal paired samples by calling variants in
the skin and breast synthetic tumours. Calls were compared
to Mutect231, Strelka22, LoFreq34, Lancet35, VarDict36, and
Platypus. We included Platypus, despite not being advertised
as a somatic variant caller, to contrast germline and somatic
callers, and because we are aware that germline callers (includ-
ing Platypus) are sometimes integrated into somatic mutation
calling pipelines. We trained Octopus’s random forest classifier
on chromosome X of the skin synthetic tumour data, which we
removed from the test set. However, we noted that Octopus
was comparatively less reliant on filtering than other methods
(Supplementary Fig. 3). Recommended filters were used for
other methods (Supplementary Note 2).

During the course of evaluation we discovered a small num-
ber of mutations that were not in the truth sets but appeared
real. This is not surprising since these data are derived from
cell lines. To discount such cases, we identified calls not in the
truth set but called by at least 3 of the 7 callers tested and
ignored these calls during evaluation (skin: 843; breast: 788).
In addition, we found a small fraction of true mutations (skin:
2; 766; breast: 1) that were incorrectly spiked in by BAMSur-
geon, which we also ignored during evaluation.

There was a clear trade-off between recall (sensitivity) and
precision (positive predictive value) between callers (Fig. 4a).
Mutect2 and Strelka2 had similar F-Measures (Supplementary
Table 2) on the synthetic skin test (0:9263 and 0:9251, re-
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Figure 4 Somatic mutation calling accuracy for synthetic skin and breast tumours with a paired normal sample. a Precision-recall curves. Scoring
metrics used to generate curves were RFQUAL (Octopus), TLOD (Mutect2), SomaticEVS (Strelka2), QUAL (Lancet), QUAL (LoFreq), SSF (VarDict),
and QUAL (Platypus). Only PASS calls are used. VarDict is not visible as it is outside the axis limits due to low precision. Precisions on the two
tests are substantially different as the skin set has almost 50 times as many true mutations as the breast set. Dots on the Octopus curve are placed
at RFQUAL 7 (3 is used for the entire curve). b Recalls for each Variant Allele Frequency (VAF) using PASS variants. Points show true spike-in
VAFs. The approximate depth for the synthetic skin and breast tumours were 60x and 65x, and 30x and 35x for their normal pairs, respectively. All
comparisons to the synthetic tumour truth sets were performed using RTG Tools vcfeval.

spectively) despite Mutect2 showing higher recall; VarDict had
highest recall on both tests, but also had lowest precision;
Lancet had moderate precision and recall compared to other
methods; LoFreq had near perfect precision, but only Platypus
had lower recall. Octopus had higher recall than all callers other
than VarDict, and only slightly lower precision than Strelka2.
The number of false positives called by each caller is similar
in both tests suggesting that each caller had unique biases,
although it is possible that some of these false positive calls
are genuine cell line artifacts. Overall, Octopus had substan-
tially higher F-Measure on both tests than all other methods
(Supplementary Table 2).

Octopus also shows considerably better precision-recall
trade-off than other callers, most notably at higher recalls.
The call filter threshold for Octopus is set reasonably low by
default (RFQUAL 3) to achieve high sensitivity, however, in-
creasing this to 7 reduces the number of false positives by over
a third in both tests, while only reducing the number of true

positives by 2:5% and 6% in the synthetic skin and breast tests,
respectively (Fig. 4a).

Most of the differences in recall, particularly between the
best performing tools (Octopus, Strelka2, Mutect2, Lancet),
were due to low frequency mutations (Fig. 4b and Supple-
mentary Fig. 5). Sensitivity for mutations below 2:5% is poor
for all callers (0:01 for Octopus and 0:002 for Mutect2). At 60x
sequencing depth, a 2:5% VAF corresponds to an expectation
of less than two observations. However, Octopus had consider-
ably better sensitivity for mutations with VAFs between 4−10%
(3-5 expected observations at 60x) and had only slightly worse
recall than VarDict, which represents an approximate upper
bound on sensitivity. Mutect2 had marginally better sensitivity
at some moderate VAFs between 12:5% and 20%.

Finally, we re-ran all methods after downsampling the syn-
thetic tumour and normal samples. We observed an even
greater performance differential between Octopus and the other
callers in all downsampled tests (Supplementary Table 2 and
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Figure 5 Somatic mutation calling accuracy in synthetic skin and breast
tumours without a paired normal sample. a Precision-recall curves. Scor-
ing metrics used to generate curves were RFQUAL (Octopus) and QUAL
(Pisces). b Recalls for each Variant Allele Frequency (VAF). Germline and
somatic calls were compared to the truth sets with RTG Tools vcfeval.

Supplementary Fig. 4-8). In particular, Octopus was less af-
fected by lower coverage in the normal sample than the other
methods; Octopus had an F-Measure decrease of 0:9% in the
synthetic skin test with half the normal depth, compared with
2:4% for Strelka2. Moreover, we found that Octopus had bet-
ter overall performance calling somatic mutations in the syn-
thetic skin tumour downsampled by 25% to 45x (F-Measure
0:9266) than all others methods did on the full 60x sample
(maximum F-Measure 0:9263 from Mutect2).

Mutations in tumour-only samples

Most somatic detection tools require a paired normal sam-
ple2,34,35, but paired control tissues are not always available.
We tested Octopus’s ability to call mutations in tumour-only
data by calling variants in both synthetic tumours without pro-
viding the paired normal samples. We compared Octopus with
a tool designed for calling unpaired tumour samples, Pisces37.

Unsurprisingly, Octopus’ somatic calling accuracy is worse
compared with the paired test, most notably the number of
false positives is considerably higher on both tests. However,
Octopus substantially outperforms Pisces both in terms of re-
call and precision (Fig. 5a). Pisces calls 6:5x and 8:3x more
false positive somatic mutations than Octopus in the skin and
breast tests respectively, yet Octopus calls 2:3x and 1:3x more
true positives (Supplementary Table 3). The difference in
sensitivity is primarily because Octopus is sensitive to allele
frequencies between 5 and 30%, in contrast to Pisces, which is
only sensitive to frequencies between 10 and 20% (Fig. 5b).

A significant challenge with tumour-only calling, compared
to somatic calling with a paired normal sample (of reasonable
depth), is correctly classification of variants as either somatic
or germline. Both Octopus and Pisces are capable of calling
and classifying germline and somatic variants, and we observed
that both callers misclassified a large number of true somatic

mutations as germline variants in the skin test, which largely
explains the drop-off in recall at VAFs above 30% (Fig. 5b).
Unlike Pisces, Octopus provides a measure of uncertainty in
classification. Depending on the application, classification may
or may not be important; it may be sufficient to know whether
the variant is present or not. We therefore evaluated the perfor-
mance of both callers on combined germline and somatic truth
sets; ignoring somatic classification. We found that there was
little difference in sensitivity between the callers, but a large dif-
ference in precision (Supplementary Fig. 9). Octopus called
marginally more false positives on the combined test than on
the somatic-only test (< 1; 700 in both tests), indicating that
there are few germline calling errors, while Pisces calls over
17; 000 additional false positives in both tests.

Phasing somatic mutations

In some situations, such as when compound heterozygous mu-
tations are suspected, it is clinically relevant to be able to de-
termine the germline haplotype affected by a mutation38. Fur-
thermore, phasing information is informative of tumour clonal
architecture. To the best of our knowledge, no existing caller is
able to phase somatic mutations, either with germline variants
or other somatic mutations.

Since we designed the synthetic tumours used to benchmark
somatic mutation calling so that individual reads would respect
haplotype structure (but not necessarily read pairs), we know
the local phase of all somatic mutations. We investigated Oc-
topus’ ability to phase somatic mutations by evaluating how
well phasing information was recovered in the paired synthetic
skin tumour test. We found that of the 257; 930 somatic muta-
tions that Octopus calls, 57; 217 (22%) were phased with one
or more heterozygous germline variant. Furthermore, 9; 834
(4%) were phased with at-least one other somatic mutation,
and 2; 848 (1% overall) of these were also phased with a het-
erozygous germline variant. We found that approximately 93%
of reported somatic-germline phasings with phase quality 10 or
greater (Phred scaled) were correct, indicating that the phase
quality score is well calibrated.

DISCUSSION
We have shown that Octopus is more accurate than state-of-
the art variant callers on several germline samples using two in-
dependent validation sets. Performance differences were most
evident on the two 10X and two X Ten samples (Consistency
and Syndip), arguably the most challenging tests because of
lower read depths and higher sequencing error rates than in the
other four samples. These results are likely because Octopus
is better able to discern noise due to longer haplotypes, more
effective error modelling, and more realistic mutation priors.

Our analysis of germline indels indicate that Octopus is able
to call a wider range of indels than other methods. Octo-
pus calls considerably more true short (< 15bp) indels than
other methods, and even more than are represented in the
truth sets. One explanation for this is that existing meth-
ods systematically miscall a large number of indels as SNVs in
tandem repeat regions leading to under representation in the
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truth sets. Although both representations result in the same
haplotype sequence, the distinction could have important clini-
cal consequences, such as for mutation signature profiling29 or
microsatellite instability analysis39,40. Moreover, around half
of our manually curated de novo calls occur in microsatellites.
Such sites are known to have higher mutation rates than aver-
age but are almost always ignored in de novo mutation studies
because such regions are also difficult to accurately call. Our
results indicate that Octopus is sufficiently specific for these
mutations to be considered. We also found that in the Syndip
test, Octopus and GATK4 call considerably higher proportions
of true large indels (> 50bp) than other callers, further sup-
porting Octopus’ sensitivity for indels.

Octopus provides evidence that microinversions are more
common than previously thought, suggesting that they warrant
investigation for functional effects. In a follow-up experiment
(data not shown), we found that Octopus called a consider-
able number of microinversions in Mycobacterium tuberculosis
isolates, almost all of which were found within inverted repeat
patterns, as is the case for many of the microinversions that
we found in human genomes. Although we cannot rule out
sequencing artifacts, inverted repeats are known to form cruci-
form extrusions causing genetic instability that results in high
mutability, and have been shown to cause pathogenic muta-
tions in cancer41, and have previously been associated with
inverted repeats in mammalian evolution23,42.

High-throughput sequencing is widely used throughout the
genomics community, yet the most powerful variant calling
methods are optimized for human germline population data.
A key advantage of Octopus is its polymorphic calling model,
allowing it to optimize performance for other experimental de-
signs as well, including for calling somatic variants from tumour
samples.

Sensitivity to a wide range of variant allele frequencies is
crucial for fully characterizing the mutation profiles of tumour
genomes, however, our results suggest that existing somatic
callers have poor sensitivity for variation occurring below 10%
frequency at typical sequencing depths - unless a large number
of false positives are accepted. Octopus shows near optimal
sensitivity across all variant allele frequencies tested while re-
maining highly precise. Furthermore, Octopus also showed bet-
ter precision-recall trade-off than other methods, showing that
call sets can be refined on the basis of a single score. Given
that only a single chromosome of data was used for training
Octopus’ random forest used to score calls, it is likely that
this aspect of performance could be improved even further by
including additional training data. Octopus was more robust
to changes in sequencing depth than other methods, both in
the tumour and normal samples. In summary, Octopus out-
performed the most accurate existing methods while using less
than 85% of all the data.

Our analysis of somatic mutation phasing indicates that
Octopus could be used to detect cases of bi-allelic loss-of-
function mutations in tumours, and provide information on
tumour clonal architecture - beyond the information already
provided by variant allele frequency inference. Our phasing

method works equally well for SNVs and indels and the algo-
rithm only depends on genotype posterior distributions.

Octopus has a number of usability advantages over exist-
ing tools. For example, reads do not require pre-processing as
this is done internally, simplifying workflows and eliminating
the need for intermediate BAM files. As an example, we re-
quired over 20 commands to call de novo mutations using the
GATK4 pipeline compared with a single command for Octopus.
Furthermore, multithreading is built in, and disk access is opti-
mized for fewer long accesses rather than many short accesses,
improving I/O throughput. Octopus is capable of producing
realigned ‘evidence’ BAMs, including for somatically mutated
haplotypes. We hope that clinicians in particular will find this
feature useful for aiding variant and phase call validation and
interpretation.

Although we did not include an evaluation of the polyclone
calling model, intended for bacterial or viral sequencing pro-
tocols, we are confident that Octopus would perform equally
well for this type of data, since the statistical problems faced
are similar to those found in tumour-only calling but without
the complication of variant classification. We look forward to
forthcoming validation sets43 to verify this.

Overall, Octopus is highly accurate on several important ex-
perimental designs, demonstrating the advantage of our unified
haplotype-based algorithm. As new technologies and experi-
mental designs emerge, the flexibility of our method will allow
us to rapidly incorporate new calling models that take full ad-
vantage of the information present in the data generated by
each experiment.
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ONLINE METHODS
Read pre-processing. Input reads are scanned in random sub-
regions of the input region set to estimate basic statistics such as
average depth and read lengths. These statistics are used to deter-
mine sub-regions of the input regions to buffer input reads, so that
the memory occupied by read data is below a user-defined limit. If
multiple threads are requested then the buffer limit is shared evenly
between threads. Input read files can contain multiple samples, but
must have associated read group information.

Transformations. Read transformations adjust the data contained in
a read observation without removing the read. Most of the transfor-
mations re-calibrate base qualities in certain ways. By default, the
only read transformations are to mask (set the base quality to zero)
all bases considered to overlap sequencing adapters, and mask all
but one base of bases overlapping other segments part of the same
read template.

Filtering. Read filters remove reads that are likely problematic and
cannot be transformed into something useful. Read filtering is ap-
plied after read transformations. Reads are removed if any of the
given filtering predicates fails. By default, reads are filtered if they:
i) Have malformed CIGAR strings. ii) Are unmapped. iii). Have
mapping quality below 20. iv) Are marked as QC fails. v) Are iden-
tified as being duplicates by Octopus. vi) Are marked as duplicates.
vii) Are secondary or supplementary alignments. viii) Have fewer
than 20 bases with base quality 20 or greater.

Downsampling. Read downsampling removes reads to satisfy user-
specified depth criteria. Sample read sets are downsampled inde-
pendently. First, regions that have depth above a certain threshold
are detected. Using input alignments, the number of bases that
need to be removed are calculated for each position. Reads in are
then removed iteratively by first selecting a position to downsample
with probability proportional to the required depth reduction at each
position, and then selecting a read overlapping that position with
uniform probability. By default, regions with depth above 1; 000 are
downsampled to reach an average read depth of 500.

Candidate allele discovery. Candidate alleles are generated
jointly for all samples by taking the union of candidates generated
from a set of orthogonal methods (generators). Users can choose
which generators to use to optimize accuracy and runtime. The
read-backed generators can be tuned to increase sensitivity for low-
frequency variation.

Pileups. Uses the read mapping and alignment information present
in the input BAM files and proposes candidates bases on mismatches
present in these alignments. Alleles are only proposed if the obser-
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vation of a particular satisfies an inclusion predicate, which primarily
depends on the observation frequency; observed base qualities; and
observed read strands.

Local reassembly. Discards read alignment information (but keeps
mapping location) and builds a kmer based assembly graph (i.e.
de Bruijn graph) at regions considered likely to contain variation.
Once the graph is constructed, paths with low observation kmer
counts and cycles are pruned. Candidate alleles are extracted by
enumerating the highest scoring non-reference bubbles, where the
score is determined by the sum of the kmer counts, weighted by
strand bias. The non-reference path of the bubble is aligned to
the reference to form candidate alleles. Complex variation such as
microinversions are found by inspecting bubbles.

Repeat realignment. Identifies common patterns of misalignments
in tandem repeat regions that results in runs of regularly spaced
SNV mismatches and proposes relevant indel candidates.

Input VCF. Reads a set of user-specified VCFs and extracts all alleles
present in the input regions.

Candidate haplotype generation. Haplotype-tree construc-
tion. Haplotypes are exhaustively constructed from all candidate
allele combinations. This approach differs from other methods that
construct haplotypes directly from read observations 4,5. The pri-
mary advantage of our method is that haplotypes with no direct
read support are proposed, so the length of haplotypes is not limited
by read length. However, since the number of haplotypes is expo-
nential in the number of alleles this approach is usually only feasible
for very short haplotypes. To allow construction of long haplotypes,
we use a graph data structure, called a haplotype-tree, where tree-
nodes are alleles and branches are haplotypes. The key property of
the haplotype-tree is that individual branches (haplotypes) can be
removed or extended, which allows us to limit the haplotypes in the
tree to only the most likely ones given partial data.

Controlling tree growth and active regions. The size of the tree
(number of haplotypes) is controlled by a user-defined parameter
(default 200). The tree is grown by adding alleles sequentially in
position order, until the size of the tree reaches the haplotype limit.
Growth rate is also controlled by checking if reads overlapping alleles
at the frontier of the tree overlap with alleles that are to be added
next. Alleles that overlap with the tree frontier are always added,
which can cause the tree to exceed the haplotype limit. In this
case, the tree is either pruned (see filtering below) or some alleles
(usually large deletions) are identified to be temporarily removed
from the active set, and are added again later once the tree has been
sufficiently pruned. The alleles in the tree are called active. Alleles
that are active but have already been evaluated by the calling model
are called indicators. Periodically, indicator alleles from the root of
the tree are dropped to allow room for new active alleles. Only once
alleles are dropped from the tree are they viable to be called. The
frequency at which this is done is user-controlled, and may be turned
off completely to give non-overlapping active regions. The default
behaviour is to drop indicator alleles based on the current tree size,
and by checking reads overlapping indicator alleles and novel active
alleles.

Deduplication. It is possible that duplicate haplotypes (i.e. iden-
tical sequence) exist in the haplotype tree since candidate alleles
are exhaustively combined. Duplicate haplotypes will have identical
likelihoods as the probability of generating a read from a haplotype is

only a function of the sequence itself. However, duplicate haplotypes
may not have equal posterior probability as the prior probability of
a haplotype segregating depends on the alleles which compose the
haplotypes. Since the posterior of duplicate haplotypes is only de-
pendent on the prior we just keep the duplicate with the greatest
prior probability.

Filtering. There are two haplotype filtering stages: prior and post
to genotype inference. The latter is always preferable as it is pos-
sible to deduce a marginal posterior probability for each haplotype
segregating in the samples, which contains all available information.
However, it is sometimes necessary to reduce the number of haplo-
types considered by the genotype model as the haplotype-tree can
exceed the provided haplotype limit. We considered a number of
alternatives and found that likelihood based statistics are most ef-
fective. In particular, we rank haplotypes by the number of reads
assigned to each haplotype calculated by maximum likelihood.

Haplotype likelihood calculation. Remapping. The first step
of the likelihood calculation is to remap reads to candidate haplo-
types. This is required because the likelihood model requires that
reads already be reasonably well placed, and the mapping position
provided by the read mapper may not be accurate with respect to
certain haplotypes (e.g. when indels are present).

We use a simple k-mer based mapper to find putative mapping
locations. Briefly, the k-mer (k is hard coded) starting at each
read and haplotype base are calculated. For each k-mer in the
read we then check if the k-mer exists in the haplotype, and if
so, calculate which position in the haplotype the read would start
assuming perfect alignment between the read and haplotype up until
the k-mer (i.e. offset by the k-mer position in the read). After doing
this for all k-mers in the read we find positions in the haplotype
that have high a high number of putative read starts and emit these
mapping positions.

Error models. The pair HMM (described below) for calculating
read likelihoods is parameterized by a sequencing error model with
indel gap open and gap extension penalties, and optionally, SNV
mismatch caps. The current implementation uses a constant gap
extension penalty. The penalties are set according to local repeat
context, up to some maximum repeat period (currently trinucleotide
repeats). There are currently two sequence error models: the de-
fault, which is intended for typical Illumina HiSeq 2500 quality data,
and one intended for platforms with higher error rates, such as the
Illumina HiSeq X Ten. We did not use any automated inference
procedure to arrive at the parameters for these two models, but set
them based on experience and observation.

pHMM. Haplotype likelihoods are calculated using a pair hidden
Markov Model (pHMM). The pHMM likelihood method computes
the approximate Viterbi probability of the read given the haplotype.
We use the Viterbi probability rather than the forward probability
since the Viterbi probability is considerably cheaper to compute in
log space, and in practice the difference between using the two prob-
abilities is small. The simplest pHMM implementation has positional
gap open penalties which are a parameter to the model. There is a
second version of the pHMM that also has SNV mismatch caps: A
vector of nucleotides and maximum base mismatch penalties - one
for each position in the haplotype sequence - that limit the penalty
of a mismatch aligned to that position where the mismatching read
base is the nucleotide indicated in the vector at that position. The
intention of this is to model a common error mode in sequencing
data in repetitive regions, especially homopolymers, where a single
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base on the edge of the repeat ’falls over’ to the leading base of the
repeat.

The pHMM is a performance bottleneck in Octopus and it there-
fore uses a highly optimized banded SIMD implementation. Being
banded, the likelihood calculation only explores parts of alignment
space that results in indels less than the band size (currently 8). For
short Illumina quality reads, this limitation is almost never an issue
as indel errors greater than this are extremely rare. For longer, nois-
ier reads, the band size would need to be increased. Since the band
size is just the width of the SIMD register used by the implementa-
tion (currently SSE2), to achieve a larger band size we would need
to modify the code to use SIMD instructions that support larger
register sizes (e.g. AVX2).

Inactive flank scoring. If there are read observations that partially
overlap the current set of active alleles, but also support inactive
alleles, then the likelihood for a true haplotype could be lower than
a false one only because the false one better supports a true haplo-
type that has yet to be considered. This, in short, is the ’windowing’
problem that all haplotype methods must address. Octopus’ solu-
tion to the windowing problem is to only commit to calling candidate
alleles once there is reasonable confidence that the reads supporting
the alleles have had likelihoods evaluated on all the true alleles they
support. However, the problem still remains that we must evaluate
the likelihood function with a haplotype that is correct in the active
region, but false outside this region (sequences outside the active re-
gion are always padded with reference). Our solution is to ’discount’
any reductions to the likelihood that arise from mismatches outside
the active region. We do this by retracing the Viterbi path and
subtract terms from the log likelihood that are due to mismatches
outside the active region.

Mapping qualities. Mapping quality is an important statistic that
reflects the trustworthiness of a reads mapping location. Formally,
it has been defined as the probability the read alignment is wrong.
In Octopus, we are not as concerned with the alignment of an input
read as with the mapping location, since all reads are realigned in-
ternally. If the read is incorrectly mapped to a degree that Octopus’
remapping step cannot place the read correctly, then the read is
not informative of the true haplotype and should not be used. To
account for mismapped reads, we optionally factor mapping quality
into the read likelihood calculation using the formula:

p(r |h) = p(r |h;mapped)p(mapped)

+ p(r |h;mismapped)p(mismapped)

= p(r |h;mapped)q + p(r |h;mismapped)(1− q)

where q = 1−10
−MQ(r)

10 . p(r |h;mapped) is then simply the likelihood
from the pHMM. p(r |h;mismapped) is a more interesting quantity.
If the read is unmapped, then it originated from some other se-
quence not localized to the reference region used to construct the
haplotype under consideration. Since we cannot reasonably calcu-
late this probability, we set it to a constant value (1). Although this
assumption is not valid, the behaviour of the whole calculation to
limit the impact of mismapped reads is achieved.

Mutation models. Indel mutation model. Local gap open and
extension probabilities are modelled for germline, de novo, and so-
matic mutations with a single indel mutation model. The model
takes as input a base rate parameter which is scaled according to
the local repeat composition of the sequence using the model in
Montgomery et al. 44. Gap extension probabilities are assigned based

on repeat composition and the current gap length. The extension
model encourages the inclusion of whole repeat periods by assigning
high probability to extensions of incomplete repeat periods, as indels
in tandem repeats almost always occur in whole periods.

Coalescent mutation model. The coalescent mutation model,
Mcoal , assigns probabilities to sets of haplotypes assumed to be
sampled randomly from an idealized population. For a given set of
haplotypes h = {h1; : : : ; hm} we first calculate two the number of
unique segregating SNV sites observed in h, k1, and the number of
unique segregating indel sites observed in h, k2. Both k1 and k2 are
calculated by comparing the alleles composing haplotypes to those
in the reference haplotype.

The model has two parameters: the SNV heterozygosity, „1, set
depending on user input; and the indel heterozygosity, „2, which
is set according the the indel mutation model given the reference
sequence and a user-supplied base indel heterozygosity. The max-
imum indel gap open heterozygosity for all segregating indels in h
is used for „2. Probability is then assigned to h by extending the
distribution for the number of segregating sites under the coalescent
model 45 with two heterozygosities:

p(h) =

„
„1

„1 + „2

«k1
„

„2

„1 + „2

«k2
„
k1 + k2

k1

«
p„=„1+„2 (k1 + k2)

where p„(S = k) =
Pn

i=2
(−1)i

`
n−1
i−1

´`
i−1
„+i−1

´`
„

„+i−1

´k
.

We note that a limitation of this model is that only a single indel
heterozygosity value is used for all positions in the observed hap-
lotypes. While this assumption is unrealistic, it rarely detrimental
since the most important aspect of the model is to assign high prob-
ability to indels in repeat regions. The likelihood of proposing some
other spurious indel in a region outside the repeat region is small
given the haplotype lengths normally considered.

De novo and somatic mutation models. The de novo mutation
model is intended assign probabilities to de novo mutation occur-
ring on a single haplotype during a single DNA replication. For
haplotypes h1 and h2, the model assigns probabilities p(h2|h1) ac-
cording to the indel mutation model and a SNV mutation rate that
are parameters to the model. The somatic mutation model assigns
probabilities to somatic mutations occurring on a single haplotype
over some time period and is identical to the de novo mutation
model.

Genotype prior models. Genotype prior models are used
to assign prior probability to arrangements of genotypes, g =
(h1; : : : ; hm) for ploidy m. There are two types of genotype
prior models: single and joint. Single genotype prior models as-
sign probability to single genotypes, p(g |M), joint genotype prior
models assign probability to a combination of genotypes, p(g =
(g1; : : : ; gn) |M). In some cases, such as the Coalescent genotype
prior model, the former is simply a particular instance of the first.
We report the unnormalized versions of each genotype prior model
since normalization is trivial, and is always performed as part of the
genotype posterior calculation.

Uniform genotype prior model. The uniform genotype prior model,
Muni , is the simplest genotype prior model. We have:

p(g |Muni ) = 1 p(g |Muni ) = 1

for the single case, and for the joint case, respectively.
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HWE genotype prior model. The Hardy-Weinberg Equilibrium
(HWE) genotype prior model, Mhwe , assigns probability to geno-
types assuming HWE. The model is paramertized by a set of
known haplotypes h = {h1; : : : ; hm}, and their frequencies, fi (for
i = 1 to m). The haplotype frequencies may be set explicitly, or
calculated with empirical Bayes. The HWE prior is a multinomial
distribution:

p(g |Mhwe) =

„
|g |

o1(g); : : : ; om(g)

« mY
i=1

f
oi (g)
i

where oi (g) is the number of haplotype i occurrences in genotype
g .

Coalescent-HWE genotype prior model. The coalescent-HWE geno-
type prior model, Mcoal−hwe , is suitable for modelling genotypes
randomly sampled from an idealized population; it is the default
germline prior model for all calling models when sample relationship
is unknown. There are two components to this model: a segre-
gation model, that assigns probability to the pattern of observed
alleles in the genotype(s); and a frequency model that assigns prob-
ability to the frequency each haplotype is observed. In particular,
the segregation model is just the coalescent mutation model and
the frequency model is a Hardy-Weinberg model parameterized with
empirical Bayes. We then have:

p(g |Mcoal−hwe) = p(g∪|Mcoal)p(g∪|Mhwe)

where g∪ = {h ∈ g : g ∈ g}, for the joint case. The individual
case can be simplified to

p(g |Mcoal−hwe) = p(g |Mcoal)

when |g | ≤ 2 (i.e. the sample is haploid or diploid) since p(g |Mhwe)
is then constant.

Trio genotype prior model. The trio genotype prior model, Mtr io ,
assigns probabilities to triplets of genotypes that originate from
parent-offspring trios. This model encapsulates two elements of
uncertainty: inheritance patterns, and parental haplotype modifica-
tion due to de novo mutations. The model uses Coalescent-HWE
genotype prior model or uniform prior model to assign probability
to parental genotypes and the de novo mutation model to model
modifications of parental haplotypes. Letting gm, gp, go denote
the maternal, paternal, and offspring genotypes, respectively. The
model calculates

p(go ; gm; gp|Mtr io) = p(gm; gp|Mg )p(go |gm; gp;Mdenovo)

The form of the latter term p(go |gm; gp;Mdenovo) is dependent on
meiosis and fertilization in the species under consideration. We only
consider the mammalian case.

Writing Md ≡ Mdenovo for brevity. In the autosomal (i.e. all
diploid) case, we have

p(go |gm; gp;Md) =
1

2
p(go0|gm;Md)p(go1|gp;Md)

+
1

2
p(go1|gm;Md)p(go0|gp;Md)

reflecting the uncertainty in parental origin of the offspring haplo-
types, and where

p(goi |gs ;Md) =
1

2
p(goi |gs0;Md) +

1

2
p(goi |gs1;Md)

models uncertainty in which parental haplotype is inherited.
p(goi |gsj ;Md) is the probability the haplotype goi is inherited by
the offspring given that the haplotype gsj is the one provided by the
parent s for fertilization; it models de novo mutations.

For the female offspring X chromosome case we have the same
form for p(go |gm; gp;Md) as the autosomal case, but

p(goi |gp;Md) = p(goi |gs0;Md)

For the male offspring X chromosome case we have

p(go |gm; gp;Md) = p(go0|gm;Md)

Finally, in the male offspring Y chromosome case we simply have

p(go |gm; gp;Md) = p(go0|gp0;Md)

Cancer genotype prior model. The cancer genotype prior model,
Mcancer , is used to assign probability to cancer genotypes; a pair
of regular genotypes, gcancer = (ggerm; gsom), where ggerm is the
germline and gsom is acquired somatically. The model must explain
both the germline and the somatic genotypes. No assumptions of
either germline or somatic genotype ploidy are made.

The model Mcancer is the composition of two separate models:
a germline prior model, Mgerm (e.g. the coalescent-HWE model);
and a conditional somatic model, Msom. We then have (omitting
models for brevity)

p(gcancer |Mcancer ) = p(ggerm)p(gsom|ggerm)

The second term p(gsom|ggerm;Msom) models the pattern of so-
matic haplotypes. In the simplest case when |gsom| = 1 (i.e. there
is a single somatic haplotype) then we just have

p(gsom|ggerm) =
1

|ggerm|

|ggerm|X
i=1

p(gsom;0|ggerm;i )

where p(gsom;0|ggerm;i ;Msom) is the probability of observing the
somatic haplotype given the germline haplotype ggerm;i suffers some
mutational event assigned by the somatic mutation model.

More interesting is when |gsom| > 1 (i.e. there are more than one
somatic haplotypes). In principle, we must consider that any of the
somatic haplotypes could have originated from either the germline
or any other somatic haplotype; we should consider possible tumour
phylogenies. We have not implemented such a model in Octopus;
we assume independence between somatic haplotypes:

p(gsom|ggerm) =

|gsom|Y
j=1

p(gsom;j |ggerm)

Genotype posterior models. Genotype posterior models com-
bine genotype prior models with genotype likelihood models. The
three core genotype models currently implemented in Octopus
(Supplementary Fig. 10).

Population genotype model. All samples have known ploidy and
copy number, so the likelihood function of a genotype g given reads
R is

p(g |R) =
1

|g |

|R|Y
n=1

|g |X
i=1

p(rn|gi )
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where |g | is the ploidy and |R| is the number of reads. The joint
genotype posterior for S samples is therefore given by

p(g |R;Mg ) ∝ p(g |Mg )

SY
s=1

p(g s |Rs)

where the genotype prior model,Mg , is either the uniform or HWE-
coalescent prior. Unfortunately, the number of genotype combina-
tions g grows exponentially in the number of samples S, so we
cannot evaluate the full posterior distribution in general. Therefore,
other than for trivial cases, we first approximate p(g s |R;Mg ) -
the sample marginal genotype posterior distribution under the HWE
model (without mutations), and use these marginal probabilities to
select K genotype combinations g i ; : : : ; gK (K is user-defined) to
evaluate under the full joint genotype model. The approximate pos-
terior marginals are computed with expectation maximization (EM).

Individual genotype model. The individual model is simply a case of
the population model, without the initial approximation step; this
model is always fully evaluated.

Trio genotype model. The trio genotype model has the same likeli-
hood function as the population model, but assigns prior probabil-
ities to genotype combinations with the trio genotype prior model.
Like for the population model, this model is intractable in general, so
we only evaluate the posterior partially. Briefly, we evaluate approx-
imate marginal probabilities for each sample under independence,
and use these likelihoods to first combine parental genotypes, and
then formulate a list of trio genotypes by combining parental com-
binations with offspring genotypes.

Subclone genotype model. Unlike the other genotype posterior mod-
els, this model does not assume known copy number - or mixture
frequency - of sample genotypes. The model assumes all read ob-
servations originate from the same underlying genotype, but may
have been observed at different mixture frequencies. The mixture
frequencies for each sample therefore becomes a latent variable that
we infer. We use Dirichlet distributions to assign probability to mix-
ture frequencies, so different mixture priors may be specified for each
sample by controlling the concentration parameter of the respective
Dirichlet distribution. The joint posterior distribution is

p(g;ı|R;¸;Mg ) ∝ p(g |Mg )

SY
s=1

Z
dffisp(ffis |¸s)

Y
r∈Rs

|g |X
i=1

ffisip(r |gi )

where ¸ are prior concentration parameters, ffi are mixture frequen-
cies, andMg is the genotype prior model. We cannot compute this
model exactly - or even partially - due to the integral over mixture
frequencies. We therefore compute approximate posteriors for each
latent variable using variational Bayes (VB). Namely, we assume the
posterior distribution has factorisation

q(g ;Z;ffi) = q(g)

SY
s=1

q(Zs)q(ffis)

where Zs is a latent binary indicator matrix specifying read-
component assignments. The associated probabilities, q(Zsnk), are
often called responsibilities - the responsibility haplotype k assumes
for read n in sample s. With this factorisation, the posterior distri-
butions for each latent variable is conjugate with the prior; we infer
Dirichlet posterior distributions. An important feature of the VB
approximation is that we can easily calculate a lower bound for the
data likelihood - the model evidence.

Calling models. Each calling model is responsible for calling
variants given candidate alleles, haplotypes, and haplotype likeli-
hoods. Although calling models are free to choose which latent
variables and genotype models to use, all calling models must be
able to infer posterior distributions over candidate haplotypes (for
filtering), and genotypes (for phasing).

Individual. Unsurprisingly, the individual calling model uses the indi-
vidual genotype model for genotype inference. Haplotype posteriors
are computed by marginalising over the genotype posterior distribu-
tion:

p(h|R) =
X
g

[h ∈ g ]p(g |R)

where h ∈ g is true if h occurs in g at least once. To call variants, we
first calculate the posterior probability of all candidate non-reference
alleles by marginalising over the genotype posterior distribution:

p(a|R) =
X
g

[a ∈ g ]p(g |R)

where a ∈ g is true if the any (a ∈ h) for h : g (i.e. if a occurs in
any of the haplotypes in g). We then select alleles with posterior
probability above some user-specified threshold.

Next, we identify the genotype with the greatest posterior prob-
ability (i.e. the MAP genotype). All selected alleles that appear
on the MAP genotype are called, where the variant quality is deter-
mined by the marginalised allele posterior computed previously.

For each called allele, we then call genotypes at the loci of those
alleles. In particular, for each allele we identify the alleles present
in the called genotype at the loci of the allele, and once again
marginalise over the genotype posterior distribution to compute the
posterior probability for that local genotype. This is used for the
genotype quality score.

Population. Inference for the population model is similar to the indi-
vidual; variant calls are made based on sample marginal posteriors.

Trio. The trio calling model first infers a joint genotype posterior
distribution p(gm; gp; go |R) with the trio genotype posterior dis-
tribution. We then infer sample marginal genotype posteriors for
each sample by marginalising over the joint posterior distribution.
Haplotype posteriors are calculated by integrating over the marginal
posterior:

p(h|R) = 1−
Y

s∈{m;p;o}

X
gs

[h =∈ gs ]p(gs |R)

To calculate the probability an allele segregates in the trio, we
also integrate over the joint genotype posterior distribution:

p(a|R) = 1−
Y

s∈{m;p;o}

X
gs

[a =∈ gs ]p(gs |R)

Similarly, we calculate the posterior probability an allele is de novo
in the child:

pdenovo(a|R) =
X

gm;gp ;go∈g

[a =∈ gm∧a =∈ gp∧a ∈ go ]p(gm; gp; go |R)

Finally, we find the MAP genotype combination using the joint geno-
type posterior distribution, and only call variants that are included
in this trio.

Cancer. The cancer calling model is intended to detect somatic mu-
tations in a set of tumour samples from a single individual. The set
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of samples may also include a sample that is not expected to con-
tain somatic mutations - a normal or control sample. We attempt
to model three data characteristics that result from tumour biology
and experimental protocol:

i There are no somatic mutational events; reads are generated
from a clean germline.

ii Copy number changes have occurred, but no somatic mutations.

iii Somatic mutations have occurred, and possibly copy number
changes.

Each of these three cases is modelled by fitting a unique genotype
posterior model:

i The individual model with any germline genotype prior model
(all read observations are merged): Mind .

ii The subclone model with a germline genotype prior model (e.g.
Coalescent-HWE): MCNV .

iii The subclone model with the cancer genotype prior model:
Msomatic .

The posterior probability for each model is calculated using Bayes
theorem:

p(Mx |R) ∝ p(Mx)p(R|Mx)

where p(R|Mx) is the evidence for model x .
For the somatic case, Msomatic , we must also infer the number

of segregating somatic haplotypes. To do this we start by assuming
a single somatic haplotype, and incrementally add more while the
evidence for the model is the greatest observed so far, up to a user-
defined limit.

For inference, we must marginalise over models. For example, we
calculate posteriors for germline genotypes by marginalisation:

p(g |R) = p(Mind |R)p(g |Mind)

+ p(MCNV |R)p(g |MCNV )

+ p(Msomatic |R)p(g |Msomatic)

where p(g |Msomatic) =
P

g̃ s:t:g∈g̃ p(g̃ |Msomatic) (i.e. marginalise
over cancer genotypes that contain the matching germline compo-
nent).

The posterior probability of an allele a segregating in the germline
is then:

p(a|R) =
X

gs:t:a∈g

p(g |R)

Germline candidates are called if the posterior is above a user-defined
threshold, and if the candidate is present in the called germline
genotype. If the allele is not called in the germline then it is added
to a list of candidate somatic alleles.

To calculate the posterior probability an allele a is somatic, we
marginalise over p(g̃ |R;Msomatic), conditional on the somatic mu-
tation frequency being above a user-defined threshold, fi .

First, we calculate the posterior mass for credible somatic fre-
quencies. Supposing that we inferred a model with K somatic hap-
lotypes, we assign probability to each somatic haplotype k = 1 : : : K
if it occurs as a frequency above fi ,

p(ffisk > fi |Msomatic) =

Z 1

fi

d„Beta„(¸P+1;

PX
i=0

¸i )

where the equality holds since the posterior distribution for ffis is
Dirichlet. The overall credible somatic mass –s is then calculated
with

–s = 1−
Y
k

1− p(ffisk > fi |Msomatic)

Finally we set – = 1 −
Q
–s . We then calculate the posterior

probability that an allele is a somatic mutation by marginalisation:

psomatic(a|R) = –(1−
Y
s

X
a=∈g̃ :germline∧a∈g̃ :somatic:g̃

p(g̃ |R;Msomatic))

If this probability is greater than some user-defined threshold, we
call the allele somatic.

For both called germline and somatic mutations, we also calculate
the probability that the variant segregates regardless of classifica-
tion, by marginalising over all three models.

Polyclone. The polyclone calling model is similar to the cancer
calling model without the third somatic mutation model; It com-
pares the individual genotype model with haploid genotypes, with
the subclone genotype model, where the number haplotypes is de-
termined iteratively by comparing model evidences. The genotype
prior model in both cases is either the uniform of Coalescent-HWE
model (depending on user choice).

Probabilistic phasing. Although each caller implements differ-
ent genotype models, each is required to infer the marginal posterior
probability of genotypes for each sample. This posterior distribution
is used to infer physical phasing of called variant sites. Direct read
data is not required as all information available from the reads, in
addition to any prior information, is already contained in the pos-
terior distribution. The advantage of this approach is most evident
when calling trios as the genotype prior can be strongly informative
about phase due to identity by decent. The method applies to geno-
types of arbitrary zygosity and is therefore applicable to non-diploid
samples.

Samples are phased independently; the marginal genotype pos-
terior distribution for each sample is used for phasing. First, all
genotypes in the domain of the posterior distribution are partitioned
into phase complement sets. All genotypes in a phase complement
set share exactly the same alleles, although they may appear on dif-
ferent haplotypes. There is only one such partitioning possible for
any set of genotypes. We calculate the entropy of each set with
respect to the normalised posterior probabilities of the genotypes
contained in the set. A low entropy implies little uncertainty in the
phase of the alleles present in the set. To account for uncertainty
in the samples genotype, we marginalise over all phase complement
sets by taking the weighted sum of each sets entropy, where the
weight for each set is the sum of the unnormalised posterior proba-
bilities. We termed this weighted average a phase score,

PS(g |Rs) =
X
j

fijH

„»
p(gj0|Rs)

fij
; :::;

p(gjm|Rs)
fij

–«
where fij =

P
i
p(gj i |Rs) is the sum of genotype posteriors in phase

complement set j , and H is the binary Shannon entropy function.

Lower phase scores indicate less ambiguous phasing, even if there
is high uncertainty in the samples genotype. If the phase score
for a set of genotypes is lower than a user-defined threshold the
region is considered phased, otherwise, each genotype in the set
can be broken into two parts which results in two unphased sets
of partial genotypes. The phase scores of these two partial sets
is never greater than the phase score of the original genotype set.
The phasing algorithm therefore iteratively finds the smallest set
of breakpoints such that the partial genotype sets defined by those
breakpoints are all phased.
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Variant filtering. As with any model, there are some error
modes that are not well captured by Octopus calling models which
can lead to false inferences. For example, Octopus assumes read
sequencing and mapping errors are independent which is not true
in general. To identify false calls due to model error, we developed
classifiers to filter Octopuss raw calls using statistics, called mea-
sures in Octopus, that may be derived directly from the input read
data.

Hard filtering. Hard filters are Boolean expressions where the terms
of the expression are comparison operations. Currently, only or bi-
nary operations are permitted; if any of the individual operations
is true then the call is filtered. Different filter expressions can be
specified for germline variant, de novo, somatic, and homozygous
reference calls.

Random forest filtering. Octopus uses the Ranger library 46 for ran-
dom forest classification. Different random forests may be used for
germline and somatic calls.

BAM realignments. Octopus is capable of producing realigned
BAM files that provide further evidence of a calls reliability. These
BAM files are especially helpful in cases where there are complex in-
del variants and the input alignments are significantly different from
the alignments supported by the called haplotypes. The realignment
process for each read is:

1. Identify the called haplotype where the read originated from.

2. Align the haplotype to the reference sequence.

3. Align the read to the called generating haplotype (mismatches
due to sequencing or calling errors).

4. Merge the two alignments to obtain a single alignment to the
reference.

For the first step, the called haplotype with the maximum likeli-
hood of generating the read is used. If there are more than one called
haplotypes that have equal likelihood, then we label the read am-
biguous. For realignment, ambiguous reads are assigned randomly
to one of the equally well supported haplotypes. The second step
is trivial in Octopus since haplotypes are defined explicitly by alleles
that are reported in the VCF output. The third step is computed
using the Viterbi alignment found from calculating the maximum
likelihood in the first step.

Since a hard choice of generating haplotype is made in the first
step, we can report this information by generating separate BAM
files for each called haplotype, and another for ambiguous reads.

Synthetic tumours. To generate synthetic tumour BAM files
we followed a similar approach to Ewing et al. 32 with important
differences. First, we obtained unmapped reads from the GIAB’s
NA12878 high coverage HiSeq 2500 set (∼ 300x total). From the
full high coverage set, we extracted four non-overlapping subsets
such that the average depths in the four subsets would be 30x,
35x, 60x, and 65x. To maintain realistic sequecing conditions, we
ensured that reads from same library and sequenced on the same
lane were kept together. The 30x and 35x read sets were used as
the normal samples, while the 60x and 65x read sets were used to
make the synthetic tumour samples.

For each of the two neo-synthetic-tumour BAMs, we then per-
formed a haplotype-based read assignment and realignment using
Octopus’ ’split’ BAM realignment feature. This results in three
BAM files; two containing reads that were assigned to a called
germline haplotype, and another containing ambiguous reads. The

purpose of the assignment step is to ensure spike in mutations fall
on the same germline haplotype. The realignment step is to ensure
consistency of spike-in location. Neither of which are guaranteed by
the method described in Ewing et al. due to limitations with BAM-
Surgeon. In summary, this procedure results in three ’cleaned’ BAM
subsets, each of which should be haploid and contain few alignment
errors.

We then simulated two sets of somatic mutations by sampling
putative real somatic mutations called by the PCAWG consortium.
In particular, we uniformly sampled PCAWG calls from skin tumours
and from breast tumour, in order to achieve mutation densities close
to 1Kb−1 and 1Mb−1 for the skin and breast sets, respectively.
These densities were chosen from the upper expected range for each
tumour type 29. For each sampled mutation, we uniformly assigned
a spike-in variant allele frequency from 0:025 to 0:5 (from 20 equally
spaced bins) for breast mutations, and 0:025 to 0:2 (from 20 equally
spaced bins) for breast mutations. Although this frequency distri-
bution is unlikely to be biologically realistic, we used this approach
to evaluate the performance of each algorithm across a range of
variant allele frequencies, and to the best of our knowledge, none of
the evaluated methods consider genome-wide sub-clonal tumour ar-
chitecture when calling variants. Each sampled mutation was finally
assigned to a random germline haplotype.

We used a slightly modified version of BAMSurgeon (https:
//github.com/dancooke/bamsurgeon) to spike in mutations into
each putative haploid neo-tumour BAM. The main modification that
we made to BAMSurgeon was to ensure any ’pad’ sequence used
for deletion spike-ins came from the originating germline haplotype,
rather than the reference sequence. We also needed to make minor
modifications to handle our split BAM files, which may not contain
proper read pairs. The spike-in VAF used for the BAM containing
ambiguous reads, which should contain reads from both parental
haplotypes, was always half the chosen spike-in VAF.

Finally, we created paired raw synthetic tumour FASTQ files by
merging and extracting reads from the three spiked haploid BAM
files. We emphasise that this final step removes all alignment and
phasing information.

Code availability. Octopus source code and documentation is
freely available under the MIT licence from https://github.com/

luntergroup/octopus. Custom code used for data analysis is avail-
able from https://github.com/luntergroup/octopus-paper.

Data availability. All germline data used in this manuscript is
publicly available from Genome in a Bottle, Precision FDA, and
EGA. The WGS500 trio data used for de novo analysis is not publicly
available. The synthetic tumour data is freely available from https:

//storage.googleapis.com/luntergroup/syntumour.

Author contributions. D.C and G.L designed the algorithm and
wrote the manuscript. D.C implemented the algorithm and per-
formed the the evaluation. D.W provided data for the synthetic
tumours and critically reviewed the manuscript.
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