
(a) Estimation error,
varying number of samples

and number of selection procedures.

(b) Credible intervals,
varying number of samples

and number of selection procedures.

(c) Estimation error, varying number
of samples and strength of link dependency.

Figure 2: When can the MLM accurately estimate the link? We use simulations to test
the MLM. In subfigure (a) we look at the error of the MLM link estimator in many different
situations, varying the numbers of samples, selection procedures, and the link itself. In
each trial the ‘ground truth’ link is picked uniformly at random from the parameter space.
The MLM estimator accurately recovers the ground truth from simulated data, as long as
we have enough samples and enough distinct selection procedures. In subfigure (b) we
consider the MLM’s credible intervals. For a selection of trials we choose a random value
of x , y and then compare the true link g(y|x) with the MLM interval Cx ,y . We show the
interval (in black) centered around the ground truth (in red). Since the link probabilities lie
in [0, 1], the interval is always contained within ±1 of the ground truth (this larger region is
shown in gray). The intervals mostly contain the truth, and get narrower with more samples
as long as there are enough distinct selection procedures. Note that the horizontal axis
indicates total number of samples. We only run the procedure when there are at least 20
samples per subpopulation; for this reason there are no intervals shown for small numbers
of samples with many subpopulations. In subfigure (c) we focus on the case of exactly 4
selection procedures. In this case it is only possible to get very accurate estimates if the link
takes on a particular form. If the link is independent (i.e. X , Y are independent) or if the
link is invertible and deterministic (e.g. X = Y ) then we can determine what the link is.
However, in more challenging intermediate cases, small numbers of selection procedures
may make it impossible to determine the true link; this issue is discussed in detail in Section
C.
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Y ∈ {1,2,3,4,5,6}. To see how the method performs in different circumstances, we run
many trials. In each trial we fix the number of selection procedures and pick a ‘ground
truth’ link uniformly at random from the parameter space. We then simulate a dataset from
this ground truth link, fixing the total number of samples (spreading these samples equally
among all combinations of selection procedure and measurement procedure). Finally, we
apply the MLM to the simulated data to get the point estimates ĝ(y|x) and the credible
intervals Cx y . We measure the overall estimator convergence using a type of total variation
distance:

Error( ĝ, g) =
1

12

6
∑

x=1

6
∑

y=1

| ĝ(y|x)− g(y|x)|.

This error ranges between zero and one: zero indicates that ĝ = g, one indicates that
the estimate has completely incorrect beliefs about the probability mass, i.e. g(y|x) = 0
whenever ĝ(y|x)> 0 and vice-versa. We also study at the MLM credible intervals and see
how often they cover the true parameters.

Figure 2 summarizes the results. In trials with more samples, the estimator usually has
lower error. However, only with at least six distinct selection procedures does the error
converge to zero. This figure also shows that the credible intervals work correctly regardless
of the number of samples or selection procedures; they include the ground truth with
high probability. With many samples and selection procedures, the intervals are small and
concentrated around the truth. With fewer samples or selection procedures, the intervals
are typically larger. However, the uncertainty is not the same for every aspect of the link. In
some cases we obtain a tight credible interval for g(y|x) for some values of x , y and very
loose intervals for other values.

2.3 Simulation II: Different kinds of ground-truth links

The convergence of the estimator depends upon the link itself. Each trial of this simulation
uses four selection procedures and the measurement procedures yield one of six categories.
In the previous simulations we saw that estimator convergence was impossible in some
cases, due to the small number of selection procedures – but those simulations picked the
link uniformly from its parameter space. Now we will be more choosy.

On one extreme, we will produce trials where the link makes X and Y independent, i.e.
g(y|x) = g(y|x ′) for every x , x ′. On the other extreme, we will have trials where X and Y
are deterministically related by the equation X = Y . We will also consider every link ‘in-
between’ these two extremes (found by convex combinations). Figure 2 shows that estimator
convergence is possible in the two extreme cases. However, estimator convergence fails for
the in-between cases. In these cases there does not exist any consistent estimator, due to
non-identifiability issues discussed in Appendix C.

We further examine one interesting case: let the measurements return one of 2k categories
and let us use only k+1 carefully chosen selection procedures. Now suppose the link defines
any invertible deterministic function between X and Y . In this case, with enough samples,
we can determine both that the relationship is deterministic and the exact specification of
the invertible function. This result is proven in Appendix C, Theorem 2.

3 Empirical results for cell-types

Every cell in a human body has the same DNA (to a first approximation), but some cells
behave differently from others. The biomolecular processes that drive this diversity are
an area of active research [4, 5, 6]. Efforts such as the Human Cell Atlas project seek
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Figure 3: The input to the Markov link method: one experiment for each measurement
procedure and each selection procedure. Here we show a portion of the real data to
which we applied the MLM. Neurons from the visual cortex of mice were harvested using
a variety of Cre/Lox-based selection procedures (cf. [3]). Each strategy was designed to
sample from different subpopulations of cells. Neurons were measured to determine their
‘type,’ using one of two procedures: ‘Standard’ or ‘Patch.’ ‘Standard’ outputs 104 different
types of neurons. ‘Patch’ has a coarser notion of cell-type, distinguishing only 10 types. For
each experiment, we tabulated the number of cells assigned to each type. Above we show a
subset of these results; the color of each square indicates the number of specimens found to
have a particular type. Using this kind of data, the task is to calibrate the two classification
protocols. That is, we want to be able to ask question of the following form: ‘if a neuron
is classified as being of type ‘Peri Kcnj8’ by Standard, how might it have been classified by
Patch?’
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to map out a taxonomy of cell-types [7], thereby enabling a more systematic study of
cellular diversity. Single cell transcriptomics provide an essential tool for reasoning about
cell-types [8]. However, there are many different ways to measure transcriptomics, and
most existing approaches destroy cells in the process of measuring their transcriptomic data.
This makes it difficult to understand how taxonomies defined by one method may be related
to taxonomies arising from another method. The Markov Link Method provides a new way
to quantitatively approach these issues.

We will examine two procedures in particular, which we’ll call ‘Standard’ and ’Patch.’ See [3]
for details of these two methods. Briefly, the ‘Standard’ cell-typing pipeline applies single-cell
RNA sequencing to a population of cells and then applies clustering methods to divide
the cells into types. The Patch pipeline is based on the ‘Patch-seq’ approach in [9]; these
methods can obtain transcriptomic, electrophysiological, and morphological properties at
the single-cell level, but the richness of the data comes at the cost of a somewhat degraded
transcriptomic signal, leading to somewhat coarser cell-type determinations.

Both Standard and Patch methods produce cell-type determinations, but how can we check if
these two methods produce consistent results? For example, Patch has a notion of a ‘Lamp5’
cell type. Standard gives a more granular analysis, dividing this type into many sub-types,
such as ‘Lamp5 Pdlim5’ and ‘Lamp5 Slc35d3.’ If a cell was designated as ‘Lamp5 Pdlim5’
using Standard, we would hope that it be given the ‘Lamp5’ type by Patch. Unfortunately,
since we cannot apply both methods to the same cell, we cannot directly test this question.
The MLM gives a way to proceed, as long as we can use both methods on cells gathered
with a variety of selection procedures.

We applied the MLM to a dataset that included both Standard and Patch data. Specifically,
[10] describes a method for selecting different subpopulations of neurons. Each selection
procedure yielded groups of cells with different proportions of the different cell-types. For
each selection procedure and each measurement procedure, a number of cells were collected
and typed using either the Standard or Patch pipeline. The result of this process was two
tables, subsets of which are shown in Figure 3.

Given this data, we estimated the link between the Patch and Standard cell-typing pipelines.
We calculated both a point estimate ĝ(y|x) and credible intervals Cx y . In Figure 4 we
visualize these objects for selected values of x , y. For the Standard type x =‘Vip Rspo4’
and the Patch type y =‘Vip,’ we have that Cx ,y = [.88, 1.0]. This supports the idea that the
true link satisfies g(y|x) ≥ .88: at least 88% of the cells classified as type ‘Vip Rspo4’ by
the Standard method will be classified as ‘Vip’ by the Patch method. However, for other
types there is more ambiguity. For the Standard type x =‘Lamp5 Egln 1’ and the Patch types
y =‘Lamp’ we have Cx y = [0, 1.0]. The data do not give a definitive answer as to whether
cells with Standard type ‘Lamp5 Egln 1’ are being classified with Patch type ‘Lamp.’

The variability in the credible region suggests how to more closely determine the value of
the link. For example, the significant ambiguity for cells with standard type ‘Lamp5 Egln 1’
suggests we need more distinct selection procedures that include these cells. If we could
find a selection procedure that obtained many cells which measure as Standard type ‘Lamp5
Egln 1’ but no cells which measure as Patch type ‘Pvalb,’ this would show that the Standard
‘Lamp5 Egln 1’ is not associated with Patch type ‘Pvalb.’ On the other hand, if we could find
a selection procedure that obtains many ‘Lamp5 Egln 1’ cells but only cells with Patch type
‘Pvalb,’ this would show the opposite. Once such additional selection procedures have been
determined and experiments run, the MLM can be applied to the new data to determine
what aspects of the link are still ambiguous.
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Figure 4: MLM estimation of the link, with credible interval. The central plot shows
a portion of the MLM estimator applied to the data described in Figure 3. We examine a
subselection of Standard types (x) and all of the Patch types (y). For each combination
x , y we draw a rectangle whose color indicates the value of the estimator ĝ(y|x). We also
determine the MLM’s confidence about these estimators. On the left we indicate the lower
bounds indicated by the credible interval; on the right we indicate upper bounds. For some
aspects of the link the intervals are much tighter than others. For example, it appears we
have high confidence the Standard type ‘Vip Rspo4’ is highly associated with the Patch type
‘Vip.’ In contrast, we have almost no idea what is associated with the Standard type ‘Meis2.’
The upper credible interval bounds suggest that g(y|Meis2) could be nearly 1 for many
different Patch types. Obviously it cannot be 1 for all of those types simultaneously, since
∑

y g(y|Meis2) = 1, but the data simply doesn’t tell us which y carries the mass.

4 Relation to prior work

The MLM infers the link between different measurement procedures to combine multimodal
experimental data. There is a long line of literature on this subject. For example, when
experiments are performed in batches, the exact measurement procedures can vary slightly
between batches. The entire field of ‘batch effects’ is devoted to handling these problems.
The general approach is to use some knowledge of the procedures to make modeling
assumptions about the links. These assumptions give us a way to estimate the link (cf. [11]).
If different measurement procedures yield results in the same space, we can also implicitly
articulate these kinds of assumptions by assuming measurement procedures should yield
results that are somehow ‘close.’ This leads to optimal transport techniques that use a
distance measure to produce a link (cf. [12]). From the most general point of view, we are
engaged in meta-analysis; we refer the reader to [13] for a general introduction to the field.
The main distinguishing characteristics of this paper are two-fold: we place no assumptions
on the nature of the link and focus on the resulting identifiability issues [14].

Our fundamental approach takes its origins from the causality literature. The MLM treats
measurements never performed as latent random variables; this is a common approach
in the causality community, and generally goes by the name of ‘Potential Outcomes’ (cf.
[15]). The idea of using selection procedures also has precedent in the causal literature; it
is sometimes referred to as ‘stratification by covariates’ (cf. [16]). The Markov Link Method
can be understood as an application of these ideas to cases where the MLM assumption
holds.

The main technical contribution of this paper is a method to translate the MLM assumption
into practically useful credible intervals. In this we were inspired by a large literature
of examples where assumptions are used to bound potentially unidentifiable parameters.
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Some of this literature also comes from the field of causality. For example, in [17] Bonet
produces regions not unlike the ones seen here to explore whether a variable can be
used as an instrument. The Clauser-Horne-Shimony-Holt inequality was designed to help
answer causality questions in quantum physics, but it also sheds light on what distributions
are consistent with certain assumptions [18]. More generally, the physics literature has
contributed many key assumptions that bound unidentifiable parameters (cf. [19], [20],
and the references therein). The closest work to this one would be [21], which uses two
marginal distributions to get bounds on a property of the joint distribution (namely the
distribution of the sum). We advance this approach to a more general-purpose technique,
both by using many subpopulations to closely refine the MLM estimates and by considering
the entire space of possible joint distributions instead of a single property of the joint.

5 Conclusion and future work

In this work, we formalize the concept of a ‘measurement link’ between two different types
of experimental data. We develop the Markov Link Method (MLM), a tool to estimate this
link. Critically, the MLM does not require data where both measurement procedures are
applied to the same specimen. Thus the MLM can be applied even when measurement
techniques are destructive, or in cases where obtaining multiple measurements from the
same specimen is prohibitively costly.

To accomplish this, the MLM requires a variety of selection procedures; these selection
procedures choose data from different (though perhaps overlapping) subpopulations and
therefore provide different views into how the measurement procedures are related. The
MLM combines many such views to optimally constrain the measurement link.

In this work the MLM is used for measurements that produce one of a finite set of values,
such as procedures which measure a cell to determine its cell type. It is conceptually
straightforward to extend the MLM to other kinds of measurement procedures, such as
those that produce real values. Similarly, we demonstrated that the MLM can estimate the
link between two measurement procedures. It is also straightforward to extend this approach
to more than two types of measurements. We describe these extensions in Appendix D, but
note that significant future effort may be required to put these concepts into practice.

In summary, the MLM provides a generic tool to combine data across different experimental
modalities. Every scientific experiment provides a glimpse into the domain under study.
Tools that can combine these perspectives, such as the MLM, are critical to using all of our
data to form accurate and coherent scientific theories.
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A Exact details of the Markov link method

Consider experiments yielding an Ω` ×ΩX matrix DX and an Ω` ×ΩY matrix DY , carrying
the distribution

(DX `1,DX `2 · · ·DX `ΩX
)∼Multinomial(n`, f (·|`))

(DY `1,DY `2 · · ·DY `ΩY
)∼Multinomial(m`, h(·|`))

where f (x |`), h(y|`) are conditional distributions and there is some g(y|x) such that
h(y|`) =

∑

x f (x |`)g(y|x). This is simply a restatement of the assumptions we have made
throughout this paper about how the objects of interest ( f , g, h) are related to the data we
can observe (DX ,DY ).

The purpose of the MLM is to make estimates about g using the data DX ,DY . Unfortunately,
g cannot be directly determined from the data. Even perfect knowledge of f , h may be
insufficient to determine the true value of g. Some examples are detailed in Appendix C.
This problem is called ‘nonidentifiability,’ and it can have some troubling consequences.
For example, standard Bayesian analyses applied to nonidentifiable parameters will be
extremely sensitive to the precise choice of prior beliefs. Even with infinite data, the prior
beliefs may have a significant impact on inferences. To avoid these difficulties, we focus on
objects that we know we can identify from data. In particular, we will look at lower bounds,
upper bounds, and something in-between.

Let Θ( f , h) = {g : h(y|`) =
∑

x f (x |`)g(y|x)} denote the set of links which are consistent
with f , h and the Markov link method assumption. We define

• glo, f ,h(y|x)¬ming∈Θ( f ,h) g(y|x)

• ghi, f ,h(y|x)¬maxg∈Θ( f ,h) g(y|x)

• ĝ f ,h ¬ argming∈Θ( f ,h) Df (Uniform||g), where Df is some f -divergence.3

3In practice, we choose a χ2 divergence because it makes the minimization problem a highly tractable quadratic
program. See Appendix E for details.
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Even if g is nonidentifiable, glo, ghi may still be identifiable, and these quantities bound the
measurement link according to the inequalities qlo(y|x)≤ g(y|x)≤ ghi(y|x). The estimator
ĝ is also identifiable and we can also hope it will strike a middle ground. In producing this
single point estimate we had to decide how to deal with the fundamental fact that actually
any g ∈ Θ might be correct. At a basic level, we could make two kinds of mistakes. We
might claim a very strong association between the measurement procedures even though
actually there is none. We might claim a very weak association even though actually there
is a strong association. We choose to err on the side of asserting weak associations, by
choosing the g which is as close as possible to uniform. We made this choice in the spirit of
the Maximum Entropy Principle, i.e. that in the absence of other information we assume
X is associated with each Y equally. This is perhaps as reasonable as any way to pick a
particular ĝ. However, we reiterate that ĝ is just one possibility among many. It is safest to
consider the full spectrum of possibilities by looking at the extremes glo, ghi.

If we had perfect knowledge of f , h, the objects glo, f ,h, ghi, f ,h, ĝ f ,h would give us a reasonable
understanding of what we can know about the link g. However, in practice we do not have
access to f , h. Instead, we have access to the data DX ,DY which enables us to estimate f , h.
To account for uncertainty about these estimates, we take a Bayesian perspective. For prior
beliefs about f , h, we take a noninformative uniform prior P:

P( f , h)∝ 1

Following the Bayesian philosophy, we then incorporate new knowledge by conditioning.
We have two important pieces of knowledge about f , h. First, we have observed the data,
DX ,DY . Second, we know from the MLM assumption that there exists some value g such
that Equation (2) holds. We would like to condition on both of these facts. However,
due to the Borel-Kolmogorov paradox, ‘conditioning on the MLM assumption’ is not a
meaningful idea. Instead, it is necessary to define a variable indicating how much the
MLM assumption fails, and condition on this variable being zero. In particular, let D(h||h′)
denote the Kullback-Leibler divergence and Γ ( f , h) = infh′: Θ(h,h′)6=; D(h||h′). LetA denote
the event that Γ ( f , h) = 0. Posterior uncertainty about f , h can then be articulated through
the distribution

P ( f , h|DX ,DY ,A ) .

In terms of this posterior, we define the MLM point estimate ĝ and uncertainty bounds C as
follows:

1. ĝ is calculated using posterior expectation:

ĝ ¬ E
�

ĝ f ,h|DX ,DY ,A
�

2. Cx ,y is calculated in terms of credible intervals. For each x , y, we define Cx ,y as the
interval from the 2.5th percentile of glo, f ,h(y|x) to the 97.5th percentile of ghi, f ,h(y|x)
under the posterior distribution.

In practice, we were not able to find a way to compute these objects exactly. Given samples
from the posterior distribution P( f , h|DX ,DY ,A ), it would be straightforward to get good
estimates. As seen in Appendix E, it is straightforward to compute glo, ghi, ĝ from samples
of f , h, so we could use use Monte Carlo approximations for our objects of interest. Un-
fortunately, it seems difficult to obtain samples from this posterior distribution. Common
approaches to this type of problem involve Markov Chain Monte Carlo and Variational In-
ference, but we were unable to make these approaches work in practice. It seems nontrivial
to work with the condition Γ (p, h) = 0 that formalizes the MLM assumption. We instead
take a somewhat naïve approach. We start by drawing samples according to

F, H ∼ P( f , h|DX ,DY ).
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This can be achieved exactly, using the the conjugacy between the prior and the Multino-
mial distribution. Notice that these samples do not incorporate knowledge of the MLM
assumption, insofar as they are not conditioned on the event Γ ( f , h) = 0. To approximately
remedy this, we define H̃ as the solution of minh′ D(H|h′), subject to the constraint that
Γ (F, h′) = 0. Optimization details can be found in Appendix E. We use the pair F, H̃ as
approximate samples for the distribution P( f , h|DX ,DY ,A ). We can repeat this process to
produce many samples of (F, H̃) and use those samples to produce approximate Monte
Carlo estimates for ĝ(y|x), Cx ,y . In the limit of large sample sizes we expect that F, H will
nearly satisfy the MLM assumption in any case, so this approximation should not make a
large difference. For example, on the transcriptomic dataset examined in the main text we
found that the total variation distance between H(·|`) and H̃(·|`) was about 15% (averaging
over all selection procedures ` and various samples of H). For comparison, this is about
three times smaller than the average total variation distance between H(·|`) and H(·|`′)
for a randomly selected pair of selection procedures (`,`′), which averages out to around
50%.

A summary of the final algorithm can be found below, in Algorithm 1. Consistency results
for this final algorithm can be found in Appendix B.

Algorithm 1: The Markov Link Method

1 Input : DX ,DY
2 Output : ĝ(y|x), Cx ,y f o r each x , y
3

4 f o r i ∈ 1 · · ·nsamps :
5 f (i) Dirichlet(1+DX )
6 h(i) Dirichlet(1+DY )
7 h̃(i)← arg minh′ D(h|h′) s u b j e c t to Γ ( f (i), h′) = 0
8

9 f o r each x , y :
10 g(i)lo =ming∈Θ( f (i),h̃(i)) g(y|x)
11 g(i)high =maxg∈Θ( f (i),h̃(i)) g(y|x)
12

13 ĝ ← 1
nsamps

∑

i argming∈Θ( f (i),h(i))
∑

x ,y g(y|x)2

14

15 For each x , y , l e t
16 Cx ,y = [percentile(g(·)lo (y|x), 2.5),percentile(g(·)hi (y|x), 97.5)]

Note that this algorithm includes solving several optimization problems. Details for how we
solve those problems can be found below, in Appendix E.

B Consistency results

We here show some fairly mild conditions under which the credible intervals Cx ,y defined
in Algorithm 1 are asymptotically consistent, in that they are guaranteed to contain the true
link parameters up to an arbitrarily small constant. Throughout this section we will adopt
the notation found in that Algorithm. Our main assumptions are as follows:

• Linear independence. The matrix B defined by B`,x ¬ f ∗(x |`) has linearly indepen-
dent rows. This will typically occur whenever the number of selection procedures is
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no greater than the number of discrete values that the X measurement can return.
Our use case featured a relatively small number of selection procedures, so we focus
on that case.

• Positivity. The distribution g∗ is strictly positive. This assumption greatly simplifies
the theoretical analysis by allowing us to assume that many important objects are
asymptotically normal.

We expect that these conditions are actually not necessary for our result. However they
greatly simplify the analysis, yielding the following short consistency proof. In future work
we hope to remove these conditions.

Theorem 1. By taking n`, m` > c for c sufficiently large we can ensure g∗(y|x) ∈ Cx ,y ± ε
with aribtrarily high probability and arbitrarily small ε > 0.

Proof. We first recall some classical results on posterior concentration for Multinomial data.
Let π denote the posterior distribution on f , h under a uniform prior:

πDX ,DY
( f , h)∝

∏

`

Multinomial
�

DX `; n`, f (·|`)
�

Multinomial
�

DY `; m`, h(·|`)
�

This is the key distribution used in Algorithm 1. Notice that if we consider DX ,DY to drawn
from multinomials parameterized by f ∗, h∗, then πDX ,DY

becomes a random measure. The
randomness comes from the fact that DX ,DY are considered to be random variables. In this
setup, it is well-known that by taking n, m sufficiently high we can ensure that

P
�

πDX ,DY
(| f − f ∗|> ε, |h− h∗|> ε)> ε

�

< ε

for arbitrararily small ε. Note that the exact norm chosen to define | f − f ∗| is not particularly
important; since these objects are finite-dimensional, all these norms are equivalent (e.g.
L 2, total variation, uniform norm).

In order to account for our knowledge that there is some g such that
∑

x f (`|x)g(y|x) =
h(y|`), we do not work directly with the distribution π. Instead, recall that we define h̃ as
as a solution of

min
h̃

D(h|h̃)

subj.∃g :
∑

x

f (`|x)g(y|x) = h̃(y|`)

It is easily seen that this problem is strictly convex and so the solution is unique; thus h̃ is
a deterministic function of f , h. We would like to obtain a similar posterior concentration
result for this altered variable, i.e. we can ensure P

�

πDX ,DY

��

�h̃− h∗
�

�> ε
�

> ε
�

< ε by taking
n`, m` sufficiently high. This follows because we already know h∗ ≈ h and we can ensure
h≈ h̃ whenever h≈ h∗, f ≈ h∗, using the positivity and linear independence assumptions.
Indeed, we have that

∑

x f ∗(`|x)g∗(y|x) = h∗(y|`), f ≈ f ∗, and h≈ h∗. We can therefore
apply a kind of implicit function theorem result to show that we can find h̃ which is close to
h inL 2 and such that ∃g with

∑

x f (`|x)g(y|x) = h̃(y|`) (note that the positivity condition
ensures that this L 2 closeness is locally equivalent to the KL divergence which we actually
minimize to find h̃). To apply such an implicit function theorem, we need to ensure two
things: that the relevant Jacobians are invertible and that h∗ does not lie on the boundary
of the feasible space. In this case these conditions can be ensured by the independence of
the rows of B`,x ¬ f ∗(x |`) and the positivity of g, respectively.

We would now like to use the fact that f ≈ f ∗ and h̃ ≈ h∗ with high probability to show
that g∗(y|x) ∈ Cx ,y ± ε with high probability. Without loss of generality, we will focus on
the lower bound of the interval Cx ,y . Recall that this lower bound is defined as a percentile
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of the distribution of glo, f ,h̃(y|x). Thus, it suffices to show that there is a high probability
that DX ,DY are such that πDX ,DY

assigns high probability to glo, f ,h̃(y|x) ≤ g∗(y|x) + ε.
In light of the posterior concentration results above, it suffices to show that by taking
| f − f ∗|< δ,

�

�h̃− h∗
�

�< δ for δ sufficiently small we can ensure glo, f ,h(y|x)≤ g∗(y|x) + ε
for arbitrarily small ε. This is easily seen. Let g̃ denote the L 2 projection to Θ( f , h̃).
Once again the independence of the rows of B and the positivity allows us to ensure that
| g̃(y|x)− g∗(y|x)| < ε for every x , y. Thus, since g̃ ∈ Θ( f , h̃), the very definition of glo
yields that glo, f ,h(y|x)≤ g̃(y|x) + ε, as desired.

C Identifiability

The issue of identifiability comes up repeatedly throughout this paper. Here we give a brief
overview of the fundamentals of this issue. We also present two suggestive case studies
which we hope may inspire future research. In both cases we are able to prove something of
interest – but not quite as much as we might hope. Here we will use the notation introduced
in Appendix A.

First note that we can obtain arbitrarily good estimates of f , h by taking enough samples (i.e.
taking n`, m` sufficiently high). Let us therefore imagine for a moment that we in fact have
perfect knowledge of f , h. Even so, the data do not necessarily tell us the value of the link g.
There may be many possible links, g, which are all equally consistent with f , h. That is, we
may have g1, g2 such that h(y|`) =

∑

x f (x |`)g1(y|x) = h(y|`) =
∑

x f (x |`)g2(y|x). Both
links yield the exact same distribution on the data we can observe, so there can be no way
to use data to distinguish among them. This is known as a ‘nonidentifiability problem.’ Even
with infinite data, we simply cannot identify exactly what the value of g might be.

We will now look at some examples:

C.1 A simple failure case

Consider the case that Ω` = ΩY = 2 and ΩX = 3. That is, there are 2 separate selection
procedures, tool I recognizes 3 categories and tool II recognizes 2 categories. In particular,
let us imagine that f (x |`) = A`x and h(y|`) = B`y where A, B are matrices given by

A=

�

1
2

1
2 0

2
6

1
6

1
2

�

B =

�

1
2

1
2

2
3

1
3

�

Rows correspond to different selection procedures and columns correspond to a differ-
ent measurement outcome. Now let g(y|x) = Cx y , another matrix. The Markov link
method assumption then tells us that A× C = B, where × indicates matrix multiplication.
This corresponds to Ω` ×ΩY = 4 equations. We also have a normalizing constraint that
∑

y g(y|x) = 1, which creates ΩX = 3 additional equations. However, these normalizing
constraints actually make two of the MLM assumption constraints redundant. In the end,
we have 5 constraining equations on the matrix C . However, the matrix C contains six
numbers. The result is a degree of freedom in C , corresponding to an aspect of g that we
simply cannot resolve. For example, here are two choices of C which are both consistent
with the equation A× C = B:

C =





0 1
1 0
1 0



 C =





1 0
0 1
2
3

1
3




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C.2 Permutation matrices

Consider the case that Ω` = k and ΩX = ΩY = 2k−1. That is, we are allowed to use k
separate selection procedures, and measurement tools I and II can both return one of 2k−1

possible values. Let us furthermore assume that

g(y|x) =

¨

1 if x = π(y)
0 else

where π is a permutation on {1 · · ·ΩY }. Thus the two measurement procedures are deter-
ministically related, but we don’t know which values of X correspond to which values of Y .
In this case, what selection procedures might we want to use to determine the permutation
π? One natural idea would be to use a selection procedure that selects specimens taking
on exactly half of the different values. We can easily imagine k such procedures, each
selecting a different half of the values. The result is a set of selection procedures defined by
f (x |`) = A`,x , where this matrix A is given by

A= 22−k





















0 1 0 1 0 1 · · · 0 1 0 1
0 0 1 1 0 0 · · · 0 0 1 1
0 0 0 0 1 1 · · · 1 1 1 1
0 0 0 0 0 0 · · · 1 1 1 1

...
0 0 0 0 0 0 · · · 1 1 1 1
1 0 1 0 1 0 · · · 1 0 1 0





















That is, the xth column of the first k− 1 rows is the binary expansion of the number x − 1,
and the last row alternates 1s and 0s. Now let us say we have perfect knowledge of f (x |`)
and h(y|`) =

∑

x f (y|`)g(y|x). Notice that due to the simple structure of g we obtain
h(y|`) = A`,π(y). However, let us imagine we know nothing about the true value of g.

How much can we say about g, if we only had knowledge of f and h? On the one hand,
we observe that in the absence of any other constraints, the object g has 22k−3 degrees of
freedom. This is because there are 2k−1 values of ` and for each subpopulation g(·|`) must
lie in the 2k−2-dimensional simplex on 2k−1 atoms. On the other hand, we see that the
Markov Link Assumption gives us k× (2k−1−1) linear constraints on the value of q. Indeed,
for each subpopulation in 1 · · · k and each value of y ∈ 1 · · ·2k−1 we have an equation of
the form

∑

x

p(y|`)q(y|x) = h(y|`)

Of these k×2k−1 constraints, k of them are redundant with the fact that
∑

y g(y|x) = 1. Thus,
altogether, the Markov Link Assumption together with approximate knowledge of p, h gives
us k× (2k−1−1) linear constraints. It would follow that q would have 22k−3− k× (2k−1−1)
degrees of freedom yet remaining.

In conclusion, a simple degrees-of-freedom counting argument would suggest that there will
be substantial ambiguity about what value q might take on, if our only knowledge about q
is that it must satisfy

∑

x f (y|`)q(y|x) = h(y|`). Indeed, we have exponentially many more
degrees of freedom than we have constraints.

However, the reality is that q is exactly determined by f , h. This is possible because there are
inequality constraints which also govern q, namely g(y|x)≥ 0. Thus, while a simple degrees-
of-freedom counting argument might suggest that we would have substantial identifiability
issues in this problem, the reality is quite the opposite. This idea is made rigorous in the
following theorem.
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Theorem 2. Let f , h be as they are defined above. Then there is exactly one g that is consistent
with f , h and the Markov Link assumption. That is, g is the only possible value satisfying

∑

y

g(y|x) = 1

∑

x

A`,x g(y|x) = A`,y

q(y|x)≥ 0.

Proof. We prove by recursion. First take the case k = 2. In this case the result holds trivially,
since X , Y ∈ {1}.

Now consider a general case k > 2. Without loss of generality, we take the simple case
that π(y) = y, but the following arguments will hold for any π. Let us now focus on the
constraints implied by the second-to-last row population. It is straightforward to see that
these constraints imply

0=g(y|x) ∀y ≤ 2k−2, x > 2k−2.

Indeed, for each y ≤ 2k−2 we obtain a constraint showing that
∑

x>2k−2 q(y|x) = 0, which
yields that in fact g(y|x) = 0 for every x > 2k−2 and every y ≤ 2k−2.

It follows that for y ≤ 2k−2 the original constraints may be rewritten as
∑

x≤2k−2

A`x g(x |y) = A`y ∀y ≤ 2k−2.

This is an example of the same problem we started with – except with k one smaller. Applying
the inductive hypothesis, we may thus obtain that g(y|x) is uniquely determined for the
first 2k−2 values of x , y . Moreover, since

∑

y≤2k−2 g(y|x) = 1, we see that g must also satisfy
g(y|x) = 0 for y > 2k−2 and x ≤ 2k−2. Thus we have seen that g is uniquely identified for
all entries except those in which x , y ≥ 2k−2.

For x , y ≥ 2k−2 we linearly combine equations concerning the first, last, and second to
last rows of A with factors of 1,1,−1 respectively. We obtain constraints showing that
∑

x≤2k−2 g(y|x) = 0 for each y > 2k−2. We can then use the same reasoning to obtain that
g is uniquely identified for the remaining values of x , y .

This result is somewhat robust to slight perturbations in f , h. In particular, if we have some
f̂ ≈ f and ĥ ≈ h then at each stage of the argument we can replace statements of the
form g(y|x) = 0 with statements of the form g(y|x)≤ ε. Applying this with the kinds of
arguments above will show that we can be sure that every point in Θ( f̂ , ĥ) is arbitrarily
close to g if we know that f̂ , ĥ are sufficiently close to f , h.

However, it turns out that the relationship between g and f , h is not robust in every situation.
In the next section we will see that it can in fact be quite discontinuous.

C.3 Discontinuity

Consider the case that Ω` = 1 and ΩX = ΩY = 2. That is, there is only one selection
procedure (no subpopulations) and both tool I and tool II can return one of 2 possible
values. We will now consider two possiblities:

1. First let us take the case

• P(X = 1) = f (1) = 0
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• P(X = 2) = f (2) = 1

• P(Y = 1) = h(1) = 0

• P(Y = 2) = h(2) = 1

In this case the MLM assumption
∑

x f (x)g(y|x) = h(y) can be used to prove that
g(1|2) = 0, g(2|2) = 1, but we now have absolutely no knowledge of g(1|1), g(2|1).
This is because we simply never observed the case X = 1 (it occurs with probability
zero), and so we cannot possibly have any knowledge about g(y|x) for x = 1.

2. Now let us take a slight variation:

• P(X = 1) = f (1) = 0.01

• P(X = 2) = f (2) = 0.99

• P(Y = 1) = h(1) = 0

• P(Y = 2) = h(2) = 1

In this case we can again prove that g(1|2) = 0, g(2|2) = 1, but we can also prove
that g(1|1) = 0, g(2|1) = 1.

3. Now we take yet another slight variation:

• P(X = 1) = f (1) = 0.01

• P(X = 2) = f (2) = 0.99

• P(Y = 1) = h(1) = 0.01

• P(Y = 2) = h(2) = 0.99

In this case we can prove that g(1|2) ≤ 1/99 and g(2|1) ≥ 1− 1/99, but we again
cannot prove almost anything about g(2|1). In particular, it is easy to produce cases
in which g(2|1) = 0 and other cases in which g(2|1) = 1.

The disturbing thing about this example is that by making infinitesimal perturbations to f
we can pass from uncertainty to complete certainty back to uncertainty. It is for this reason
that in this paper we refuse to ever treat f , h as fixed and given, always considering the
space of perturbations around any such values.

It is worth noting that these kinds of problems essentially vanish if the true g is bounded
away from zero i.e. g(y|x)> c for every x , y for some c > 0. This observation is the basis
for our consistency result in Theorem 1 in Appendix B.

D Extensions

In this paper we focused on the case of only two measurement procedures. We furthermore
assumed that the measurement procedures could only return one of a finite number of
results; in particular, we focused on the case that the procedures determined a ‘cell-type’
among a finite set of types. In this appendix we point the way to applying the ideas in this
paper to more general problems.

D.1 Setup

In general, the MLM begins with data from a collection of experiments. As described in
the paper, we assume that each experiment can be characterized by two components: a
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selection procedure and a set of measurement procedures. Throughout the entire collection
of experiments, we will assume that there are

• Ω` distinct selection procedures.

• M distinct measurement procedures.

Abstractly, we can consider all of the experiments together as a single dataset. For every
specimen i gathered in any of the experiments, we are interested in

1. `i , the sampling strategy used to gather specimen i. For example, if `i = 3 that would
indicate that specimen i was gathered in an experiment that used the third sampling
strategy.

2. X i1, the measurement that would have been obtained from specimen i if we had
observed it with the first measurement procedure.

3. X i2, the measurement that would have been obtained from specimen i if we had
observed it with the second measurement procedure.

4.
...

5. X iM , the measurement that would have been obtained from specimen i if we had
observed it with the M th measurement procedure.

Although we are interested in all of these values, not all of them may be observable.
In particular, we may not measure all specimens with all measurement procedures. For
example, consider the case that several of the measurement procedures destroy the specimen
in the process of measuring it; in this case it is impossible to measure a specimen with all
of the different measurement procedures. From this point of view, we can think of `, X
as a dataset with missing data: X i j is unobserved if specimen i was not measured with
measurement procedure j. This perspective is sometimes referred to with the term ‘potential
outcomes.’[15] That is, in practice we must pick a small set of measurement procedures
to actually perform, but we can nonetheless think about the potential outcomes we might
have obtained if we had used different procedures.

We assume that each X i is independent, and governed by some selection procedure depen-
dent distribution,

X i1, · · ·X iM ∼ p(·|`i;θ ).

We will also assume that we have some prior on the unknown parameters of this distribution,
θ ∼ p(θ ). In this paper we focused on the case that p was a categorical distribution which
was parameterized in terms of θ = f , g. We placed a uniform prior on these unknown
parameters. In general, we want to be able to consider any kind of distribution p for
θ , X |`.

D.2 Goal

In this more general setup, our goal is to infer some property of the joint distribution of
X . There are many such properties one could be interested in. For example, one might
wish to calculate the covariance between the results of two measurement procedures. Or
perhaps one might be interested in the probability that three measurement procedures give
the same result.

All aspects of a joint distribution can be analyzed by using so-called ‘test-functions.’ First, a
question about the distribution is mathematically articulated by specifying a function. We
then use statistical methods to estimate the expected value of that function:

f̄i ¬ Eθ [ f (X i)|`i]
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Our goal is to be able to estimate these kinds of expectations. Indeed, if we could determine
f̄i for every function f , it is easy to show that we could use those estimates to determine
the joint distribution governing X [22].

D.3 Challenges

If we had full knowledge of X , estimating f̄ could be achieved with standard methods.
However, we have ‘missing’ observations, because not every measurement procedure was
performed on every specimen. The missingness of the data can cause θ to be unidentifiable.
As emphasized in the main text, nonidentifiability can cause standard methods to fail. For
example, one direct approach to estimating f̄i would be to apply Bayesian methods. We first
compute the posterior distribution of θ conditioned on the data we can observe. We could
then use this posterior to estimate f̄i by averaging over the posterior. However, conclusions
from this posterior distribution can be extremely susceptible to the choice of prior. Even in
the asymptotic limit of infinite data, non-identifiability causes the prior to have a continued
impact on the conclusions. In high-dimensional settings it may be particularly difficult to
reason about this prior, or determine which priors may or may not be sensible. For this
reason, we advocate a different approach which is more robust to prior misspecification in
the face of nonidentifiability.

D.4 Dealing with nonidentifiability

One solution is to take the nonidentifiability problem head-on. In particular, we define
lower and upper bounds on our object of interest:

f̄i,lo ¬ min
θ̃∈Θ(θ )
Eθ̃ [ f (X i)|`i]

f̄i,hi ¬ max
θ̃∈Θ(θ )
Eθ̃ [ f (X i)|`i]

where Θ(θ ) indicates the equivalence class of parameters which yield the same distribution
on the data we can observe. Note that we are guaranteed that fi,lo ≤ f̄i ≤ fi,hi. Thus
these quantities bound the true object of interest. These quantities are also identifiable,
by definition. We can therefore apply traditional statistics to estimate these bounds. In
particular, as in the main paper, we can construct credible intervals for these quantities
using posterior samples of θ .

D.5 Introducing assumptions to tighten the bounds

For nontrivial problems, the lower and upper bounds introduced in the previous section may
be extremely loose. They may offer very little insight into the true value of interest, f̄ . This
is the downside of taking this ‘head-on’ approach to identifiability. To tighten these bounds,
we advocate introducing hard constraints that represent our beliefs and assumptions. We
list some examples, below:

• Distributional or smoothness assumptions. In this paper, every distribution was on a
finite set, and we permitted these distributions to take the form of any categorical
distribution. In applications involving continuous outputs, we may wish to assume
particular distributions (e.g. a Gaussian assumption), or to place bounds on the
smoothness of the output distributions.

• The MLM assumption. The MLM assumption introduced in this paper can be general-
ized to the case of multiple measurement techniques. In general, it suffices to find a
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particular measurement modality which ‘statistically isolates’ the selection procedure
from the other measurement modalities (without loss of generality, we will assume
this is the measurement procedure corresponding to index 1). That is, we assume

P(X i2, X i3 · · ·X iM |X i1,`i) = P(X i2, X i3 · · ·X iM |X i1)

Conditional independence assumptions such as this can significantly tighten the
bounds.

• Monotonicity assumptions. If measurement techniques 1 and 2 both measure essen-
tially the same quality, we may wish to assume a stochastic monotonicity assumption.
For example, we could assume that the distribution of X i2|X i1 = x was first-order
stochastically dominated by X i2|X i1 = x ′ for any x < x ′. Intuitively, this signifies that
if X i1 is bigger we expect X i2 to be bigger, on average.

Applying these kinds of assumptions to real-world problems will not necessarily be trivial.
It is difficult to predict which kinds of assumptions might yields bounds which are tight
enough to be useful. In future work we hope to apply these ideas to a variety of datasets to
make these ideas practical for general-purpose problems.

E Numerical issues

There are three numerical problems which the MLM must solve. Here we detail our approach
for solving each of these problems.

1. Projecting to the MLM assumption. Fix any values for F, H. One step in the MLM
involves projecting H to the set of distributions which are consistent with F and the
MLM assumption. In particular, we defined

D(h|h′) =
∑

`,y

h(y|`) log
h(y|`)
h′(y|`)

and we needed to solve the problem

min
h

D(H|h)

subject to the constraint that there exists some q such that h(y|`) =
∑

x F(x |`)q(y|x).
Parametrizing valid h through g, we obtain the problem

max
g

∑

`,y

H(y|`) log

�

∑

x

F(x |`)g(y|x)
�

Taking derivatives one can readily show that this problem is convex. We solve it using
exponentiated gradient ascent (cf. [23]). We initially guess that g is uniform. We
then repeatedly make the updates

g(y|x)∝ g(y|x)
∑

`

F(x |`)
H(y|`)

∑

x F(x |`)g(y|x)

until convergence. The algorithm’s convergence criteria is that all parameters change
less than 10−5 in a single iteration.
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2. Linear programming. Fix any f , h. To deal with the identifiability issues, we defined
Θ( f , h) = {g : h(y|`) ¬

∑

x f (x |`)g(y|x)}. The MLM requires us to solve linear
optimization problems within Θ, such as

min
g∈Θ( f ,h)

g(y|x)

We solve these problems using the cvxopt python package.

3. Quadratic programming. To obtain the minimum χ2 divergence to uniform, the MLM
also requires us to solve quadratic optimization problems within Θ:

min
g∈Θ( f ,h)

∑

g(y|x)2

We solve these problems using the cvxopt python package.
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