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Abstract 

The analysis of information rich whole-metagenome datasets acquired from complex microbial 

communities is often restricted by the fragmented nature of assembly from short-read sequencing. 

The availability of long-reads from third-generation sequencing technologies (e.g. PacBio or 

Oxford Nanopore) can help improve assembly quality in principle, but high error rates and low 

throughput have limited their application in metagenomics. In this work, we describe the first 

hybrid metagenomic assembler which combines the advantages of short and long-read 

technologies, providing an order of magnitude improvement in contiguity compared to short read 

assemblies, and high base-pair level accuracy. The proposed approach (OPERA-MS) integrates a 

novel assembly-based metagenome clustering technique with an exact scaffolding algorithm that 

can efficiently assemble repeat rich sequences. Based on evaluations with defined in vitro 

communities and virtual gut microbiomes, we show that it is possible to assemble near complete 

genomes from metagenomes with as little as 9× long read coverage, thus enabling high quality 

assembly of lowly abundant species (<1%). Furthermore, OPERA-MS’s fine-grained clustering is 

able to deconvolute and assemble multiple genomes of the same species in a single sample, 

allowing us to study the complex dynamics of the human microbiome at the sub-species level. 

Applying nanopore sequencing to gut metagenomes of patients undergoing antibiotic treatment, 

we show that long reads can be obtained from stool samples in clinical studies to produce more 

meaningful metagenomic assemblies (up to 200× improvement over short-read assemblies), 

including the closed assembly of >80 putative plasmid/phage sequences and a 263kbp jumbo 

phage. Our results highlight that high-quality hybrid assemblies provide an unprecedented view of 

the gut resistome in these patients, including strain dynamics and identification of novel plasmid 

sequences. 
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Introduction 

The human gut microbiome is known to harbor a rich microbial community composed of hundreds 

of species with diverse metabolic properties that contribute to multiple facets of host health1. In 

addition, its role as a gene reservoir, particularly in the context of antibiotic resistance genes, has 

been well documented2. The presence of trillions of bacteria cohabiting in close proximity, and 

under constant selection through diet and occasionally through antibiotics, creates a dynamic 

environment where antibiotic resistance genes are readily transferred between bacterial species3. 

With an increasing prevalence of multi-drug resistant organisms, many of which carry resistance 

elements on plasmids transmissible across broad classes of bacteria (e.g. Carbapenem-resistant 

Enterobacteriaceae: CRE), the role of the gut microbiome as a reservoir that facilitates 

transmission of antibiotic resistance is of significant scientific and public health interest. 

 Studies of the transmission of antibiotic resistant organisms between hosts and the 

environment have primarily relied on cultured isolates, though increasingly metagenomic 

techniques are being applied to this problem4–7. By avoiding culture bias, shotgun metagenomic 

sequencing promises a more complete view of the gut microbiome, including antibiotic resistant 

bacteria or fungi and corresponding genes. In practice, however, the limitations of short second-

generation reads and the complexity of the metagenome assembly problem, particularly when 

multiple related species and strains are present in a community, can lead to inaccurate or 

incomplete assemblies8. Clustering methods that use information from sequence composition and 

coverage provide a valuable approach to aggregate fragmented assemblies into “bins” that likely 

come from a single species9,10. Another major development in this area has been the extension of 

these ideas to analyze data from multiple samples to improve binning and assemble near complete 

species-level genomes11–14. These methods were tailored to uncover consensus genomes for novel 

species, but not specifically to assemble different strains and the auxiliary genes in them 

correctly15. As regions of variation across strains can serve as informative markers for transmission 

studies16, there is still a need for methods that can resolve metagenomic assemblies at the strain 

level in individual samples. 

The use of long-read sequencing technologies is a direct way to resolve ambiguity in 

metagenomic assemblies for individual samples and boost assembly contiguity17,18. Its use has 

however been limited until now due to several conditions including the high cost of sequencing, 
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sequencing biases, stringent DNA requirements and low sequence quality. Recently, ultra-long 

reads from nanopore sequencing have been used to improve the assembly of a human genome19, 

and significant improvements in throughput have been reported through the introduction of new 

platforms such as the PromethION. Nanopore sequencing has also been used for metagenomic 

profiling for some sample types20, but its use for metagenomic assembly particularly for human 

gut microbiome studies has not been explored. In this work, we establish the feasibility and utility 

of nanopore sequencing for stool metagenomics in clinical studies to obtain long reads that reliably 

represent the diversity of the metagenome. By combining nanopore and Illumina reads through a 

first-of-its-kind hybrid metagenomic assembly algorithm, we exploit the strengths of both 

sequencing approaches and show that we can meet the previously unachievable goals of high base-

pair accuracy and near-complete genomes while resolving assemblies at the sub-species level. We 

demonstrate that these assemblies can then serve as valuable references for studying the evolution 

of gut resistomes, including strain dynamics and the identification of novel plasmid sequences. 

Results 
High quality long read metagenomics and hybrid assembly with nanopore sequencing 

To evaluate the feasibility of routine long read metagenomic sequencing with stool samples from 

clinical studies, we extracted DNA and assessed its quality in a set of 197 samples from an ongoing 

study on CRE colonization of the gut microbiome. As is typically the case for such studies, we 

worked with small quantities (0.5g) of frozen stool samples but noted that despite this limitation, 

sufficient (>2.5µg) and high-molecular weight (modal size >1kbp) DNA could be obtained for 

>60% of the samples using our adapted protocol (Methods; Supplementary Figure 1). In 

addition, for >25% of the samples we obtained modal DNA size >5kbp, which is well-suited for 

long read sequencing. A subset of samples (n=28) were then sequenced on a single 

MinION/GridION flow-cell each (Supplementary File 1), generating up to 8Gbp of sequence 

data per sample, with median throughput >2.5Gbp (Supplementary Figure 2A). Read length 

distributions had a median N50 of 2kbp, and on average >15% of the sequence was in reads longer 

than 5kbp, making the data suitable for improving contiguity in metagenomic assemblies 

(Supplementary Figure 2A and Supplementary File 1). In addition, we noted that the taxonomic 

distributions for nanopore libraries were highly concordant with those obtained using Illumina 

short-read libraries (median Pearson correlation >0.95; Supplementary Figure 2B) indicating that 
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our nanopore protocols do not induce distinct strong biases for specific bacteria. Overall, our 

results support the routine use of nanopore sequencing for obtaining long reads to do metagenomic 

assembly in clinical gut microbiome studies.  

To assemble this new type of metagenomics data, we designed the first hybrid 

metagenomic assembler for long error-prone reads (OPERA-MS), with the aim to obtain highly 

contiguous assemblies with low base-pair error. OPERA-MS is based on a workflow that is 

designed to leverage existing tools while addressing the key algorithmic challenge of disentangling 

related genomes accurately (Supplementary Figure 3), using a clustering approach that takes into 

account assembly graph as well as coverage information to optimize the Bayesian Information 

Criterion (BIC) of clusters (Methods). An overview of the OPERA-MS workflow is shown in 

Figure 1 with the following key components: (i) Assembling preliminary contigs using a short-

read metagenomic assembler (e.g. Megahit21,  metaSPAdes22, IDBA-UD23) and overlaying long-

read information to construct an assembly graph of all genomes (steps 1 and 2), (ii) disentangling 

genomes at the species level using a reference-free clustering approach and augmenting clusters 

using a reference guided approach (steps 3, 4 and 5), (iii) identifying sub-species level clusters and 

scaffolding and gap-filling them using OPERA-LG24 (steps 6, 7 and 8). We next evaluated 

OPERA-MS’s ability to leverage long error-prone reads to significantly enhance assembly 

contiguity while maintaining low assembly error rates compared to state-of-the-art assemblers.  

Recovering near-complete and high fidelity genomes from hybrid metagenomic datasets 

To comparatively evaluate the performance of various programs, we assembled sequencing 

datasets for mock communities where the ground truth for the metagenome is well known. This 

included the HMP staggered mock community for which Illumina short reads18, Illumina Synthetic 

Long Reads18 and PacBio data are publicly available, as well as a new diverse community of 20 

species (GIS20) whose abundances ranged from 0.1 to 30% and were deeply sequenced on the 

Illumina (80% species with >30× read coverage), PacBio and Oxford Nanopore (55% and 65% 

species with read coverage >5×, respectively) platforms (Supplementary Table 1,  

Supplementary File 2 and Supplementary Figure 4; Methods). For both communities we noted 

that the data adequately captured community composition, with high correlation between the 

expected and observed relative abundance of species for Illumina and Oxford Nanopore data 

(Spearman ρ>0.96), slightly lower correlation for PacBio data (0.94-0.97), and lower but still high 
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correlation for Illumina Synthetic Long Reads (0.89; Supplementary Figure 4). Overall, we 

evaluated three state-of-the-art metagenomic assemblers (MegaHit21, metaSPAdes22, IDBA-

UD23), a long-read assembler (Canu25, not specifically designed for but used for metagenomic 

assembly25), a hybrid assembler (hybridSPAdes26, with test extensions for metagenomics) and the 

hybrid metagenomic assembler OPERA-MS, on metagenomic data representing 37 completely 

assembled bacterial genomes across 4 different sequencing approaches (Illumina, PacBio, Oxford 

Nanopore and Illumina Synthetic Long Read).  

We first began by assessing the relative benefits of short and long read sequencing for 

metagenomic assembly based on these gold-standard datasets. Currently, short-read Illumina 

sequencing is still the most cost-effective approach to study complex microbial communities. We 

noted that as expected, the ability to sequence deeply does improve metagenomic assembly, but 

assembly contiguity (measured by NGA50 per genome, with assembly errors accounted for; 

Methods) plateaus out at ~30× coverage (NGA50 <300kbp with metaSPAdes; <200kbp for 

MegaHit and IDBA-UD; Figure 2A, Supplementary Figure 5). This limitation in assembly 

contiguity is however addressed by longer reads that can span repetitive sequences in microbial 

genomes, and correspondingly near complete genomes (NGA50 >1Mbp) are obtained even from 

metagenomic data when sufficient coverage is available (ideally >60×; Figure 2B). The precise 

requirements for long read coverage vary across genomes due to the specifics of their repeat 

content, but at a minimum, assembly with Canu required >10× coverage and many genomes 

remained unassembled even at this coverage (Figure 2B). In contrast, assembly with hybrid 

approaches that leveraged both short and long read data enabled NGA50 >100kbp with as little as 

5× long read coverage (Figure 2C and Supplementary Figure 5). Notably, OPERA-MS 

assembled near complete genomes with ~9× long read coverage while Canu and hybridSPAdes 

required >30× coverage to obtain similar quality assemblies. In addition, base-pair level accuracy 

was significantly lower for metagenomes assembled solely with native long reads (Canu), 

primarily due to 10-100× increase in median indel error rate, even after consensus correction 

(Methods; Supplementary Figure 6). Hybrid assembly methods (OPERA-MS, hybridSPAdes) 

provided higher sequence quality comparable to some short read methods (median quality ≈ Q40), 

further highlighting the advantages they provide over short read and long read only approaches for 

metagenome assembly contiguity and sequence quality, respectively.	
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To analyze OPERA-MS’s utility as a function of long read coverage in comparison to other 

assemblers, relative improvements in assembly contiguity (NGA50) were computed per genome 

for different coverage bins (<1×, 1-5×, 5-30×, >30×). Compared to short-read assemblers, 

OPERA-MS enables notably better assembly contiguity (>50%) as long as coverage is >1× (~10-

fold improvement with coverage >30×; Figure 2D), and these improvements were seen with 

assemblies from metaSPAdes and IDBA-UD as well, in addition to MegaHit (Supplementary 

Figure 7). In relation to long read only assemblies (Canu), OPERA-MS assembled many highly 

contiguous genomes (NGA50 >100kbp) with <5× long read coverage where Canu is unable to 

assemble genomes (Figure 2B, C), provided >800% improvement for genomes with 5-30× 

coverage, and similar contiguity at higher coverage (>30×). Among hybrid approaches, OPERA-

MS improved over hybridSPAdes assemblies by >50% for 40% of the genomes assembled, 

compared to <5% of genomes with such improvements using hybridSPAdes versus OPERA-MS. 

Of note, median improvement in assembly contiguity was more than 100% for genomes with 5-

30× coverage when comparing OPERA-MS with hybridSPAdes. The advantages of hybrid 

assembly were also seen in terms of assembly completeness with OPERA-MS assembling an 

additional 20-40kbp of sequence on average per genome compared to short read assemblies 

(Supplementary Figure 8). Finally, we noted that OPERA-MS typically produces <1 

misassembly per Mbp, a 2.5× improvement over hybridSPAdes which produced the most errors 

among the tested methods as expected for an isolate genome assembler18 (Figure 2E). Overall, 

these results indicate that OPERA-MS is a versatile approach capable of obtaining highly 

contiguous and accurate genome assemblies from diverse long read metagenomic datasets. 

OPERA-MS accurately assembles strain genomes in complex communities  

While mock communities are a commonly used gold-standard for evaluating metagenomic 

assembly with real reads, they typically represent simpler communities. To address this and 

evaluate assembly methods on more complex communities where ground truth is known we took 

the approach of spiking mock community reads (GIS20) into our stool metagenomics data (sample 

S2, Supplementary File 1) to construct virtual gut microbiomes (Figure 3A). These virtual gut 

microbiomes carry the complexity of real datasets while allowing us to evaluate OPERA-MS’s 

accuracy in assembling strain genomes when multiple strains are present in the data. In particular, 

we noted that GIS20 shared five species with the stool dataset that it was spiked into (Klebsiella 
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pneumoniae, Streptococcus parasanguinis, Enterobacter clocae, Bifidobacterium adolescentis 

and Parascardovia denticolens) and these would be expected to have their assembly impacted in 

the virtual community.  	

Even with the increased diversity of the community (Shannon divergence 3.4 vs 2.1 for 

GIS20), OPERA-MS continued to exhibit 5-10 fold improvement in assembly contiguity 

compared to short read metagenomic assemblers (MegaHit, metaSPAdes, IDBA-UD) with 

genome coverage >5× and a useful 50% improvement with 1-5× coverage (Figure 3B). The utility 

of metagenomic assembly methods was also more apparent in the virtual gut versus the mock 

community datasets. While Canu assembled only one genome and at 5-fold lower contiguity than 

OPERA-MS, contiguity was 2-fold higher with >5× coverage for OPERA-MS vs hybridSPAdes 

assemblies. These differences were also apparent in terms of misassembly, with Canu and 

hybridSPAdes having >1.5× of the misassembly rate obtained with OPERA-MS (Figure 3C). 

As “binning” of fragmented short read metagenomic assemblies is commonly performed 

to aggregate sequences that may come from the same genome for downstream analysis, we next 

evaluated results with this step. Applying MaxBin210 to the most accurate short-read (MegaHit) 

and long-read (OPERA-MS) assemblies revealed substantial difference in binning quality (Figure 

3D). Median genome completeness with OPERA-MS was improved to 95% vs 83% with MegaHit 

(median genome purity of 90% for both methods), with four (out of 20) OPERA-MS bins with 

genome completeness >99% and purity >95% (0 for MegaHit). Binning performance also 

markedly impacted analysis of (i) gene content, with 93% gene assembly with long reads and 

OPERA-MS vs 82% with short reads, as well as (ii) pathway reconstruction, with 96% coverage 

with OPERA-MS vs 61% with MegaHit (Figure 3D; Methods), highlighting the value of hybrid 

metagenomic assemblies for gene content and metabolic pathway analysis27. 

As a specific example of assembly and binning performance differences, we observed that 

despite having high short read coverage (>100×) in the virtual gut microbiome, MegaHit assembly 

of the Klebsiella pneumoniae strain that was spiked in from GIS20 (10× more abundant than native 

strains) had NGA50 of ~11kbp, a 5-fold reduction compared to its GIS20 assembly. Binning of 

the assembly led to three different bins, each containing a fraction of the genome (50%, 25% and 

15%). This is concordant with known challenges for metagenomic assembly contiguity and 

accuracy in the presence of multiple strains of the same species8. Even when manual binning was 
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performed to combine the 3 bins, the Illumina-only K. pneumoniae assembly still did not have 

~20% of its genes assembled, including 2 out of the 3 antibiotic resistance genes that are known 

to be present in this strain (Supplementary Figure 9A). Assembly with Canu was able to leverage 

the >100× long read coverage to produce 12 contigs covering ~93% of the genome, but with 53 

relocation errors representing 419kbp of misassigned novel sequence (NGA50 = 152kbp). 

Similarly, the hybridSPAdes assembly had NGA50 of 327kbp and 448kbp of novel sequence in 

10 relocation errors. The OPERA-MS assembly generated a single 5Mbp contig with 5 relocation 

errors and 6kbp of novel sequence (NGA50 = 1.4Mbp), representing a >120× improvement in 

contiguity over the initial MegaHit assembly. In total, 99% of the genes were fully assembled by 

OPERA-MS, including all antibiotic resistance genes, and the genome was contained in a single 

high quality bin (99.8% completeness and 99.3% purity) which almost fully captures the pathways 

of this Klebsiella pneumoniae strain (Supplementary Figure 9B). These results showcase the 

utility of hybrid metagenomic assembly for gene content and pathway analysis in complex 

microbial communities and the ability to accurately distinguish sub-species genomes in them with 

OPERA-MS. 

Hybrid assembly for analysis of antibiotic resistance and novel mobile elements in the human 

gut microbiome 

Based on the evidence that OPERA-MS can accurately resolve strain ambiguity and assemble 

complex metagenomes, we next applied it to nanopore and Illumina sequencing data for stool 

samples from our initial cohort (n=28; Supplementary File 1, Supplementary Figure 2; 

Methods). Samples for this cohort came from two studies that investigate the impact of 

antibiotics28 and CRE colonization (manuscript in preparation) on the gut microbiome, and 

correspondingly we were interested in additional insights into mobile elements and antibiotic 

resistance that we could obtain from hybrid metagenomic assembly. In terms of overall assembly, 

while our initial MegaHit assemblies had median N50 <9kbp, hybrid assembly resulted in >5× 

improvement in median assembly contiguity, with an even larger improvement for lowly abundant 

species (10×, starting from 4kbp), and up to 200× improvement for some genomes 

(Supplementary Figure 10). In terms of high quality genomes as assessed by CheckM29, OPERA-

MS nearly doubled the number with N50 >100kbp compared to hybridSPAdes (69 versus 36), and 

was able to assemble many high quality and contiguity genomes even in the presence of strain 
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ambiguity (8 versus 1 and 0 for hybridSPAdes and MegaHit, respectively; Supplementary Figure 

11; Methods). The average runtime on these datasets was <12 hours for the combination of 

MegaHit and OPERA-MS using  20 CPUs, in comparison to slightly more than 12 hours for 

hybridSPAdes. 

Due to the presence of repetitive elements, assembly of mobile elements with short reads 

can be challenging even in isolate genome data30. Using circularity of assembled sequences to 

identify potential fully assembled phage and plasmid genomes, we directly recovered 8.9Mbp of 

circular sequences in 88 contigs from OPERA-MS gut metagenome assemblies (Methods). The 

assembled sequences covered a wide range of sizes (16 sequences > 100kb; Figure 4A), including 

a complete bacterial genome, large plasmids and phages (Supplementary File 2), none of which 

were fully assembled using only short reads (Supplementary Figure 12A). The assembly of a 

complete genome for an Enterobacter cloacae strain exhibited high sequence (identity >99%) and 

structural (no inversions or translocations observed) similarity with the reference genome for 

Enterobacter cloacae ENHKU01 (Supplementary Figure 12B), indicating high fidelity for these 

assemblies. Among assembled sequences, a majority (68/88) are substantially diverged from 

known sequences (average identity <75% or fraction of sequence covered <85%; Figure 4B and 

Supplementary File 2) while 18 sequences appear to be completely novel (no blast hit against nt 

database), highlighting the potential to uncover novel plasmids and phages in the human gut 

microbiome through hybrid metagenomic assembly31.  

Further characterization of the largest novel circular sequence (263kbp) confirmed that the 

assembly is well support by read data, with uniform coverage across the entire sequence of long 

ONT reads (>1kbp) that align end-to-end (Supplementary Figure 13A). Annotation of the 

genome revealed the presence of multiple phage genes (>50), including those related to the phage 

tail and tail assembly protein, capsid protein, polymerase, chitinase, terminase and ligase, all of 

which are essential proteins for the life cycle of a phage (Figure 4C). In addition, no plasmid 

related genes were found, providing evidence for this sequence representing the first genome of a 

jumbo phage32 (genome size > 200kbp) to be identified in the human gut microbiome. 

Phylogenetic analysis further supported this hypothesis, with the polymerase gene in this genome 

grouping with other jumbo phage genes in a cluster that was well separated from polymerase genes 

for small phages and bacteria (Supplementary Figure 13B). Interestingly, the putative jumbo 

phage was abundant in the gut metagenome of an individual while receiving antibiotic treatment 
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(and at no other timepoints preceding or following that; Supplementary Figure 13C), and was 

accompanied by an Enterobacteriaceae (K. pneumonia, E. coli and C. freundii) bloom. Two other 

large putative coliphages were also identified in our assemblies, a 150kbp sequence with 96% 

identity to phAPEC8 over 89% of its genome and a 93kbp sequence with 96% identity to P1 

mod749 over 82% of its genome, showcasing the promise of mining gut metagenomes for phages 

that may be useful in the fight against antibiotic resistant bacteria33. 

In order to study antibiotic resistance (AR) gene combinations, we expanded our analysis 

to non-circular sequences and annotated >1.68 Gbp of contigs longer than 5kbp (Methods). In 

particular, as many samples in the study are CRE colonized and treatment options for CRE 

infections are limited34, the direct detection of specific resistance combinations was of interest to 

us to understand its utility for guiding therapy. Leveraging on the sequence contiguity provided by 

our hybrid assemblies, we discovered 20 (out of 130) novel combinations of AR genes (ranging 

from 2 to 7 genes) that are not represented in current public genome databases (Supplementary 

Table 2), and 4 of which harbor a carbapenamase (2 Class A, 1 Class B and 1 Class D). We noted 

that several carbapenemase genes despite likely being capable of hydrolysing most β-lactams35, 

still co-occurred with extended spectrum β-lactamases (Supplementary Table 2), corroborating 

recent reports on the increasing incidence of bacterial isolates with multiple β-lactamase genes36. 

These co-occurences could contribute to increased resistance to β-lactams37, potentially impacting 

combination therapies for CRE infections involving β-lactams38 or new β-lactam antimicrobials 

(e.g. Ceftazidime/avibactam). 

Non-β-lactam antibiotics such as aminoglycosides and trimethoprim-sulfamethoxazole are 

increasingly considered for use in carbapenem-resistant gram-negative bacterial infections39. Of 

note, we assembled a multiple resistance region (MRR) that harbors a previously unknown 

combination of AR genes for carbapenems, aminoglycosides, trimethoprim and sulfonamides 

(Figure 4D, Supplementary Table 2). The MRR contains multiple repeats that fragment its 

Illumina assembly, while alignment of the hybrid assembly against the best plasmid match 

suggests that this combination arose by bringing together a gene cassette (demarcated by attC 

sequences) containing the carbapenamase gene IMP-39 (Figure 4D) with a known class 1 integron 

harboring the chrA and padR genes40.  
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As the MRR containing plasmid was assembled from metagenomic data for a CRE 

colonized subject and best aligned to a plasmid associated with E. coli, we hypothesized that the 

plasmid was likely hosted by an E. coli strain. Among Enterobacteriaceae species, E. coli and K. 

pneumoniae were readily detected across 11 timepoints using metagenomic profiling approaches, 

but their abundances over time were poorly correlated with the abundance of the plasmid (Pearson 

correlation <0.05; Supplementary Figure 14). OPERA-MS assembly, however, disambiguated 

two E. coli genomes that we denoted as strain H (high abundance at timepoint for hybrid assembly) 

and strain L (Figure 4E). These two strains exhibited very different correlation patterns with the 

abundance of the IMP plasmid, identifying strain L as the likely host (Pearson correlation 0.94 

versus 0.07 for strain H; Figure 4F). By isolating the CRE strain from stool samples for this subject 

and sequencing its genome we were also able to confirm the correctness of this association 

(Methods), suggesting that this approach could complement existing Hi-C sequencing based 

techniques to link plasmids and their host genomes in metagenomic data41. 

Discussion 

As the cost of long read sequencing continues to go down, its value for metagenomic assembly 

will become even more compelling. A major concern that has impacted adoption is the ability to 

work with limited DNA amounts and still generate sufficient number of long reads. Our work 

establishes that it is indeed feasible to do this with realistic clinical samples on current nanopore 

systems, using easy to adopt DNA extraction and library preparation protocols. At current 

throughputs of >10Gbp per MinION flowcell, users can expect >10× long read coverage of even 

lowly abundant genomes (<1%), allowing them to generate high quality assemblies with OPERA-

MS. This can be achieved for around $500 per sample, and multiplexing can help bring these costs 

down further by leveraging increased throughputs on the GridION/PromethION systems. 

Our results highlight that the utility of hybrid metagenomic assembly is similar to what has 

been noted for isolate genome assembly42,43. However, unlike the isolate genome case, challenges 

in metagenomic assembly are not fully resolved solely with long reads, as their error rates preclude 

the resolution of similar species and strains in the metagenome, and hamper assembly quality and 

utility for downstream applications. By drawing on the strengths of both short and long read data, 

hybrid assembly is the best strategy in such cases, and methods such as OPERA-MS and 

hybridSPAdes provide a significant advantage over non-hybrid approaches, even for simple 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/456905doi: bioRxiv preprint 

https://doi.org/10.1101/456905
http://creativecommons.org/licenses/by-nc-nd/4.0/


communities. For more complex communities such as the ones seen in the human gut, the 

advantage of a metagenome-specific assembler should be more apparent, as was noted in our 

results for virtual and real gut microbiomes. The development of OPERA-MS as a first hybrid 

metagenomic assembler, is thus a useful step in exploiting long read sequencing for “high-

resolution” analysis (near-complete genomes and strain resolution) of diverse microbiomes.  

In particular, the ability to increase assembly N50s from 10s of kbp to 100s of kbp and even 

>1Mbp opens up the ability to do new kinds of analysis with metagenomic data. While the 

metabolic capability of metagenomes is generally analyzed based on a “bag of genes” approach44, 

improved assembly and binning algorithms allow us to correctly account for the outputs of 

individual genomes and the metabolic interactions that they support45. Furthermore, sample 

specific assembly of the non-core genome, including repeats, transposable elements and plasmids, 

allows us to better study their evolution and transmission, a capability that is key for tracking 

antibiotic resistance in the gut microbiome. 

In addition to improved contiguity, OPERA-MS assemblies were able to resolve sub-species 

genomes in a metagenome. This feature allowed us to discriminate between a lowly abundant 

carbapenem resistant E. coli strain and a more abundant sensitive strain in a patient’s gut 

metagenome - information that can potentially be valuable in a clinical setting. The limitations to 

resolving sub-species genomes with OPERA-MS are defined by Illumina sequencing error rates 

and read coverage. Genomic sequences that are either not assembled or collapsed in an Illumina 

assembly will remain so in OPERA-MS’s output currently, though an obvious extension is to 

consider haplotype analysis18 based on the assembly backbone created by OPERA-MS. In contrast 

to methods that cluster strain-specific polymorphisms46,47, the output from OPERA-MS is tailored 

to capture structural differences that separate the corresponding strain genomes and thus these 

methods have complementary utility.  

Despite being heavily studied, the human gut microbiome still contains elements that are not 

well explored such as its “phage reservoir” which is believed to play important roles in its 

resilience to perturbations48, as well as the gut resistome. Based on the hybrid assembly of 28 gut 

metagenomes, we uncovered >30Mbp of plasmid sequences longer than 20kbp, many of which 

harbor novel antibiotic resistance cassettes, and some of which have no homology with known 

sequences. In addition, OPERA-MS assembled several large circular phage genomes, including 
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what appears to be the complete genome of the first putative jumbo phage identified in the human 

gut microbiome. These results likely represent the “tip of an iceberg” and we envisage that 

extensive use of hybrid metagenomic assembly will make it increasingly feasible to study 

resistance determinants and mobile elements in the human gut microbiome. 

Clinical metagenomics is an emerging field in which the microbiological diagnosis of complex, 

polymicrobial infections is determined from sequencing of DNA extracted directly from clinical 

specimens6,5,7. The ability to reassemble plasmids and detect combinations of antimicrobial 

resistance elements is an important step for molecular surveillance of high impact antimicrobial 

resistance genes such as carbapenemases as they disseminate and recombine between mobile 

genetic elements and bacterial species, and for rational antibiotic selection in this treatment 

paradigm. The enhanced resolution of OPERA-MS assembly thus has the potential to accelerate 

the implementation of metagenomics into outbreak investigations and surveillance programs 

where culture-independent approaches speed-up detection of unknown pathogens, novel 

antimicrobial resistance combinations and virulence mechanisms6,5,7. 
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Methods 
High molecular weight DNA extraction for stool metagenomics 

Metagenomic DNA extraction was carried out using Phenol-Chloroform extraction and various 

commercial kits (i.e. QIAamp DNA Stool Mini Kit, PowerSoil® DNA Isolation Kit, and 

PowerFecal® DNA Isolation Kit). The quality and yield of DNA extracted for each technique 

were compared to assess which method was most suitable. Ease of handling was also taken into 

account in deciding which method to use. 

Phenol-chloroform extraction provided high yields of DNA. However, the integrity of DNA was 

poor and the process of extraction was more challenging and hazardous compared to commercial 

kits. QIAamp DNA Stool Mini Kit, PowerSoil® DNA Isolation Kit and PowerFecal® DNA 

Isolation Kit all generated comparable yields. Although QIAamp DNA Stool Mini Kit was able to 

provide higher quality DNA, the absence of a bead-beating step in the kit might limit 

comprehensive lysis for an unbiased metagenomic profile. PowerSoil and PowerFecal DNA 

Isolation Kits are comparable in all aspects, except for an additional step of heating for lysis and 

the addition of bead solution in the latter. 

To avoid clogging problems and get higher molecular weight DNA for nanopore sequencing, we 

further optimized the PowerSoil® DNA Isolation Kit protocol. Briefly, samples (250mg of sample 

per PowerBead tube) were mixed manually by gently inverting the tube several times. Solution C1 

was added to tubes and was mixed by inversion. Mechanical lysis was carried out by attaching 

PowerBead tubes to a vortex adapter and samples were vortexed for 10min at a low speed of 5 

(instead of manufacturer’s recommendation of speed 10) to reduce DNA fragmentation. To avoid 

clogging of spin filters, centrifugation time was extended to twice the original duration and 

solutions C2, C3 and C4 were doubled in volume. DNA was eluted in 55µL of heated (65˚C) 

solution C6 and concentrated using 1X Agencourt AMPure XP beads (A63882, Beckman Coulter). 

Purified DNA was quantified by Qubit dsDNA BR assay (Q32853, Thermo Fisher Scientific). 

DNA size was assessed by Agilent Bioanalyzer (Agilent Technologies) prepared with Agilent 

DNA12000 Kit (5067-1508, Agilent Technologies). For nanopore sequencing, size selection was 

applied to all samples with peak size <8kb using 0.45X of Agencourt AMPure XP beads, except 

sample S10 for which BluePippinTM (Sage science) size selection was completed using a 0.75% 

dye-free cassette (BLF7503, Sage science) with S1 marker (fragment size between 3–50kbp) 
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followed by cleanup with 1X Agencourt AMPure XP beads. We tested whole genome 

amplification using the Genomiphi HY Kit (G13/25-6600-20, GE Healthcare) on sample S3 (DNA 

cleanup with 0.45X Agencourt AMPure XP beads and integrity check on 0.5% agarose gel). 

However the throughput for this sample was significantly lower compared to other samples (S3, 

Supplementary Figure 2).  

Long read metagenomic sequencing on the MinION 

As nanopore sequencing technology advances, various kits, flowcell types and devices were used 

to sequence the samples as detailed in Supplementary Table 1. All libraries were prepared 

according to the manufacturer’s protocols with minor modifications. All mixing steps for DNA 

samples were done by gently flicking the microfuge tube instead of pipetting and the optional 

shearing step was omitted. For all elution steps, an additional microlitre of nuclease-free water or 

elution buffer was used to avoid any carry over of magnetic beads. DNA repair treatment was 

carried out using NEBNext FFPE DNA Repair Mix (M6630, New England Biolabs). End-repair 

and A-tailing was performed with NEBNext Ultra II End-Repair/dA-tailing Module (E7546, New 

England Biolabs) and samples were incubated at 20°C for 5min and 65°C for 5min. End-repaired 

product was cleaned up with 1× Agencourt AMPure XP beads (A63882, Beckman Coulter). 

Adapters provided in the respective library kits were ligated to the DNA with NEB Blunt/TA 

Ligase Master Mix (M0367, New England Biolabs) and samples were incubated at room 

temperature for 10min. Purification and loading of adapted libraries was completed as stated in the 

manufacturer’s protocol and sequenced using the appropriate MinKNOWTM workflow. Libraries 

were basecalled using Metrichor, Albacore or Guppy (Supplementary Table 1) and fastq files 

were generated using Albacore (samples S6 to S13) or poretools49 (all other samples). 

Illumina sequencing of metagenomic libraries 

To construct the library, 50ng of DNA was re-suspended in a total volume of 50µL and was 

sheared using Adaptive Focused AcousticsTM (Covaris) with the following parameters; Duty 

Factor: 30%, Peak Incident Power (PIP): 450, 200 cycles per burst, Treatment Time: 240s. Sheared 

DNA was cleaned up with 1.5× Agencourt AMPure XP beads (A63882, Beckman Coulter). Gene 

Read DNA Library I Core Kit (180434, Qiagen) was used for end-repair, A-addition and adapter 

ligation. Custom barcode adapters were used in place of Gene Read Adapter I Set for library 

preparation (HPLC purified, double stranded, 1st strand: 5' P-GATCGGAAGAGCACACGTCT; 
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2nd strand: 5' ACACTCTTTCCCTACACGACGCTCTTCCGATCT). Libraries were cleaned up 

twice using 1.5× Agencourt AMPure XP beads (A63882, Beckman Coulter). Enrichment was 

carried out with indexed primers according to an adapted protocol from Multiplexing Sample 

Preparation Oligonucleotide kit (Illumina). Molarity of libraries were measured using Agilent 

Bioanalyzer (Agilent Technologies), prepared with Agilent DNA1000 Kit (5067-1504, Agilent 

Technologies). Enriched libraries were pooled in equimolar concentrations and sequenced on the 

Illumina HiSeq sequencing platform to generate 2×101bp reads. 

Hybrid metagenomic assembly with OPERA-MS 

An overview of the hybrid metagenomic assembly workflow with OPERA-MS can be found in 

Figure 1. In step 1, the short-read data is used to construct contigs, which along with the long read 

data serves as the input for assembly graph construction. This approach leverages the deeper 

coverage and higher accuracy of short read sequencing to generate short but accurate contigs, with 

long reads providing contiguity improvements even with lower read coverage (2-10×) for rare 

members of complex microbial communities. 

Assembly graph based on long read connections: Long reads were mapped to the short-read 

contigs using BLASR50 and reads that provide connecting information between contigs were 

clustered into edges using the procedure in OPERA-LG24 with metagenomics specific steps as 

described below. Recognizing that edges in the assembly graph are more likely to provide 

incorrect/conflicting information, (i) for metagenomic data due to the presence of multiple closely 

related species and strain genomes, and (ii) for long read data with higher sequencing/mapping 

errors and chimeric reads, we tried to identify and resolve such issues. In particular, edge conflicts 

were identified as contig pairs with multiple edges connecting them that indicate different 

orientations and distances and only edges with higher support were retained. In addition, edges 

that had unusually low support were identified by computing the long-read to short-read contig 

coverage ratio for each edge (𝑟") and flagging outliers for removal (< median" log(𝑟" ) −

1.5×std" log(𝑟" )) among edges in different distance classes ([-100, 300], [300, 1000], [1000, 

2000], [2000, 5000], [5000, 15000], and [15000, 40000]). Finally, only edges with long read 

support greater than 1 were kept. 

Hierarchical clustering based on contig connection and coverage: After assembly graph 

construction, OPERA-MS applies the strategy of decomposing the metagenomic assembly 
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problem into an isolate genome assembly problem, to both accelerate assembly and leverage the 

development of robust algorithms for the isolate assembly problem51. While existing methods 

primarily approach this decomposition as a clustering problem based on the read coverage of 

contigs52, the availability of the assembly graph presents a problem akin to image segmentation 

where we wish to take into account the proximity structure defined by the graph in clustering 

contigs. This is the core idea in OPERA-MS and is accomplished in two steps using a Bayesian 

approach: (i) by constructing a “guide tree” along graph edges that connects contigs that have 

similar coverage and encodes prior beliefs on reasonable clusterings, and (ii) computing an optimal 

partition of the tree into clusters based on the Bayesian Information Criterion, as detailed below.  

We begin with some definitions for the problem that we are trying to solve using a Bayesian 

approach. Let 𝑋	 = 	 {𝑥; 	…	𝑥=} represent the set of contigs assembled from a metagenomic 

shotgun sequencing project, and 𝑌	 = 	 {𝑦; 	…	𝑦=} represent their corresponding read counts. Then 

if there are 𝐾 (unknown) components ( 𝑀; …𝑀C , i.e. the corresponding isolate genomes) that 

underlie the observed count distribution, the probability of observing 𝑌, under an independent and 

identical distributions assumption, is given by a mixture model 𝑀	as 

 

𝑝 𝑌 𝑀 = 𝑝(𝑦E|𝑀)=
EG; = 	 𝑝 𝑦E 𝑀H

C
HG; 𝑝(𝑥E ∈ 	𝑀H)=

EG; . 

 

Modelling	𝑝 𝑦E 𝑀H , the number of reads that originate from an isolate genome, is often done with 

the Poisson distribution. However, the assumption of equality of mean and variance means that 

this model only works when reads are uniformly distributed on the assembled contigs. Sequencing 

biases and the presence of repetitive sequences can give rise to over-dispersion and this is typically 

accounted for by using the negative binomial distribution, where  

𝑝 𝑦E	|	𝑀H = JK
JKLMK

JK N(JKLOP)
N OPL; N(QR)

MK
JKLMK

OP
, 

𝑀H is parameterized by the mean (µH) of the read arrival rate	and the dispersion parameter (𝑅H, 

related to the variance [𝜎V] of the read arrival rate by 𝜎V = 𝜇 +	M
Z

J
), Γ(x) is the Gamma 

distribution and the read arrival rate (𝜆E) is defined as 𝜆E =
OP
^P

 (𝑙E is length of contig 𝑥E). To 

accommodate the presence of multiple contigs of different lengths in a component, we transform 
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contigs into sets of windows of the same size (default=340bp) such that 𝑌 is replaced with the set 

of read counts for windows across all contigs from 𝑋 (𝛺 =  	ω; …	ωb ) in the model. Our goal 

then is to learn the mixture model 𝑀 and the most probable assignment of contigs to the 

components of 𝑀, given the read counts 𝑌 and the dispersion parameter 𝑅 (see below for how that 

is estimated).  

In order to identify suitable mixture models we use the approach of computing Bayes 

factors to compare models as follows (where 𝛬E are model parameters for component 𝑀E):  

𝑝 𝛺|𝑀E

𝑝 𝛺|𝑀d
=

𝑝(𝛺|𝑀E, 𝛬E)𝑝(𝛬E|𝑀E)𝑑𝛬E
	𝑝(𝛺|𝑀d, 𝛬d)𝑝(𝛬d|𝑀d)𝑑𝛬d

. 

Defining a prior distribution for model parameters however requires information on the known 

relative abundance of genomes in the sample, which is typically not available in a de novo 

assembly setting. In addition, evaluation of the resulting multiple integrals, especially for the large 

number of potential models considered can be computationally intensive. To overcome these 

obstacles, we adopted the well-studied approach of using unit information priors (UIPs) as they 

allow for the approximation of the integrated likelihood using a closed form expression: 

ln 𝑝 𝛺 𝑀 ≈ ln 𝑝 𝛺 𝛬) − C
V
ln n = B, with 𝛬	being the maximum-likelihood estimate (MLE) for 

the parameters, and 𝐵 being a commonly used model selection score i.e. the Bayesian Information 

Criterion53,54 (BIC). Spread-out priors like that of the UIP have the advantage of being 

conservative in that more evidence is needed from the data to support additional mixture 

components and hence components detected by the BIC are likely to be well supported by the data.  

 To constrain the selection of clusters, OPERA-MS first constructs a “guide tree” that 

encodes prior beliefs on possible partitions. It begins by assigning every contig 𝑥E to its own cluster 

𝐶E with the average arrival rate of the cluster 𝜆E set to the average for the contig (= 𝑦E 𝑙E). Edges 

in the assembly graph are then weighted by the distance metric 𝑑Ed =
|kPlkm|

nop	(kP,km)
, for adjacent 

clusters 𝐶E	and 𝐶d, and then edges are traversed in increasing order of 𝑑Ed	to find contigs in different 

clusters that can potentially merge. In the resulting guide tree 𝑇, every internal node 𝑛H proposes 

a unique cluster 𝐶H (a mixture component) for all the contigs represented by its child nodes	𝑐 𝑛H , 

with	𝜆H =
OPtP∈uK
^PtP∈uK

, i.e. the maximum-likelihood estimate. The construction of the guide tree in 
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this manner has several advantages: (i) firstly by relying on assembly edges, the guide tree 

eliminates models that cluster contigs from different connected components in the assembly graph; 

(ii) secondly, the distance between contigs in the guide tree increases with distances in coverage 

space as well as genomic location. Thus fewer internal nodes in the tree (and clustering models) 

propose clustering distant contigs together; (iii) finally, by considering edges in the order of the 

distance metric, potentially erroneous links are likely to be used closer to the root and thus are 

easier to eliminate in the model selection step as described below. 

Cluster selection based on Bayesian Information Criterion: In order to compute the mixture model 

in 𝑇 which maximizes the BIC, we exploit the fact that the BIC score is decomposable in a fashion 

that enables the use of a dynamic programming algorithm on a tree to optimize it (Figure 1). 

Specifically, B = ln 𝑝 𝛺 𝛬) − C
V
ln n = [ln p(𝛺|𝜆H)x

yG; − ;
V
ln n] and hence the score of a 𝐾 

cluster decomposition of the tree can be expressed in terms of scores for each parent node. Thus a 

dynamic programming algorithm that selects between the parent node and the children at each 

level of the tree can be used to efficiently find an optimal decomposition of the guide tree in 𝑂(𝑛) 

time similar to the work by Navlakha et al55, based on the following recursion: max
=K

𝐵 =

max
	
(ln 𝑝 Ω 𝜆H − ;

V
ln n , max

=m
𝐵d∈|(=K) ).    

To select a suitable value for the  dispersion parameter 𝑅 for our models, we do a global 

search between the minimum estimate for a contig (lower-bounded at 1) and the joint estimate for 

all contigs larger than 10kbp (obtained  via least squares regression), and using the smallest value 

where the corresponding clustering does not have a cluster larger than 200kbp for which 1% of the 

contig windows have coverage that varies two-fold compared to the mean (i.e. below  𝜇|/2 or 

above	2𝜇| when mean coverage is 𝜇|). This search procedure allows us to use a global estimate 

for 𝑅 (𝑅), while reporting conservative clusters that do not merge multiple genomes together. 

Computation of MASH genomic distance against a database of 2,800 complete genomes: The 

Bayesian model selection based approach for clustering is conservative and unsupervised by 

design, and for species where not enough sequencing data is present, can fragment the genome 

into multiple clusters. We therefore augment this with a supervised approach that compares all 

assembled sequences against a database of complete genomes (NCBI v2015.05.04) to merge 

clusters further. Specifically, we use the Mash toolkit56 based on the MinHash algorithm to 
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efficiently estimate the similarity between contig clusters and reference genomes.  The top 5 hits 

for each cluster with distance below 0.9 were then used to associate potential species names to 

them.  

Identification of clusters from the same species: In order to super-cluster the original set of clusters, 

we first identified assembly edges between contigs that were supported by our Mash analysis. In 

particular, we required that when two contigs were aligned with MUMmer57 to the common 

reference genome identified by Mash, the estimated distance between them was within 3 standard 

deviations of the estimate provided by the assembly edge. This process was also allowed to rescue 

edges that had only 1 long read supporting them. All assembly graph edges were then used to 

merge clusters which had at least 1 species name common among their list of potential species 

names to construct species concordant super-clusters that had support in the assembly graph. 

Sub-species level clustering: To account for species level clusters that potentially had multiple 

strain genomes merged, we used a further deconvolution step that worked on each such cluster 

separately. We first identified such clusters based on the total sequence size being >10% of the 

reference genome size of the associated species. Contigs belonging to different strains were then 

identified  based on their read coverage as follows: i) the coverage distribution across contig 

windows as defined before was used to identify multi-modality based on a kernel density 

estimation approach to smooth the empirical distribution and infer local maxima58, and ii) for each 

mode 𝑚 the mean coverage 𝜇 = 𝑚	 	J
	Jl;

 was computed and used to partition contigs based on a 

96% confidence interval generated from a Negative Binomial distribution with parameters 𝜇 and 

	𝑅 (preferentially assigning contigs to modes with higher coverage). 

Pre- and post-processing: Unless otherwise stated, MegaHit contigs were used for further 

assembly and contigs shorter than 500bp were excluded. Estimation of contig coverage was 

performed by mapping short reads to the assembly using BWA-ALN59 (v0.7.10-r789, default 

parameters). Coverage was computed for 360bp windows, with the first and last 80bp of contigs 

being excluded to avoid edge effects. MASH (v1.1.1) was used to sketch the NCBI database of 

complete bacterial genomes (v2015.05.04). All mappings using MUMmer57 (v3.23) were 

performed with the parameter --max-match. Contig clusters were scaffolded and gap-filled using 

OPERA-LG (v1.0, with repeat detection disabled; species level clusters for mock community).  

Parameter settings for metagenomic assembly comparisons 
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Parameter settings for other benchmarked assemblers were as follows. MegaHit21 (v1.0.4-beta): 

default parameters; metaSPAdes22 (v3.7.1): -k 21,33,55,81; IDBA-UD23 (v1.1.1): default 

parameters; Canu25 (v1.5): the value of the parameter genomeSize was obtained by computing the 

MegaHit assembly size, -nanopore-raw for nanopore reads, -pacbio-raw otherwise; 

hybridSPAdes26 (v3.7.1): -k 21,33,55,81,	--nanopore for nanopore reads, --pacbio otherwise. 

Assemblies from MegaHit, metaSPAdes, IDBA-UD and OPERA-MS were polished using Pilon 

(v1.22, default parameters) with BWA-MEM (default parameters) mapping of Illumina reads to 

the assembly. Canu assemblies were further improved using the consensus module Racon60 

(commit #0834442, default parameters) using GraphMap61 (v0.2.2, default parameters) mapping 

of the long reads to the assembly. 

Construction of GIS20 mock community 

Six strains of bacteria were purchased from ATCC: Pseudomonas putida (ATCC® 39213™), 

Klebsiella pneumoniae (ATCC®700721™), Acinetobacter baumannii (ATCC®17978™), 

Staphylococcus epidermidis (ATCC® 12228™), Enterococcus faecium (ATCC® BAA-472™) 

and Salmonella enterica (ATCC® 13311™). Bacterial cells were cultured according to ATCC 

specified growth conditions. Overnight cultures were centrifuged at 4000g for 10min. Pelleted 

cells were stored at -20˚C until DNA extraction was carried out. DNA was extracted using 

Genomic Tip 100/G (10243, Qiagen) and Genomic DNA Buffer Set (19060, Qiagen) according to 

the manufacturer’s protocol. DNA for the remaining 14 strains of bacteria was purchased from 

Leibniz Institute DSMZ (Supplementary File 2). Integrity of both extracted and purchased DNA 

was inspected on a 0.5% agarose gel and DNA concentration was determined using Qubit dsDNA 

BR assay (Q32853, Thermo Fisher Scientific). A staggered mock community was constructed by 

pooling DNA for the strains in a wide range of abundances varying from 0.1% to 30% 

(Supplementary File 2). 

Pacbio sequencing of GIS mock community 

Library preparation for the mock community was performed according to “20kb Template 

Preparation Using BluePippinTM Size-Selection System”. Briefly, fragmentation of DNA was 

carried out using 20µg of DNA divided equally into 2 Covaris® g-TUBE® devices (520079, 

Covaris) in a total volume of 150µl each. The tubes were centrifuged with Eppendorf® 5415R at 

5,500 rpm for 1min and re-inserted in the opposite direction and centrifuged once more. The 
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shearing process was repeated to obtain DNA fragments with sizes in the range 10-20kbp, yielding 

16.2µg of DNA in total. Increased volume (3.24×) of reagents was used for downstream library 

preparation. The library was size-selected using the BluePippinTM Size-Selection System with a 

0.75% DF Marker S1 high-pass 6-10kb cassette (BLF7510, Sage Science). The system protocol 

was set to select fragment sizes above 7kbp. The library profile was analyzed using Agilent 

DNA12000 Kit (5067-1508, Agilent Technologies). Eight SMRT cells were sequenced on the 

Pacbio RS II using P5 chemistry of run length 360. 

HMP mock community datasets 

Illumina short reads18 (SRR2822454) and Illumina synthetic long reads18 (SRR2822457) were 

downloaded for the HMP staggered mock community from the SRA database 

(https://www.ncbi.nlm.nih.gov/sra). As PacBio sequencing data for the HMP staggered mock 

community was not available, we downloaded the PacBio HMP even mock community dataset 

(https://s3.amazonaws.com/datasets.pacb.com/Human_microbiome_mockB/hmp_set5.tar.gz/hm

p_set[5-7].tar.gz) and generated a staggered version using the following protocol: i) mapping reads 

to the reference genome using GraphMap (v0.2.2, default parameters), ii) computing for each 

genome the ratio 𝑟� of observed abundances versus expected abundances, iii) subsampling reads 

to obtain the same ratio 	𝑟� for observed versus expected abundances in the staggered community. 

Evaluation of metagenomic assemblies  

MetaQUAST62 (v	4.0, --genes) was used to evaluate metagenomic assemblies (in comparison to 

known reference genomes and annotations for mock communities) and obtain statistics such as 

NGA50 (aligned assembly length such that >50 % of the genome is in fragments of equal or greater 

length), genes assembled, misassembly errors and basepair errors.  

Binning of metagenomic assemblies was performed using MaxBin210 (v2.2.4, default 

parameters) and the quality of bins was assessed based on MUMmer mapping (from MetaQUAST 

output) to mock community reference genomes and calculation of the following metrics:  

completeness	=	
aligned	contig	length

reference	genome	length ,	

	purity	=	1	–	
unaligned	contig	length
reference	genome	length. 
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Binned assemblies were evaluated for their ability to recover complete biological pathways as 

follows: KAAS63 was used to identify KEGG orthology groups (KO) for genes in the reference 

genomes, and this annotation was used to establish the pathways present. MetaQUAST (v4.0, 

default parameters) was then used to identify genes present in the assembly using the --genes 

option, and these were then used to establish the fraction of genes assembled per pathway and the 

fraction of pathways that are captured well in the binned assemblies.  

Analysis of mobile elements and resistance genes 

Plasmid and phage sequences that were likely fully assembled were identified by looking for 

evidence for large circular sequences in the assembly. Specifically, we mapped the long reads back 

to the OPERA-MS assembly using BLASR50 (v1.3.1, -m 1 --minMatch 5 --bestn 10) and checked 

for the presence of at least 2 reads that spanned contig ends (reads mapped <400bp away from 

contig ends). In addition, putative plasmids and phage sequences were then mapped against the nt 

database using blastn64 (2.2.28+, default parameters) and sequences with chained best blast hits 

aligning more than 50% of the sequence to non plasmid/phage hits were excluded as potential 

misassemblies. Partially assembled plasmid sequences were identified based on contigs that were 

>20kbp long where Mash and blastn identified a plasmid sequence as their best hit covering >90% 

of their sequence. Antibiotic resistance (AR) genes were identified by aligning sequences >5kbp 

to the ARG-ANNOT65 database (V2) using blastn. AR genes with >98% of the sequence aligning 

to the contig with an identity >99% were selected for further analysis.  

Annotation and phylogenetic analysis for the putative jumbo phage  

The assembled sequence was analyzed using the RAST server66 to identify and annotate putative 

genes. Sequences for the DNA polymerase B protein from bacteria, small bacteriophages and 

jumbo phages were aligned with MUSCLE67 (v3.8.31, default parameters) and a phylogenetic tree 

(500 bootstrap replicates) was generated using PhyML68 and the pipeline provided at 

http://www.phylogeny.fr/. 

Analysis of strain dynamics 

To estimate the abundance of the two K. pneumoniae strains that were obtained from OPERA-

LG’s strain level assembly, Illumina reads were mapped back to the assemblies with stringent 

criteria (BWA-MEM, mappings with soft clipping or >3 mismatches filtered). The strains with 

higher and lower coverages at the time-point for which the hybrid assembly was constructed were 
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denoted as strain H and L respectively. The median coverage of 500bp windows in the two 

assemblies was then computed (𝑐�, 𝑐�), and the abundance of strain L was estimated as 𝑐� while 

the abundance of strain H was estimated as 𝑐� − 𝑐� (to account for the fact that the majority of 

shared contigs for the strains will be incorporated into the strain H assembly).  

Confirmation of plasmid association 

CRE isolates were obtained from stool DNA as described before69 and Genomic DNA was 

extracted from an overnight culture using MagNA Pure Compact (Roche Applied Science, 

Germany). Library preparation was performed using the NEBNext Ultra™ DNA Library Prep Kit 

and 2x151bp sequencing was performed using the Illumina HiSeq 4000. De novo assembly was 

performed using Velvet70 (version 1.2.10) with parameters optimized by Velvet Optimiser (k-mer 

ranging from 81 to 127), scaffolded with OPERA-LG24 (version 1.4.1), and finished with FinIS71 

(version 0.3). MUMmer57 alignments were used to confirm the presence of the plasmid, high 

identity to the genome of strain L (>99.9%) and low identity to the genome of strain H (<97.5%). 

Availability of data and software 

GIS20 mock community sequencing data can be obtained from the European Nucleotide Archive 

(ENA) under project ID PRJEB29139 (Illumina, PacBio and ONT) and sequencing data for the 28 

gut metagenomes can be found under project ID PRJEB29152 (Illumina and ONT). OPERA-MS 

is freely available under the MIT license at https://github.com/CSB5/OPERA-MS. 
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Figure legends 

Figure 1: Schematic depicting the steps and workflow for OPERA-MS. Short reads are first 

assembled by a metagenomic assembler into contigs, and short and long reads are mapped to them 

to obtain coverage information and spanning reads (Step 1). Spanning reads are then bundled to 

get edges between contigs for an assembly graph that represents the contiguity information of the 

whole metagenome (Step 2). Contigs are organized into a hierarchical clustering where the 

distance between contigs increases with genomic distance and their difference in coverage (Step 

3). The tree is then cut into optimal clusters based on the Bayesian Information Criterion (Step 4). 

To improve the clustering for species where a reference genome is available, the MASH genomic 

distance between each cluster and a database of complete bacterial genomes is computed (Step 5). 

Clusters are then merged if there is supporting information in the assembly graph to form species-

specific super clusters (Step 6). These super clusters are further analyzed to deconvolute contigs 

that come from distinguishable sub-species genomes (Step 7). Finally, each cluster is 

independently scaffolded and gapfilled using a program meant for isolate genomes (OPERA-LG; 

Step 8). 

Figure 2: Hybrid assembly of near-complete and high-quality genomes from metagenomic 

datasets. Increase in assembly contiguity as a function of read coverage for a representative, A 

short read assembler, B long read assembler, and C hybrid assembler. Note that hybrid assembly 

improves over short and long read assembly in terms of scaling across coverage ranges and 

producing near-complete genomes (NGA50 >1Mbp) with as little as 9× long read coverage. 

Unassembled genomes are shown as circles with black borders. D Improvements in assembly 

contiguity (NGA50) provided by OPERA-MS in comparison to other assemblers as a function of 

long read coverage. Note that Canu does not assemble low coverage genomes and hence metrics 

are not provided in those ranges. E Misassembly rates for different assemblers. Most assemblers 

produce ~1 large misassembly per Mbp, except for hybridSPAdes. 

Figure 3: OPERA-MS improves assembly and analysis of a complex metagenome from a 

virtual gut microbiome. A Construction of a virtual gut microbiome that represents a complex 

metagenomic dataset while retaining the ability to evaluate assemblies against gold-standard 

references. B Improvement in assembly contiguity (NGA50) obtained using OPERA-MS 

compared to other assemblers over different coverage ranges. Dots represent species that have at 
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least two strains in the metagenome (i.e. present in GIS20 and S2 with an abundance >0.1% as 

reported by MetaPhlAn272 (v2.6.0)). C Comparison of misassembly rates for different assemblers. 

D Evaluation of Illumina-only (MegaHit) and hybrid (OPERA-MS) metagenomic assemblies after 

binning for their utility in downstream analysis. Bins that contained the largest fraction of a 

reference genome (GIS20 references; species with bold names have at least two strains in the 

metagenome) were evaluated for (i) genome completeness = the fraction of the genome 

represented in the bin, (ii) genome purity = percentage of bases in the bin that correspond to the 

correct reference, (iii) gene completeness = fraction of genes that were fully assembled in the bin, 

and (iv) pathway completeness = fraction of pathways with over 90% of their constituent genes 

being assembled and binned together.  

Figure 4: Assembly of novel mobile elements and their association with host species in the 

human gut microbiome. A Distribution of genomes sizes for fully assembled circular sequences 

from OPERA-MS in 28 human gut metagenome datasets, illustrating the ability to assemble 

circular genomes of varying sizes and complexity (plasmids, phages and bacterial genomes). B 

Fraction of sequence covered versus average sequence identity of the assembled circular sequences 

in comparison to sequences in the nt database (based on BLAST searches). Many of the assembled 

sequences showed good alignment and homology to known sequences from end to end (top right 

corner), but some only had local similarities (top left corner), and a few appear to be completely 

novel (bottom left corner; 18 sequences). C Annotation of the largest (263kbp) observed novel 

circular sequence (no matches in nt database) revealed proteins associated with a phage life cycle, 

including replication, assembly and host lysis, indicating that the assembled sequence is a putative 

jumbo phage. D A novel multiple resistance region assembled by OPERA-MS from the gut 

microbiome of a CRE-infected patient. Apart from the clinically relevant carbapenamase gene 

cassette, the region also harbors genes that confer resistance to aminoglycosides, trimethoprim and 

sulfonamides, limiting treatment options. E Strain level assembly with OPERA-MS enabled 

association of plasmid to genome based on correlation in read coverage across timepoints. Left 

panel: Variation in coverage of 2 E. coli strain genomes seen in the hybrid metagenomic assembly 

of data from day 76 (black arrow). Right panel: Correlation between the coverage of the plasmid 

and the 2 E. coli strains reveals that it is strain L that likely harbors the IMP gene containing 

plasmid. 
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