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Abstract20 

Background: High-quality plant phenotyping and climate data lay the foundation of phenotypic 21 

analysis as well as genotype-by-environment interactions, which is important biological evidence not 22 

only to understand the dynamics between crop performance, genotypes, and environmental factors, 23 

but also for agronomists and farmers to monitor crops in fluctuating agricultural conditions. With the 24 

rise of Internet of Things technologies in recent years, many IoT-based remote sensing devices have 25 
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been applied to phenotyping and crop monitoring that generate big plant-environment datasets every 26 

day; however, it is still technically challenging to calibrate, annotate, and aggregate big data 27 

effectively, especially when they were generated in multiple locations, and often at different scales.  28 

Findings: CropSurveyor is a PHP and SQL based server platform, which provides automated data 29 

collation, storage, device and experiment management through IoT-based sensors and distributed 30 

plant phenotyping workstations. It provides a two-component solution for monitoring biological 31 

experiments and networked devices, with interfaces specifically designed for distributed IoT devices 32 

and centralised data servers. Data transfer is performed automatically though an HTTP accessible 33 

RESTful API installed on both device-side and server-side of the CropSurveyor system, which 34 

synchronise daily representative crop growth images for quick and visual-based crop assessment, as 35 

well as detailed microclimate readings for GxE studies. CropSurveyor also supports the comparison 36 

of historical and ongoing crop performance whilst different experiments are being conducted. 37 

Conclusions: As an open-source experiment and data management system, CropSurveyor can be used 38 

to maintain and collate important crop performance and microclimate datasets captured by IoT 39 

sensors and distributed phenotyping installations. It provides near real-time environmental and crop 40 

growth monitoring in addition to historical and current data comparison through a single cloud-ready 41 

server system. Accessible both locally in the field through smart devices and remotely in an office 42 

using a PC, CropSurveyor has been used in wheat field experiments for prebreeding since 2016 and 43 

has the potential to enable scalable crop management and IoT-style agricultural practices in the near 44 

future. 45 

 46 
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Background 49 

Automated phenotyping technology has the potential to enable continuous and precise measurement 50 

of phenotypes that are key to today’s crop research [1,2]. Quantitative phenotypic traits collected 51 

through crop development are not only important evidence for biologists to understand the dynamics 52 

between crop performance, genotypes, and environmental factors (e.g. genotype-by-environment 53 

interactions, GxE), but critical for agronomists and farmers to monitor crops in fluctuating agricultural 54 

conditions [3–5]. High quality phenotyping and climate datasets lay the foundation for meaningful 55 

phenotypic analysis, which is likely to produce an accurate delineation of the genotype-to-phenotype 56 

pathway for assessing yield potential and environmental adaptation [6,7]. Presently, although many 57 

automated phenotyping platforms are capable of accumulating big plant-environment data [8], it is 58 

still technically challenging to collect, calibrate, annotate, and aggregate the data effectively, for 59 

biological experiments carried out in multiple locations, and often at different scales [9,10].    60 

   With the rise of Internet of Things (IoT) technologies and their applications in plant phenotyping 61 

[11], a number of commercial data management solutions have been developed on the base of 62 

customised hardware and proprietary software. For example, the Field Scanalyzer system (LemnaTec) 63 

employs a simple HTTP server with an SQLite database to facilitate crop monitoring and deep field 64 

phenotyping using LemnaControl and LemnaBase software [12]; Integrated Analysis Platform 65 

(LemnaTec) [13] provides an automated pipeline to combine raw image collection and metadata 66 

association for indoor phenotyping; the FieldScan system (Phenospex) [14] uses infield WiFi network 67 

to connect PlantEyeTM 3D laser scanners, climate sensors, and a gantry system with a PostgreSQL 68 

database to realise the scanner-to-plant phenotyping; and, PlantScreenTM system (Photon Systems 69 

Instruments, PSI) manages fluorescence images and trait scores through dedicated networks and 70 

databases [15]. However, all these commercial systems require ongoing licensing maintenance and 71 

additional costs for developing new functions. It is therefore challenging for a broader plant research 72 

community to adopt and extend them easily in order to meet the growing needs of today’s crop 73 

research [10].   74 
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   Recently, some research-based systems have also been introduced to the scientific community. For 75 

example, PhotosynQ software manages data collection and storage through a handheld device called 76 

MultispeQ [16]. It uses Bluetooth to retrieve leaf surface images, environmental and geolocational 77 

data collected by MultispeQ and stores them in a mobile phone or a laptop. The system requires 78 

manual interference for data synchronisation and centralised analysis via onsite workstations or cloud-79 

based servers. Hence, it is tailored for small-scale and qualitative phenotyping tasks. BreedVision is 80 

another system that gathers data through a network-based HTTP server [17]. Mounting multiple 81 

sensors on a tractor, BreedVision is used to carry out field phenotyping for wheat breeding. Sensors 82 

communicate to a SQL database running in an embedded system. However, this platform is designed 83 

for bespoke hardware and does not provide an open application programming interface (API), 84 

indicating that it is incompatible with external hardware and software. Solely for collecting climate 85 

datasets, the PANGEA architecture [18] was successfully established to network large numbers of 86 

connections (e.g. wireless sensor networks, WSN) for agricultural practises [19]. This system has 87 

been used to integrate large-scale WSN installations through open and distributed smart device 88 

interfaces. However, it cannot handle image-based datasets and thus limits its applications in 89 

phenomics driven crop research. Lately, a comprehensive and open-source Phenotyping Hybrid 90 

Information System (PHIS) has been developed by INRA [20]. PHIS system aims to provide a 91 

platform to enable data tracing and reanalysis of phenomic data collected on thousands of plants, 92 

sensors and events. It can identify and retrieve objects, traits and relations via ontologies and 93 

semantics. Because the PHIS system needs to incorporate many external phenotyping and modelling 94 

systems, it is heavyweight and mainly focuses on post-experimental data integration and analysis.      95 

   The above industrial and academic efforts identify the need to develop a scalable and openly 96 

available data management system. It needs to handle different types of datasets acquired in 97 

automated plant phenotyping experiments. To integrate data transfer, calibration, annotation and 98 

aggregation effectively, such a system should be flexible for changeable experimental designs and 99 

expandable with third-party hardware and external software. More importantly, the system needs to 100 
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enable users to closely monitor experiments conducted in different locations whilst the experiments 101 

are being conducted.   102 

   With these design requirements in mind, we developed CropSurveyor, an IoT-based data 103 

management system that is easy to use and flexible to deploy in diverse experimental scenarios. 104 

CropSurveyor is a scalable and open-source software system, which provides diverse interfacing 105 

options for the community to adopt and extend. We followed a distributed IoT systems design during 106 

the development, so that experimental, phenotypic, and environmental data collected from infield and 107 

indoor experiments could be integrated efficiently. The system provides a unified web interface for 108 

users to oversee data collection, calibration and storage on a regular basis. Through our three-year 109 

wheat prebreeding experiments (2016-2018) [21], a powerful visualisation component and a flexible 110 

data/experiment management solution has been established. Equipped with CropSurveyor, users can 111 

now closely monitor different experiments, ongoing and historic, running in different locations. 112 

Furthermore, the modulated software architecture has made it possible to change scale and 113 

performance for new experimental needs. To our knowledge, the research-based CropSurveyor 114 

system has the potential to significantly contribute towards dynamic data collection and experimental 115 

management, for both plant phenotyping and crop GxE studies.   116 

 117 

Findings  118 

IoT is a fast-growing field. IoT-based sensors are generating terabytes of data for crop research and 119 

agriculture services everyday [22]. Because the existing data management solutions heavily rely on 120 

bespoke data collection approaches, they cannot be easily adopted and extended. Also, most of the 121 

solutions require the construction of a centralised management system, which would not resolve the 122 

problem of scalability and accessibility, because the distributed nature of IoT technologies and the 123 

centralised data administration infrastructure are likely to confound each other. Instead, we developed 124 

a two-component solution. The first part of this is a device-side system that is lightweight and capable 125 

of interacting directly with distributed IoT devices, ensuring onboard data standardisation and data 126 

collection. The second component is a server-side system that collates and stores image- and sensor-127 
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based datasets, with SQL as the back-end. This server-side system is comprehensive and responsible 128 

for visualising dynamic crop-environment data collected during experiments. Combining both parts, 129 

the open-source CropSurveyor system is capable of bringing scalability and flexibility to users. 130 

 131 

The systems design 132 

The two-component systems design of CropSurveyor is shown in Fig. 1. We used a Python-based web 133 

framework, Flask [23,24], as the base for the device-side services. The main reason for this choice is 134 

that Python, a high-level programming language widely used by the scientific community, can interact 135 

with many single-board computers (e.g. a Raspberry Pi computer) commonly embedded in distributed 136 

IoT sensors and/or phenotyping devices. This framework administers onboard data storage and 137 

establishes a lightweight server for web-based interactions (Fig. 1A). As Flask is hardware 138 

independent, the approach can be applied to any hardware that supports Python. Additional services 139 

such as Linux crontab scheduling system, dynamic host configuration protocol (DHCP, used for 140 

establishing self-operating WiFi network), and virtual network computing (VNC) services can be 141 

easily added or removed to maintain the simplicity of the device-side system.   142 

   Powered by PHP5+ [25] and MySQL [26], the device-side system can facilitate real-time 143 

interactions between smart devices (e.g. smartphones and tablets) and IoT devices. The graphic user 144 

interface (GUI) was developed using PHP and JavaScript, which can be opened in a web browser 145 

such as Chrome and Firefox on any smart device. A PHP-based RESTful API [27] was adopted to 146 

regulate hourly client-server communications. A lightweight SQL server, MariaDB [28], was used for 147 

collecting and storing different formats of datasets, including images, climate sensors, and 148 

experimental settings. The device-side system can also be used to initiate a live video streaming for 149 

users to deploy infield or indoor phenotyping devices (Supplementary Fig. 1), so that an experiment 150 

can be initiated or terminated via a smartphone or a tablet. Also, the GUI allows users to enter 151 

metadata including trials, experiments (e.g. genotypes, treatments and biological replicates), and brief 152 

description, while phenotyping devices are being installed. The distributed IoT-based design has 153 

massively improved the mobility and flexibility for conducting phenotyping tasks.  154 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/451120doi: bioRxiv preprint 

https://doi.org/10.1101/451120


 7

   The server-side system bridges the connection between data aggregation and cloud-based 155 

interfacing (Fig. 1B). This approach facilitates biological datasets acquired at different locations to be 156 

synchronised with a centralised server for detailed traits analyses and decision making in crop 157 

management. PHP5+ was used to develop the system that supports Apache and an SQL server such as 158 

MySQL [26]. The server-side system initiates regular updates of the status of each distributed IoT 159 

device with information such as online or offline status of the device, operational mode, 160 

representative daily images, micro-climate readings, and the usage of computing resources (i.e. CPU 161 

and memory). Since 2017, the two-component CropSurveyor system has been successfully applied to 162 

monitor indoor wheat speed breeding [29] and infield wheat prebreeding simultaneously 163 

(Supplementary Fig. 2).  164 

 165 

An MVC architecture 166 

Whilst CropSurveyor is designed to allow users with no technical background to use, the installation 167 

of the system still requires an IT technician to complete (see Additional File 1). To install the system, 168 

a functioning PHP and SQL server is required. Also, as it runs on a network-enabled web server, a 169 

network infrastructure is required to properly function CropSurveyor (Fig. 2). However, due to the 170 

rural location of many crop research experiments, it is often expensive and unfeasible to install wired 171 

or wireless networks in some experimental sites. Hence, our solution is to establish an ad-hoc and 172 

self-managed network through USB WiFi dongles mounted on IoT devices, e.g. a distributed 173 

CropQuant phenotyping workstation [21], so CropSurveyor can transfer data between distributed IoT 174 

devices and a central server. The self-managed network can be either a Star or a Mesh network 175 

topology, enabling peer-to-peer HTTP accessing points to network IoT devices for data calibration 176 

and synchronisation in the field (Fig. 2A), or to establish a direct link between a smart device and a 177 

phenotyping workstation (Fig. 2B). After correlating and collecting all data from the device side, the 178 

system will then transfer the data to the server-side powered by a central server, where users could 179 

oversee different experiments at near real-time (Fig. 2C).   180 
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   When implementing the CropSurveyor system, we followed Model-view-controller (MVC) 181 

software architecture, dividing the system into three interconnected parts to separate internal 182 

information flows based on how they are presented to the user [30]. Using the MVC pattern to 183 

interface different parts of the CropSurveyor system, not only source code of both device-side and 184 

server-side systems can be reused, we could also enable modulated parallel software development, 185 

while biological experiments were still ongoing (Fig. 2D).  186 

   To enable data standardisation and integration, a RESTful API was implemented that accepts 187 

image- and sensor-based datasets and IoT device status updates in JSON format. All interactions 188 

between devices and the server are authenticated using a pre-shared key pair to ensure that datasets 189 

collected are from a trusted source. The RESTful design strategy ensures that all data requested for 190 

transaction is contained within a single request, allowing devices to compile all information into one 191 

JSON object and then transmit through an HTTP POST request. The Model implementation allows us 192 

to determine dynamic data structure, as well as how to manage logic and rules of the CropSurveyor 193 

system. The entity–relationship model (ER diagram) used for establishing the database including 194 

entity types and specifies relationships between the entity types can be seen in Supplementary Fig. 3. 195 

   Based on PHP server (Apache tested) and SQL server (MySQL and MariaDB tested), the Controller 196 

component responds to user input and internal interactions on the data model. The controller receives 197 

image, sensor and system status as the input data flows, validates them, and then passes them to the 198 

model component, first on distributed device-side server and then transmitted to a globally accessible 199 

server-side server, which mirrors the input data. Internet connections are required, if the input datasets 200 

need to be transferred from a field experiment site to onsite servers. The form of data transmission can 201 

be either wired ethernet or Wi-Fi network. The Controller administers data collation between device-202 

side and server-side by mimicking the device API call to the higher-level server API, at the time of 203 

device request is programmed. 204 

   The View component presents the data model and user interactions in two formats. First, through an 205 

active HTTP connection and D3.js graphing engine [30], users can access distributed IoT devices via 206 

web browsers (Chrome and Firefox tested) installed on any smart device, in the field or in 207 
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greenhouses. The device-side CropSurveyor provides a tailored GUI interface, within which users can 208 

deploy (see Additional File 1), monitor, assess and download captured data on demand. Second, the 209 

device-side system synchronises with the server at regular intervals, based on which CropSurveyor 210 

provides a more comprehensive GUI to present both experimental and technical status of ongoing 211 

experiments. The device-side system is designed to be distributed. So, if a given IoT device cannot 212 

make a direct internet connection for any reasons, the device-side system will enable local data 213 

storage as a server node. After the networking is re-established, the system can then forward collected 214 

data automatically (the onboard USB memory stick normally can store 30 days’ image and sensor 215 

data). 216 

 217 

Experiment and data management   218 

Monitoring dyanmic plant phenotypes such as height, growth rate, growth stages, and associated 219 

climate conditions in biological experiments can be a laborious and time-consuming task. It is even 220 

more challenging if we need to calibrate and verify datasets collected via devices deployed in 221 

different sites. In particular, low-quality and missing data often leads to analysis errors and unusable 222 

results, normally identified after the completion of a given experiment [31]. Hence, the server-side 223 

CropSurveyor system was designed to oversee ongoing experiments based on representative daily 224 

images, hourly sensor data collected from each phenotyping device, as well as experimental settings 225 

such as genotype, treatment, drilling date, plot position and biological replicate.  226 

   The interfaces of experiment and data management are presented in Fig. 3, which integrate 227 

experiment location, plot map, and crop/experiment/device information to enable quick cross-228 

referencing and facilitate management decisions during the experiment. As shown in Fig. 3A, for a 229 

given experiment, the grid view of the server-side system provides a set of device nodes showing 230 

GPS-tagged project geolocation, identifiers of installed phenotyping devices, representative daily 231 

images of monitored plots, and colour coded status indicator displaying the operation mode of each 232 

device. CropSurveyor reads the device-side server’s GPS coordinates and presents the geolocation in 233 

an embedded Google Map for users to locate the experiment. In addition to the GPS location of the 234 
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experiment, an embedded plot map is also provided demonstrating individual device position in the 235 

field or in greenhouses together with colour coded status markers on the relevant plots to quickly 236 

indicate whether extra attention is needed (e.g. green for operating, amber for idle, and red for device 237 

termination or operational error). These markers in the plot map can be clicked, which will bring the 238 

user to the detailed view of individual device (Fig. 4). Each phenotyping device uploads a daily 239 

representative image of the monitored plant or plot. The resolution of the image is 640x480 pixels, 240 

downsized from 2592×1944 pixels to enable constant data transmission for large-scale device-server 241 

data synchronisation. The image is automatically selected based on file size, intensity, and image 242 

clarity. The grid view of these representative image is used as a snapshot of the experiment, so that 243 

users can quickly assess plant growth and performance of each genotype without regularly walking in 244 

the field during the growing season.  245 

   The list view provides a table of status that incorporates crop information with experiment and 246 

device details (Fig. 3B). This view is mainly used for project maintenance proposes, which contains 247 

three sections. First, similar to the grid view, crop information identifier lists phenotyping devices 248 

installed in the experiment. Second, experiment information includes a coloured status indicator to 249 

display the operational mode of a given device, the experiment duration of a given device, and the 250 

latest timestamp of data synchronisation. Device uptime (i.e. experiment duration) is computed using 251 

the device’s internal clock (the Linux uptime command) and the time when the latest image is 252 

captured. Third, device information shows: (1) each device’s onboard storage, using filled bars to 253 

indicate the percentage of space left in gigabytes (GB) based on regular 30-minute updates; (2) 254 

buttons to download image- (“Crop Growth Image Series”, in monthly Zip archives) and sensor-based 255 

(“Download Sensor Data”, in a CSV file) datasets collated during the experiment from the SQL 256 

database; and (3) device interaction buttons, providing direct device control and configuration via 257 

Secure Shell (SSH) or VNC.  258 

 259 
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Continuous microclimate visualisation   260 

Microclimate is an important evidence for crop scientist to monitor radiation/ambient/soil variation in 261 

different locations over the whole experiment site, which closely connects with the performance at 262 

both plant and plot levels [32]. To facilitate the monitoring of microclimate during the experiment, a 263 

comprehensive visualisation function has been developed (Fig. 4). By accessing an individual 264 

device’s detail page, collected environmental factors can be viewed as individual line charts along 265 

with the device information. IoT-based climate sensor readings are logged with the central server and 266 

then indexed by device and location, allowing near real-time microclimate readings (30-minute 267 

updates) of monitored regions. The visualisation is done in the web browser using the D3 JavaScript 268 

library. In our case, we can soundly retrieve readings such as device temperature (to assess device 269 

performance), ambient relative humidity, ambient temperature (Fig. 4A), light levels (based on light 270 

intensity), soil temperature and moisture (Fig. 4B). The microclimate datasets acquired from multiple 271 

locations across the field can also be used for data calibration to generate a normalised and highly 272 

reliable environmental reading of the experimental site.  273 

 274 

Applications in wheat field experiments 275 

A key element of modern agriculture is to closely monitor dynamic crop performance and agricultural 276 

conditions to predict and plan crop production [33]. Plant breeding and GxE studies also rely on high-277 

quality and high-frequency crop-environment data to produce accurate growth models for yield and 278 

quality prediction [34,35]. Following this approach, CropSurveyor provides users with quick access to 279 

all environmental factors recorded by each distributed phenotyping device during the growing season. 280 

Together with the position of a given device, seasonal microclimate datasets can form a dynamic 281 

growth condition map showing environmental conditions and variance in a given field (Fig. 5).  282 

   In a 253-day field experiment of 32 wheat genotypes within the single genetic background of 283 

Paragon (a UK spring wheat variety) accomplished in 2017, we have installed 16 CropQuant field 284 

phenotyping workstations to monitor six-metre wheat plots to collect continuous crop growth image 285 

series as well as associated microclimate conditions such as ambient temperature, relative humidity, 286 
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light levels, soil temperature and soil humidity. When the environmental data was being collated, a 287 

field map of dynamic microclimate conditions at key growth stages (i.e. from early booting to early 288 

grain filling, 56 days) was gradually produced, showing the increase in ambient temperature (Fig. 289 

5A), the variation of ambient moisture levels (Fig. 5B), and the steady increase of soil temperature 290 

(Fig. 5C), during the 56-day period. To simplify the presentation, the microclimate heatmap was 291 

presented with data at 14-day intervals, where wheat plots installed with IoT sensors were outlined 292 

with red colour and plots without sensors were outlined with green colour, where climate data was 293 

produced through data interpolation methods based on adjacent readings (Fig. 5). The period of the 294 

interval can be flexibly changed, and the microclimate readings are retrievable as soon as data 295 

synchronisation is finished (see Supplementary Fig.4 for daily data presentation). Furthermore, the 296 

climate datasets can be used for cross-validating the soundness of infield IoT sensors, for example, 297 

whether soil temperature correlates with ambient temperature (Supplementary Fig. 4A); and why 298 

readings from distributed low-cost sensors could provide more representative information of the field 299 

in comparison with an expensive central weather station in the field (Supplementary Fig. 4B).  300 

   Utilising this approach, dynamic environmental conditions throughout a field can be recorded with 301 

very low-cost climate sensors, which can then be scaled up through interpolation methods to cover 302 

regions without sensors. Through wheat field experiments between 2016 and 2018 at Norwich 303 

Research Park, we believe that distributed IoT sensors together with the CropSurveyor system are 304 

capable of providing invaluable crop monitoring and management data in near real-time.  305 

 306 

Comparison between multi-year experiments  307 

CropSurveyor not only provides tools for monitoring ongoing infield and indoor experiments, but also 308 

supplies toolkits to reference and download historical datasets. An important function in crop research 309 

is the ability to compare collected results with past experiments. To this end CropSurveyor stores all 310 

image and sensor data and manages these historical datasets with easy reference and access (Fig. 6). 311 

Historical datasets can be retrieved through the frontpage similar to ongoing experiments (multiple 312 

projects can be administered by CropSurveyor simultaneously). After opening a completed project, 313 
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users can display the GPS-tagged geolocation of the project and devices used in the project together 314 

with project references (Fig. 6A). By clicking a specific plot within the experimental field, 315 

CropSurveyor can directly reference environmental and image datasets in the plot, a view with device 316 

name, date of last capture and last image taken by the IoT device (Fig. 6B). If users want to revisit 317 

previous datasets in the project, they can download both sensor data packages and/or growth image 318 

series in monthly archives by clicking the archive links (Fig. 6C). This design enables a unified 319 

platform to facilitate both ongoing and historical data management to assist in-experiment and post-320 

experiment data analysis. 321 

 322 

Discussion and outlook 323 

The continuing challenge of global food security caused by fluctuating environments and a narrower 324 

range of genetic variation of modern crops requires innovative thoughts and technologies to improve 325 

crop productivity and sustainability [2,36,37]. As European infrastructures for sustainable agriculture 326 

(e.g. EMPHASIS and AnaEE) have identified, openly shareable solutions built on widely accessible 327 

digital infrastructures are likely to provide an effective solution to address the challenge by integrating 328 

novel scientific concepts, sensors and models [38,39]. The IoT-based CropSurveyor system presented 329 

here is scalable and open-source, providing the scientific community various interfacing options to 330 

adopt and extend. The openly available platform integrates the archiving and collation of high-331 

frequency environmental data and crop images automatically, which can be used for both phenotypic 332 

analyses as well as agricultural decision making. By associating environmental conditions directly 333 

with crop growth data, we trust that the system is capable of forming a sound base for reliable GxE 334 

studies. More importantly, CropSurveyor provides geolocation and remote sensor readings of current 335 

and historical experiments, a comprehensive solution to enable multi-site and multi-year cross-336 

referencing of traits analyses as well as crop performance monitoring. 337 

   Because CropSurveyor facilitates the real-time distributed access of microclimate conditions and 338 

crop imagery (through live video streaming) on-demand in the field or in greenhouses, either through 339 

a smart device or an office PC, users can make a quick decision of crop performance, growth stages, 340 
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and plot conditions of any monitored locations in a given experiment, field, or site. More importantly, 341 

automatic data transmission allows a centralised data and experiment management, which means that 342 

the system can be scaled up to the national scale if a broader IoT in agriculture infrastructure is in 343 

place. As collected data is annotated and pre-selected on distributed phenotyping or IoT-based 344 

devices, only standardised crop-environment datasets are collected from different experiments to 345 

support detailed analysis and meaningful cross-referencing. Furthermore, openly sharing results from 346 

different sites and different experiments will enable crop researchers, breeders, and farmers to gain 347 

great benefits, for example, predicting and prewarning disease spread at the national scale so that 348 

early adoption of preventative measures can be arranged.  349 

   Presently, many governments are shifting their focuses towards innovative technologies to 350 

modernise crop and agricultural research. The UK Government, for example, has invested heavily in 351 

IoT-based technologies to address challenges on yield production, food traceability, environmental 352 

challenges, incompatibility, and lack of infrastructure [40]. We believe that CropSurveyor can also 353 

address some of the current challenges directly. For example, by logging historical data and 354 

annotating crop growth and environmental effects within monitored fields can increase crop 355 

traceability. To reduce the overall use of agrochemicals as part of a precision farming strategy 356 

[41,42], CropSurveyor can be used to identify the appropriate timing and areas for chemical 357 

application together with infield imaging and ambient sensors. Water is in limited supply for large 358 

regions of the globe and the reduction of unnecessary irrigation would be of large benefit to the cost-359 

effectiveness of agriculture [43,44]. As discussed previously, CropSurveyor is built in with near real-360 

time environment monitoring mechanisms including soil temperature, soil moisture levels, and 361 

ambient humidity. Hence, it provides information crucial to make decisions and targeting irrigation in 362 

timing and location. Additionally, by linking extra climate sensors with IoT devices, further 363 

environmental readings can be extended in CropSurveyor for growing agricultural needs.   364 

   Besides the near real-time environmental and crop growth monitoring, historic and current datasets 365 

collated in a central system can also deliver predictive powers. An example of potentially predictable 366 

situations is the “Smith Period” for predicting Late Blight in potato crops [45]. Late Blight is shown 367 
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to be more likely to occur during a “Smith Period”, which is defined by a period of two or more days 368 

with a minimum temperature of 10oC and a humidity of 90%, or above for at least 11 hours in each 369 

day. Having direct access to dynamic sensor readings on the CropSurveyor can allow the monitoring 370 

of specific environmental patterns much easier and thus establish an important tool to inform farmers 371 

and growers to apply fungicides and chemical treatments to the appropriate areas. Based on this 372 

potential development, CropSurveyor is potentially able to serve sustainable agriculture and 373 

environmentally friendliness of food production under today’s changeable climates. 374 

 375 

Future Development 376 

To establish a data and experiment management system that is scalable and usable on regional, 377 

national or even global crop research and agricultural practices, we believe that CropSurveyor in 378 

connection with distributed IoT sensors can meet the future demand of usability and scalability, with 379 

some further development. One area of expansion is in scalability. The system is currently tested on 380 

local server with a direct network connection to at least one of the distributed nodes. To allow the 381 

expansion at a larger, national, or even global scale, the reliance on maintained servers would be less 382 

effective than a true cloud enabled service. Hence, by moving the CropSurveyor system to a globally 383 

accessible cloud server with cloud enabled distributed storage is a feasible approach, as the 384 

requirements for institutions and agricultural practitioners to maintain servers and storage are 385 

removed. Given the lack of network infrastructure in rural areas in many countries, the addition of 3G 386 

or 4G mobile data networks to key distributed nodes in the field can improve the infield network, 387 

upon which the data communication of a large number of Agri-Tech devices can be relied.  388 

   Another prohibitive factor in IoT in agriculture is the quantity and costs of IoT devices required to 389 

cover an entire field. Based on our three-year field experiments, we believe that installing sensors and 390 

phenotyping workstations to cover every area in the field is unnecessary. Fig. 5 shows that the data 391 

interpolation approach we have applied to generate microclimate readings between randomly 392 

positioned stations to model the effect of environmental variation in the whole experimental field. 393 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/451120doi: bioRxiv preprint 

https://doi.org/10.1101/451120


 16

This approach of subsampling produced high-quality environmental readings, which we believe could 394 

be key to the effective and feasible use of IoT in agricultural. Additionally, with the development of 395 

national IoT infrastructure, the similar subsampling idea can be expanded to a larger and multi-site 396 

level, which can then truly help inform decision in crop research and agricultural practices at the 397 

national level, across a country’s arable land.   398 

 399 

Availability and requirements 400 

Project name: CropSurveyor for wheat prebreeding in Designing Future Wheat 401 

Project home page: https://github.com/Crop-Phenomics-Group/cropsurveyor/releases 402 

Operating system(s): Platform independent 403 

Programming language: Python, PHP, JavaScript, SQL 404 

Requirements: Apache (or other PHP5+) server, MySQL (or other SQL) server, a recent version of 405 

Chrome, Firefox, or Safari 406 

License: BSD-3-Clause available at: https://opensource.org/licenses/BSD-3-Clause 407 

 408 

Availability of supporting data 409 

The datasets supporting the results presented here is available at https://github.com/Crop-Phenomics-410 

Group/cropsurveyor/releases. Snapshots of the code and other supporting data are also openly 411 

available in the GitHub repository. 412 

 413 

Additional files 414 

Additional File 1.docx 415 

MS Word Document (.docx) 416 
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CropSurveyor Installation Instructions and Interface Details 417 

Additional file gives step-by-step instructions for initialising the system through an existing PHP 418 

webserver with SQL database, details of RESTful API required fields necessary for device 419 

interaction, and addition detail of distributed installation and database integration. 420 

 421 

Additional File 2.html 422 

Web Page (.html) 423 

Algorithm to generate plotted figures 424 

Additional file contains full python code to replicate plotted figures within the paper, displayed within 425 

an exported iPython notebook. All datasets shown within the plotted figures of the paper are available 426 

at the project GitHub repository. 427 

 428 

Abbreviations 429 

AnaEE: Analysis and Experimentation on Ecosystems; API: Application Programming Interface; 430 

CPU: Central Processing Unit; CSV: Comma Separated value; DHCP: Dynamic Host Configuration 431 

Protocol; ER: Entity Relationship; GB: Gigabyte; GPS: Global Positioning System; GUI: Graphical 432 

User Interface; GxE: Genotype by Environment; HTTP: Hypertext Transfer Protocol; IoT: Internet of 433 

Things; IT: Information Technology; JSON: JavaScript Object Notation; MVC: Model View 434 

Controller; PHIS: Phenotyping Hybrid Information System; PHP: PHP Hypertext Pre-processor; PSI: 435 

Photon Systems Instruments; SQL: Structured Query Language; UK: United Kingdom; USB: 436 

Universal Serial Bus; VNC: Virtual Network Computing; WSN: Wireless Sensor Network 437 
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Figures  566 

 567 

Figure 1: A deployment diagram of the CropSurveyor system in biological experiments.  568 

(A) CropSurveyor facilitates users to interact with distributed infield or indoor phenotyping 569 

workstations using wired (e.g. ethernet cables) or wireless connection (e.g. smart devices’ WiFi). The 570 
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CropSurveyor client running on distributed workstations supports remote systems interactions and 571 

onboard data management. (B) Users can connect, monitor and administer experiments using 572 

CropSurveyor server in real time. Through dedicated networks, the CropSurveyor back-end server 573 

collates and integrates large image- and sensor-based phenotyping datasets in an SQL database. 574 

 575 

Figure 2: A component diagram of the real-world deployment and application of the 576 

CropSurveyor system.  577 

 (A) IoT phenotyping workstations installed at Norwich Research Park. Distributed nodes are 578 

connected by the cloud-based CropSurveyor system. (B) Infield phenotyping devices can be directly 579 

accessed and controlled through the local CropSurveyor client directly in the field by using a smart 580 

device. (C) CropSurveyor can be used remotely to manage ongoing experiments through an 581 

accessible web interface. (D) A detailed component diagram showing the MVC design of the 582 

CropSurveyor system and the interface between infield/indoor phenotyping workstations, local 583 

CropSurveyor server, cloud-based server and user interactions. The data input is through a RESTful 584 

API, responsible for transferring data between servers and enabling interactions through a web-based 585 

user interface. 586 

 587 

Figure 3: System views of CropSurveyor’s user interface.  588 

(A) The user interface is accessible through a web browser on any computing device. The grid view 589 

of the system is designed for integrating key experimental information, showing geolocation of field 590 

experiments, experiment layout, monitored plots and genotypes, experiment duration, and 591 

representative daily images of the monitored genotypes. (B) The list view shows detailed statistics of 592 

all monitored crops in a given experiment, including crop information (genotypes and representative 593 

images), experimental information, and workstation information such as workstation ID, its storage, 594 

IP address, image and sensor data download, and device interaction function devices flask-based 595 

HTTP interface. This view is more useful from a system management perspective. 596 

 597 
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Figure 4: An individual view of a given genotype monitored by the CropSurveyor system.  598 

(A) The individual view of a monitored genotype/plot accessible through the CropSurveyor user 599 

interface, detailing device and experiment information together with captured environmental sensor 600 

data. (B) Web-based graph visualisation of hourly sensor readings during a given experiment, 601 

showing ambient temperature, ambient humidity, field lighting, soil moisture, and soil temperature 602 

variation in the plot region.  603 

 604 

Figure 5: The infield microclimate conditions collated by the CropSurveyor system 605 

(A, B) A Heat map of ambient sensor reading of temperature and relative humidity recorded during 606 

the growing season. Each cell represents an individual plot in the 2017 field experiment. Real sensor 607 

reading outlined in red and interpolated values outlined in green. (C) A Heat map of soil-based sensor 608 

reading of soil temperature recorded during the growing season.  609 

 610 

Figure 6: Historical experiment data access 611 

(A) The CropSurveyor system provides access to historical experimental datasets, including the 612 

geolocation of a given project and genotypes/plots monitored in the completed project. (B) In a 613 

completed project, the last image captured in the experiment as well as historical image- and sensor 614 

datasets can be downloaded. (C) The download links for monthly image series archived in cloud. 615 

 616 

Supplementary Figure 1: CropSurveyor gives access to each phenotyping device’s interface 617 

allowing for device management and configuration such as live video streaming to assist in 618 

calibration and experiment setup.  619 

 620 

Supplementary Figure 2: Archived data access allowing browsing and downloading of previous 621 
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completed trials. Accessing multiple experiments and archived historical data allows cross-622 

referencing data and environmental conditions. 623 

 624 

Supplementary Figure 3:  Database Entity-Relationship diagram detailing high level entities within 625 

the CropSurveyor database and the relational links between primary, composite and foreign key 626 

fields. Diagram describes the structure of database tables; simple storage fields are not shown. 627 

 628 

Supplementary Figure 4: (A) The cross-validation of two different sets of sensors, normalized soil 629 

and ambient temperature readings. (B) Different reading between distributed ambient humidity 630 

sensors (15 in the field) in comparison with a central weather station, showing different microclimate 631 

readings. 632 
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certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/451120doi: bioRxiv preprint 

https://doi.org/10.1101/451120


Supplementary Fig. 2
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Supplementary Fig. 3
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