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Abstract

As a gold-standard technique for DNA methylation analysis, whole-genome bisulfite sequenc-
ing (WGBS) helps researchers to study the genome-wide DNA methylation at single-base reso-
lution. However, aligning WGBS reads to the large reference genome is a major computational
bottleneck in DNA methylation analysis projects. Although several WGBS aligners have been
developed in recent years, it is difficult for them to efficiently process the ever-increasing bisul-
fite sequencing data. Here we propose BitMapperBS, an ultrafast and memory-efficient aligner
that is designed for WGBS reads. To improve the performance of BitMapperBS, we propose
various strategies specifically for the challenges that are unique to the WGBS aligners, which
are ignored in most existing methods. Our experiments on real and simulated datasets show
that BitMapperBS is one order of magnitude faster than the state-of-the-art WGBS aligners,
while achieves similar or better sensitivity and precision. BitMapperBS is freely available at
https://github.com/chhylp123/BitMapperBS.

1 Introduction

DNA methylation plays important roles in many biological processes, such as genomic imprinting,
silencing of transposable elements, cell proliferation and differentiation [1]. It has been proven to
be associated with a number of human diseases, especially with cancer [2, 3, 4]. Recent advance of
whole-genome bisulfite sequencing (WGBS) makes it possible to unbiasedly profile the methylation
status of the entire genome. To obtain WGBS reads, DNA is first treated with sodium bisulfite,
and then sequenced by high-throughput sequencing technologies. As a result, the unmethylated
cytosines (C) are converted to thymines (T), while the methylated Cs are still unchanged. For exist-
ing WGBS analysis, the fundamental step is to align massive WGBS reads to the reference genome.
A specific problem of WGBS aligners, termed asymmetric match, is that they need to align Ts in
reads to Cs in the reference genome, but not vice versa. Besides, compared with the DNA sequence
reads, the WGBS reads present relatively lower sequence complexity as most Cs are converted to
Ts. In practice, the low sequence complexity of WGBS reads may degrade the performance of short
read aligners. For example, existing aligners usually adopt the well-known seed-and-extend strat-
egy. This strategy first identifies the occurrence positions of seeds (short subsequences of reads) in
the reference genome, and then extends these occurrence positions, called candidate locations, to
obtain the full alignment of each read. Owning to the lower sequence complexity of WGBS reads,
there are more occurrence positions of their seeds. Given a large reference genome, the WGBS
aligners are time-consuming since they need to extend massive candidate locations.

To solve these problems, a number of WGBS aligners have been proposed. Generally, these
methods can be classified into two types: wild-card aligners and three-letter aligners. Wild-card
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aligners including BSMAP [5] and RMAPBS [6], introduce a new wild-card to allow the asymmetric
match between Cs and Ts. By contrast, recent aligners like Bismark [7], WALT [8], BRAT-nova [9],
BS-Seeker2 [10], BS-Seeker3 [11] and GEMBS [27], adopt the three-letter strategy. This strategy
first converts all Cs to Ts in both the reads and the reference genome, and then aligns the CT-
converted reads to the CT-converted reference genome. Finally, the best mapping location of each
read is identified from the alignment results based on the original read and the original reference
genome. By utilizing the wild-card strategy or the three-letter strategy, existing WGBS aligners
can support the asymmetric match between Cs and Ts. However, the underlying data structures
and algorithms of existing WGBS aligners are similar to those of traditional DNA sequence aligners
[12, 13], which cannot process the WGBS reads with low sequence complexity efficiently. With the
explosive growth of WGBS data, there is an urgent need to develop more efficient WGBS aligners.

Here we present BitMapperBS, an ultra-fast and memory-efficient aligner that is designed for
WGBS reads from directional protocol. In practice, almost all bisulfite sequencing reads are gener-
ated using directional protocol, which only sequences two original strands (i.e., the original forward
strand and the original reverse complement strand). To support inexact alignment of WGBS reads,
BitMapperBS follows the three-letter strategy and the seed-and-extend strategy. The high perfor-
mance of BitMapperBS is mainly attributed to three factors. First, we propose a novel version of
FM-index specifically for the three-letter bisulfite sequencing data. In contrast, the FM-indexes [14]
used in existing WGBS aligners are similar to those in common DNA sequence aligners, which are
optimized for the four-letter DNA sequence data instead of the three-letter data. For the FM-index,
ranking over the Burrows Wheeler Transform (BWT) [15] is the basic and critical operation [16].
BitMapperBS reorganizes BWT to accelerate the rank operations when the alphabet size is three.
Second, in extension step, BitMapperBS adopts the vectorized bit-vector algorithm [17] to calcu-
late the full alignment efficiently. Compared with DNA sequence aligners, WGBS aligners need to
extend more candidate locations due to the lower sequence complexity of bisulfite sequencing reads.
The vectorized bit-vector algorithm used in BitMapperBS extends multiple candidate locations si-
multaneously, while existing aligners extend their candidate locations one-by-one. As a result, the
time-consuming extension step of BitMapperBS can be significantly accelerated. We also modifiy
this algorithm to directly support the asymmetric match between Cs and Ts. Third, we propose
several other techniques specifically for the problems that are unique to the WGBS aligners. Based
on the above factors, BitMapperBS is up to 70 times faster than popular WGBS aligners Bismark
[7] and BSMAP [5], and presents similar or better level of sensitivity and precision. In addition,
BitMapperBS is memory-efficient, so that it is able to align massive WGBS reads to large human
genome on a standard desktop computer with 8 GB RAM.

2 Methods

BitMapperBS is designed to efficiently align massive WGBS reads against the large reference
genome. It is based on the three-letter strategy and the seed-and-extend strategy. During the
index building phase, BitMapperBS builds a highly optimized FM-index on the concatenation of
the reference genome’s two original strands with all Cs converted to Ts. By utilizing the precom-
puted FM-index, BitMapperBS first searches for the occurrence positions of short seeds in seeding
step. After that, in extension step, these occurrence positions of seeds, termed candidate loca-
tions, are extended to obtain the full alignment of each read. Like most existing WGBS aligners
[5, 7, 8, 9, 10, 27], BitMapperBS discards ambiguous read if it is equally aligned to multiple best
mapping locations. Owning to the low sequence complexity of WGBS reads, randomly reporting
one or a few best mapping locations of an ambiguous read may lead to incorrect alignment result.

Although the WGBS aligners and the traditional DNA sequence aligners share same seed-and-
extend strategy, there are a number of problems that are unique to the WGBS aligners. Actually,
existing WGBS aligners mainly focus on the most obvious problem - that is, how to support the
asymmetric match between Cs and Ts. However, surprisingly little attention has been devoted
to several underlying problems, which may degrade the performance of WGBS aligners. Here

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2018. ; https://doi.org/10.1101/442798doi: bioRxiv preprint 

https://doi.org/10.1101/442798
http://creativecommons.org/licenses/by-nc-nd/4.0/


we briefly describe each step of BitMapperBS, and present the strategies that are used to solve
these underlying problems. The novel FM-index designed specifically for the three-letter bisulfite
sequencing data is also discussed in the following sections.

2.1 The three-letter FM-index

As a compressed full-text index, the FM-index is proposed to reduce the memory footprint of the
classical suffix array (SA) [18]. Given a reference genome G, its suffix array SA(G) saves the
positions of all suffixes of G in lexicographic order. For a seed S which is searched via SA(G),
its all occurrence positions are contiguously saved in an interval in SA(G). The reason is that all
suffixes prefixed by S are sorted together. Once the SA interval of seed S is obtained, all occurrence
positions of it can be directly retrieved. Formally, the operation that is used to determine the SA
interval is termed as counting operation. To reduce the memory footprint of suffix array, the general
idea of FM-index is to save a small fraction of positions of the reference genome, instead of all of
them. We refer to these positions as sampled positions. Like suffix array, FM-index first performs
counting operation when searching for seed S via it. However, another time-consuming operation,
called locating operation, is also required for FM-index. The locating operation of FM-index is
designed to recover the unsampled positions of S. We refer to [16, 19, 20] for more details of the
counting operation and the locating operation of FM-index.

For the FM-index, both the counting operation and the locating operation are based on the
LF-mapping operation [16, 19, 20], and finally can be reduced to rank operation over the Burrows
Wheeler Transform (BWT) [15]. As the critical data structure of the FM-index, the BWT of a
reference genome G is a permutation of G. Specifically, BWT [i] = G[SA[i] − 1] if SA[i] 6= 0,
otherwise BWT [i] = $, where $ is a sentinel character that is lexicographically smaller than all
characters in G. The rank operation rankc(BWT, i) over BWT returns the number of char-
acter c in BWT [0, i − 1], where BWT [0, i − 1] is the BWT ’s prefix of length i. We also let
interval rankc(BWT, i, j) = rankc(BWT, j) − rankc(BWT, i). In practice, existing aligners ex-
ploit a precomputed auxiliary data structure Occ to support fast rank operation. In these align-
ers, BWT is organized into small blocks of equal length. For the m-th block of BWT and each
character c of alphabet, Occ[m, c] = rankc(BWT,m ∗ b), where b is the length of each block.
An example of Occ is presented in Figure 1. When rankc(BWT, i) is required, one can cal-
culate it as follows: rankc(BWT, i) = Occ[bi/bc, c] + interval rankc(BWT, bi/bc ∗ b, i). Since
interval rankc(BWT, bi/bc ∗ b, i) needs to be carried out on the fly, it is much more computation-
ally expensive than retrieving Occ[bi/bc, c].

Essentially, interval rankc(BWT, bi/bc ∗ b, i) counts the number of character c in BWT [bi/bc ∗
b, i− 1]. Although a number of attempts have been made to support this operation [19, 20], most
existing aligners adopt a simple method for genomic data [21, 22, 23]. This method represents each
character of BWT by two bits. That is, A, C, G and T are encoded as code(A) = 00, code(C) = 01,
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Figure 1: An example of Occ array used to accelerate the rank operation over BWT. In this example, BWT =
“AGTA$GAAGG” consists of 10 characters, and the length of each block in BWT is 4. For three-letter WGBS
aligners, the alphabet of BWT only includes A, G and T .
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code(G) = 10 and code(T ) = 11, respectively. Actually, the practical implementation of BWT is a
64-bit word (64-bit integer) array, where every element of it represents 32 characters (see Figure 2
(a)). As a result, interval rankc(BWT, bi/bc ∗ b, i) is reduced to the rank operation over a 64-bit
word (i.e., counting the number of code(c) in a 64-bit word). Here we refer to this operation as
character count operation, and let c count(c, w) be the character count operation of character c
over 64-bit word w. For existing aligners, there are two efficient strategies for this operation instead
of scanning all characters one-by-one:

• Lookup table based method: For each character of alphabet, this method constructs a
static lookup table in advance. When the number of character c in m-bit words is required, the
size of its corresponding lookup table lookupc equals to 2m. The i-th element lookupc[i] (0 ≤
i ≤ 2m−1) in lookupc stores the number of code(c) in m-bit word i. In most cases, 8-bit lookup
tables or 16-bit lookup tables are used in existing aligners, since these small lookup tables
can be kept in fast but small CPU cache. By utilizing the 16-bit lookup tables, the number of
character c in a 64-bit word w is able to be calculated as follows: c count(c, w) = lookupc[w >
> 48] + lookupc[(w >> 32) & 65535] + lookupc[(w >> 16) & 65535] + lookupc[w & 65535].

• Built-in function based method: This method is developed based on a CPU built-in
function builtin popcountll, which returns the number of bit 1 in a given 64-bit word. A
practical implementation of this method is presented in Supplementary Section S1. Its general
idea is to first set related bits of queried character c to 1, and set other bits to 0. After that,
the number of c is calculated by identifying the number of bit 1 using builtin popcountll. In
total, to perform character count operation over a 64-bit word representing 32 characters, this
built-in function based method needs at least four bit operations and one built-in operation
builtin popcountll (see Supplementary Section S1).

Although the above methods present excellent performance for four-letter DNA sequence data,
there is no method that is designed specifically for three-letter bisulfite sequencing data. In BitMap-
perBS, we propose a three-letter FM-index which reorganizes BWT to accelerate the character
count operation. Like existing implementations of FM-index, the three-letter FM-index encodes
each character of BWT by two bits. In this case, A, G and T are encoded as code(A) = 10,
code(G) = 00 and code(T ) = 01, respectively. Note that C is not encoded by three-letter FM-
index, since all Cs have been converted to Ts in BitMapperBS. To support fast character count
operation for three-letter data, our three-letter FM-index stores two bits of 2-bit code of each
BWT’s character in different 64-bit words. In contrast, for existing FM-index, all bits of the 2-bit
code of each character in BWT are saved contiguously in a 64-bit word. An example of the BWT
in our three-letter FM-index is presented in Figure 2 (b). Besides, another example of the BWT in
existing four-letter FM-index can be found in Figure 2 (a). Specifically, let c be the i-th character
in its corresponding block of BWT, and BBWT be the 64-bit word array of c’s corresponding
block in BWT. We assume that BBWT [j][k] is the k-th bit in the j-th 64-bit word of BBWT .
The three-letter FM-index stores the 0-th bit of code(c) in BBWT [bi/64c ∗ 2][i mod 64], and the
1-th bit of code(c) in BBWT [bi/64c ∗ 2 + 1][i mod 64]. In other words, all characters in BWT are
organized into groups of 64. For every 64 characters, the 0-th bits of their 2-bit codes are saved in
a 64-bit word, and the 1-th bits of their 2-bit codes are saved in another 64-bit word.

By utilizing the reorganized BWT, the character count operation for three-letter data can be
significantly accelerated. To represent every 64 characters, the three-letter BWT needs two 64-bit
words. Intuitively, the 0-th bits of these characters’ 2-bit codes are saved in the first 64-bit word
w0, and the 1-th bits of these characters’ codes are saved in the second 64-bit word w1. Recall that
code(A) = 10, code(G) = 00 and code(T ) = 01 in BitMapperBS. Obviously, the number of A among
these 64 characters is able to be calculated using one built-in operation builtin popcountll(w0).
This is because only the 0-th bit of code(A) is 1. Similarly, the number of T can be calculated
by one operation builtin popcountll(w1). To obtain the number of G among 64 characters, we
need two extra bit operations before builtin popcountll. First, a bit-XOR operation between w0

and w1 is required. Since two bits of code(G) are same, this operation produces a new 64-bit word
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Figure 2: An example of practical data structures of BWT. For most existing aligners, BWT is represented by a
64-bit word array. In this example, the toy BWT sequence B = “ATAGTTATTATTAGGT...GT” consists of 64
characters, and two 64-bit words w0 and w1 are used to represent B. (a) The data structure of BWT in existing
four-letter FM-index. (b) The data structure of BWT in our three-letter FM-index.

that only the related bits of G are set to 0. Second, a bit-inversion operation is used to make
the related bits of G be 1 and other bits be 0. As a result, the number of G can be determined
by builtin popcountll. Formally, the character count operation for G is carried out as follows:
builtin popcountll(˜(w0 ⊕ w1)). Therefore, given 64 characters, counting the numbers of A, G

and T requires 1, 3 and 1 operations, respectively.
For three-letter WGBS aligners, the frequencies of both A and G in queried seeds are about 25%.

However, the frequency of T is about 50%, since all Cs have been converted to Ts in the seeding step
of these three-letter aligners. In our three-letter FM-index, the expected time of character count
operation over 64 characters is 1 ∗ 25% + 3 ∗ 25% + 1 ∗ 50% = 1.5. As mentioned above, the existing
methods based on traditional four-letter FM-index need at least 5 operations to count a character
over 32 characters, so that at least 10 operations are required when counting a character over 64
characters. If we simply assume that the cost of different operations is equal, our method is at least
6.7 times faster than existing methods when processing three-letter data. In fact, the character
count operation is the most computationally expensive part in rank operation, and rank operation
over BWT is the basic and critical operation in searching algorithm of FM-index. Therefore, by
utilizing our three-letter FM-index, BitMapperBS can search short seeds more efficiently during
the seeding step.

2.2 Other optimized strategies for FM-index

In current WGBS aligners, there are two problems about the index that do not exist in traditional
DNA sequence aligners. First, during the seeding step, three-letter WGBS aligners need to search
for the seeds extracted from the CT-converted reads via the index built on the CT-converted refer-
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ence genome. In this case, both the seeds and the reference genome with 3-letter alphabet present
low sequence complexity. These seeds consist of much more occurrence positions than the seeds
used in four-letter DNA sequence aligners. For the FM-index, a major bottleneck is that its locating
operations are extremely slow when searching for short seeds with many occurrence positions [16].
Therefore, the seeding step in FM-index based WGBS aligners is more time-consuming than that
in DNA sequence aligners. Second, to accelerate the WGBS alignment, recent aligners [9, 11, 27]
build a single index on the concatenation of the forward strand and the reverse complement strand
of the reference genome. For human genome, its concatenation of two strands consists of about 6.2
billion characters. However, the indexes used in existing aligners usually store each position of the
reference genome by a 32-bit integer, which cannot handle large sequence (i.e., the concatenation
of two strands) with more than 232− 1 ≈ 4.3 billion characters. To solve the first problem, existing
aligners [8, 11] build uncompressed indexes for the reference genome to avoid the time-consuming
locating operations. However, the use of uncompressed indexes would lead to large memory re-
quirement of these aligners. For example, WALT builds four uncompressed hash table indexes for
the human genome, each of which requires about 14 GB RAM. To solve the second problem, some
WGBS aligners represent each position of the reference genome with more than 32 bits. This strat-
egy not only increases the memory requirement, but also results in extra operations when retrieving
positions from indexes.

In BitMapperBS, we adopt an efficient locating algorithm FMtree [16] to address the above
problems. This algorithm recovers the unsampled positions of FM-index block-by-block, while the
locating algorithm used in existing WGBS aligners recovers these positions one-by-one. In par-
ticular, FMtree is well suited for three-letter WGBS aligners, since it presents better performance
for the patterns (i.e., seeds) with more occurrence positions and smaller alphabet size. The orig-
inal implementation of FMtree is proposed for four-letter DNA sequence data. In BitMapperBS,
we redesigned it for three-letter data to further improve its performance. Given a queried seed,
we organize the search space of its locating operations into a ternary tree, and calculate its all
unsampled positions by traversing this ternary tree. Instead, the search space of the original im-
plementation of FMtree is a quadtree, which needs more time to be traversed. By utilizing the
compressed FM-index and its fast locating algorithm FMtree, BitMapperBS is memory-efficient
without sacrificing speed. For example, BitMapperBS required 6.8 GB RAM when aligning WGBS
reads to the human genome, while the second fastest aligner GEMBS required more than 30 GB
RAM (see Table 2 in Section 3). Moreover, BitMapperBS was about one order of magnitude faster
than GEMBS in our experiments. Another advantage of FMtree is that it also solves the second
problem mentioned above. To perform FMtree, the FM-index must be sampled by value sampling
strategy. This strategy samples every SA[i] if SA[i] ≡ 0 (mod D), where D is the sampling value.
In practice, for each sampled position SA[i], SA[i]/D is saved in the FM-index instead of SA[i].
By default, the sampling value D of FM-index is set to 8 in BitMapperBS. When processing the
concatenation of the human genome’s two strands including 6.2 billion characters, the maximum
sampled position of FM-index is not more than 6.2 billion / 8 ≈ 775 million. As a result, it is
enough for BitMapperBS to represent each sampled position of the FM-index by a 32-bit word,
which is able to handle large sequence including at most 4.3 billion characters.

2.3 Seed-and-extend strategy

In seeding step, BitMapperBS extracts multiple overlapping and variable-length seeds from every
read, and searches for the occurrence positions of these seeds exactly via the three-letter FM-index.
Given a queried read R, each seed of it is a subsequence R[i, j] that starts at R[i] and ends at R[j].
By utilizing the FM-index, these seeds are aligned character-by-character until any of two following
criteria are met. First, if the number of occurrence positions of R[i, j] is 1, R[i, j] is selected as a
seed. Second, once there are no occurrence positions of R[i, j] in the reference genome, R[i, j−1] is
extracted as a seed. For different reads, we adopt a flexible strategy that selects different numbers
of seeds. Its key idea is to extract less seeds for the reads that are easy to be aligned, and extract
more seeds for the reads that are difficult to be aligned. Specifically, when a seed R[i, j] of length
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n = j − i + 1 has been extracted from read R, BitMapperBS selects next seed starting from
R[i + bn/2c]. In contrast to the reads with many short seeds, the reads with longer seeds generate
less seeds in BitMapperBS. Intuitively, if several long seeds of a read can be exactly aligned to
the reference genome, there may be no or a few errors in this read. In this case, we select less
seeds to reduce the running time without sacrificing alignment sensitivity. By contrast, a read
without long seeds is more likely to include more errors. Thus, we need to select more seeds to
avoid incorrect alignment. It is also noteworthy that in BitMapperBS, the exactly CT-converted
seeds can be aligned with mismatches between Cs and Ts. For example, when a C in the original
WGBS read is aligned to a T in the original reference genome, the three-letter strategy ignores this
mismatch so that it is allowed in the exactly CT-converted seeds. This also suggests that selecting
longer seeds may not sacrifice sensitivity of BitMapperBS. Actually, recent DNA and RNA sequence
aligners [24, 25] present satisfactory sensitivities with even less seeds than BitMapperBS. This is
because the sequencing errors in high quality reads produced by new sequencing technologies have
been significantly reduced. And in practice, all reads need to be preprocessed before alignment by
quality trimming. This operation further reduces the errors of reads.

In extension step, most existing aligners only extend a fraction of seeds’ occurrence positions
that are more likely to be aligned. We refer to these positions as candidate locations. For four-letter
DNA sequence aligners, this strategy is able to accelerate the extension step, and does not sacrifice
the alignment sensitivity and precision. However, owning to the low sequence complexity of WGBS
reads, it is difficult for WGBS aligners to identify the potential mapping locations without full
alignment. This is also why most WGBS aligners only report the results of unique aligned reads.
In this case, if only a fraction of seeds’ occurrence positions are extended, both the sensitivities
and precisions of WGBS aligners may be degraded. To solve this problem, BitMapperBS selects
all of the occurrence positions of seeds as candidate locations, and calculates the full alignment of
them during extension step. As shown in Table 1 in Section 3, BitMapperBS presented the best
precision among all WGBS aligners. This is reasonable, since most incorrect alignments are able
to be discarded by the exhaustive extension strategy of BitMapperBS.

Although the exhaustive extension strategy improves the sensitivity and precision of BitMap-
perBS, it also results in more candidate locations that need to be extended. What’s worse, for
three-letter WGBS aligners, there are more candidate locations than DNA sequence aligners. The
reason is that in these WGBS aligners, the CT-converted seeds with low sequence complexity in-
clude a large number of occurrence positions on the reference genome. Thus, calculating the inexact
alignment of these candidate locations is computationally expensive during extending step. To ac-
celerate this time-consuming step, BitMapperBS adopts an efficient vectorized bit-vector algorithm
[17], which extends multiple candidate locations simultaneously. In BitMapperBS, we modifiy this
algorithm to support the asymmetric match between Cs and Ts directly. Besides, our implemen-
tation is developed based on AVX2 instructions to further improve its performance. It is able to
calculate the inexact alignment of 8 candidate locations at once with up to 31 errors. Since current
Illumina sequencing platforms usually produce WGBS reads ranging from 100bp to 300bp, it is
enough to align them with up to 31 errors.

3 Results

To test the performance of BitMapperBS, we compared it with five state-of-the-art WGBS align-
ers, including Bismark [7], BSMAP [5], WALT [8], ERNE-BS5 2 [26] and GEMBS [27]. These
aligners were run with default parameters unless otherwise stated, which are recommended by
their authors (see Supplementary Section S2). Recent method BRAT-nova [9] was not evaluated
in our experiments, since it cannot build index for the human genome successfully. This problem
is also reported in [8]. In addition, BRAT-nova only supports single-threaded mode instead of
multi-threaded mode, so that it cannot be as fast as other WGBS aligners on current multicore
processors (see Supplementary Section S3). We also did not test another recent method BS-Seeker3
[11], since it was not run successfully for human genome on our experiments. Besides, BS-Seeker3
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Table 1: Results of 1 million simulated paired-end 150bp reads from human genome.

Aligner
No. of unique No. of correctly No. of incorrectly Sensitivity Precision
aligned reads aligned reads aligned reads (%) (%)

BitMapperBS (fast) 957,664 956,665 999 95.77 99.90
BitMapperBS (sensitive) 958,362 957,082 1,280 95.84 99.87
WALT 901,278 898,890 2,388 90.13 99.74
Bismark 957,435 955,053 2,382 95.74 99.75
BSMAP (gap) 960,040 955,303 4,737 96.00 99.51
BSMAP 961,486 956,948 4,538 96.15 99.53
GEMBS 705,304 703,738 1,566 70.53 99.78
ERNE-BS5 2 NA NA NA NA NA

ERNE-BS5 2 cannot be implemented successfully on this dataset. BSMAP denotes the results of BSMAP in default
mode, which only supports mismatch alignment. By contrast, BSMAP (gap) denotes the results of BSMAP with
gap alignment. Sensitivity is the percentage of reads that are aligned uniquely. Precision is the percentage of
uniquely aligned reads that are reported correctly.

cannot significantly outperform existing aligners on widely used high quality WGBS datasets, and
it is much more memory-consuming than other aligners (see Supplementary Section S3). The de-
tailed discussion of BRAT-nova and BS-Seeker3 can be found in Supplementary Section S3. Other
aligners like HPG-Methyl2 [28], BS-Seeker2 [10], BatMeth [29] and BWA-meth [30], were not tested
due to their relatively poor performance presented in previous works [8, 31]. All experiments were
performed using six CPU threads on a computer with a six-core Intel Core i7-8770k processor and
64 GB RAM, running Ubuntu 16.04. The indexes, reference genomes and reads were stored in a
Solid State Drive (SSD) to minimize the loading time of WGBS aligners.

3.1 Performance comparison on simulated dataset

In this experiment, we focused on comparing the alignment sensitivities (the percentage of reads
that are aligned uniquely) and precisions (the percentage of uniquely aligned reads that are reported
correctly) of different methods. To this end, we generated 1 million simulated paired-end 150bp
reads from human genome (GRCh38 assembly) using Sherman (http://www.bioinformatics.b
abraham.ac.uk/projects/sherman/) with an error rate of 1% and a bisulfite conversion rate of
98.5%. Sherman is designed specifically to simulate bisulfite sequencing reads, and has been widely
used in previous studies [29, 31]. Since the original positions of simulated reads were known in
advance, we could evaluate the precision of each WGBS aligner. In practice, to avoid incorrect
alignment, most WGBS aligners only report the results of unique aligned reads. As shown in
Table 1, all WGBS aligners presented comparable sensitivities except GEMBS. Although GEMBS
achieved relatively high precision, the sensitivity of it was significantly lower than those of other
aligners. GEMBS aligned 70.53% of reads uniquely, while most other aligners (BitMapperBS,
Bismark and BSMAP) uniquely aligned more than 95% of reads. By contrast, BSMAP achieved
the highest sensitivity among all methods, but its precision was the lowest. BitMapperBS shown the
best precision, identified the most correctly aligned reads as well as the fewest incorrectly aligned
reads, and achieved a good balance between sensitivity and precision.

3.2 Performance comparison on real datasets

To evaluate the running time (wall time) and the memory requirement of various WGBS aligners,
we selected four large and real datasets with various read lengths produced by different high-
throughput sequencing platforms. These four datasets were generated by first selecting the first 60
million paired-end reads from SRR948855 (100bp, HiSeq 2000), SRR6426282 (125bp, HiSeq 2500),
SRR5453774 (151bp, NextSeq 500) and SRR6804872 (151bp, HiSeq X), respectively. After that,
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Table 2: Performance of different aligners on real datasets from human genome.

Dataset Aligner Thread
Running time Sensitivity Memory usage
(wall time) (s) (%) (GB)

SRR948855
(100bp, HiSeq 2000)

BitMapperBS (fast) 6 186 87.3 6.8
BitMapperBS (sensitive) 6 206 87.8 6.8
WALT 6 10,630 80.3 16.9
Bismark 6 13,398 86.1 9.7
BSMAP (gap) 6 15,802 88.3 8.3
BSMAP 6 7,650 84.9 8.3
ERNE-BS5 2 6 10,944 84.7 3.8
GEMBS 6 1,673 83.1 32.7

SRR6426282
(125bp, HiSeq 2500)

BitMapperBS (fast) 6 251 84.2 6.8
BitMapperBS (sensitive) 6 265 84.6 6.8
WALT 6 11,217 72.0 17.0
Bismark 6 14,936 79.7 9.7
BSMAP (gap) 6 30,349 84.5 8.3
BSMAP 6 12,856 78.8 8.3
ERNE-BS5 2 6 10,603 84.2 3.8
GEMBS 6 2,219 61.5 32.8

SRR5453774
(151bp, NextSeq 500)

BitMapperBS (fast) 6 230 85.1 6.8
BitMapperBS (sensitive) 6 256 85.3 6.8
WALT 6 11,975 74.6 17.2
Bismark 6 15,937 80.8 9.8
BSMAP (gap) 6 61,189 83.9 8.4
BSMAP 6 19,712 79.9 8.4
ERNE-BS5 2 6 13,698 85.5 3.8
GEMBS 6 2,831 45.8 33.0

SRR6804872
(151bp, HiSeq X)

BitMapperBS (fast) 6 298 84.9 6.8
BitMapperBS (sensitive) 6 303 85.1 6.8
WALT 6 11,007 71.4 17.2
Bismark 6 15,499 79.1 9.8
BSMAP (gap) 6 51,667 85.3 8.4
BSMAP 6 19,944 79.9 8.4
ERNE-BS5 2 6 14,752 85.5 3.8
GEMBS 6 2,889 46.7 33.0

Running time (wall time), memory usage and sensitivity of each method when aligning the first 60 million
paired-end reads of each dataset. Following adapter and quality trimming, there were 59.6 million, 59.6 million,
59.2 million and 59.9 million paired-end reads retained on SRR948855, SRR6426282, SRR5453774 and
SRR6804872, respectively.

all reads were preprocessed by popular Trim Galore (https://www.bioinformatics.babraham.
ac.uk/projects/trim_galore/) to perform the quality and adapter trimming. Following adapter
and quality trimming, there were 59.6 million, 59.6 million, 59.2 million and 59.9 million paired-
end reads retained on SRR948855, SRR6426282, SRR5453774 and SRR6804872, respectively. Note
that unlike the simulated dataset, we cannot evaluate the precision of each WGBS aligner on real
datasets without the original positions of reads. Thus, to evaluate the precision approximately,
we measured the concordance of alignment results between the most widely used WGBS aligner
Bismark and other aligners on four small real datasets. Each of these datasets was generated by
selecting the first 1 million paired-end reads from its corresponding large dataset above.

As shown in Table 2, BitMapperBS was the fastest one among all WGBS aligners. Compared
with the second fastest aligner GEMBS, BitMapperBS was about 9.0 times faster, 8.8 times faster,
12.3 times faster, and 9.7 times faster on SRR948855, SRR6426282, SRR5453774 and SRR6804872,
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respectively. In addition, BitMapperBS was much more sensitive than GEMBS on all datasets,
and the memory requirement of GEMBS was 4.8 times larger than that of BitMapperBS. We also
compared BitMapperBS with two widely used aligners BSMAP and Bismark. BitMapperBS was
up to 85.7 times and 72.0 times faster than BSMAP and Bismark, respectively, and presented
greater sensitivity. Note that although BSMAP (gap) and ERNE-BS5 2 achieved slightly higher
sensitivities than BitMapperBS in some cases, the precisions of them were much lower than that of
BitMapperBS (see Table 1 and Table S2 in Supplementary Section S4). For example, when aligning
the first 1 million paired-end reads from SRR5453774, at least 99.30% of reads identified by Bismark
were also aligned by BitMapperBS at same locations (see Table S2 in Supplementary Section S4).
By contrast, only 97.09% and 92.03% of reads identified by Bismark were aligned concordantly by
BSMAP (gap) and ERNE-BS5 2, respectively (see Table S2 in Supplementary Section S4). Besides,
Table S2 in Supplementary Section S4 demonstrates that the alignment result of BitMapperBS was
most concordant with that of Bismark. Actually, Bismark is one of the most widely used WGBS
aligners so far. Another interesting finding is that BitMapperBS was scalable with the length of
reads, while the performance of other WGBS aligners decreased when processing longer reads (see
Table 2). Therefore, BitMapperBS is very suited for longer and longer WGBS reads produced by
new high-throughput sequencing technologies in the near future. We also tested the performance
of BitMapperBS with different numbers of CPU threads. As shown in Figure S1 in Supplementary
Section S6, BitMapperBS presented good scalability with the increase of CPU threads.

3.3 Performance of aligners with uniform error threshold

Please note that in the above experiments, the default error thresholds of different WGBS aligners
are not uniform. For each aligner, its sensitivity is mainly affected by the error threshold. To
compare the sensitivities of all aligners fairly, we tested them with uniform error threshold (about
4% of read length). Actually, about 4% of read length is the default error threshold of the popular
WGBS aligner Bismark. The detailed configurations of different aligners in this experiment can be
found in Table S3 in Supplementary Section S5. As shown in Table S5 in Supplementary Section S5,
BitMapperBS was still one order of magnitude faster than other methods, and was one of the most
sensitive WGBS aligners. Besides, BitMapperBS presented the best precision in this experiment.
Like the results in Table 1 and Table S2 in Supplementary Section S4, the results in Table S4
and Table S6 in Supplementary Section S5 show that BitMapperBS identified the most correctly
aligned reads on simulated dataset, and the alignment result of BitMapperBS on real datasets was
most concordant with that of Bismark.

4 Conclusion

Due to the low sequence complexity and the large volume of the whole-genome bisulfite sequencing
reads, it is difficult to align them onto the large reference genome accurately and efficiently. To
solve this problem, we present an ultrafast WGBS aligner BitMapperBS. A novel version of FM-
index, called three-letter FM-index, is proposed to accelerate the seeding step of BitMapperBS. In
addition, BitMapperBS adopts the vectorized bit-vector algorithm to extend the candidate locations
of each read efficiently. We also develop several other strategies specifically for the problems that
are unique to the WGBS aligners. Experiments on both simulated and real datasets show that
BitMapperBS is at most more than 70 times faster than popular WGBS aligners BSMAP and
Bismark, and presents similar or greater sensitivity and precision. Although some recent WGBS
aligners are faster than BSMAP and Bismark, BitMapperBS is still one order of magnitude faster
than them, and achieves much better sensitivity.
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