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Abstract 

Aim: Genetic investigation of human plasma lipidome to get insights into lipid-related disorders 

beyond traditional lipid measures. 

Methods and Results: We performed a genome-wide association study (GWAS) of 141 lipid 

species (n=2,181 individuals), followed by phenome-wide scans (PheWAS) with 44 clinical end-

points related to cardiometabolic, psychiatric and gastrointestinal disorders (n=456,941 

individuals). SNP-based heritability for lipid species ranged from 0.10-0.54. Lipids with long-chain 

polyunsaturated fatty acids showed higher heritability and genetic sharing, suggesting considerable 

genetic regulation at acyl chains levels. We identified 35 genomic regions associated with at least 

one lipid species (P<5x10-8), revealing 37 new SNP-lipid species pair associations e.g. new 

association between ABCG5/8 and CE(20:2;0). PheWAS of lipid-species-associated loci suggested 

new associations of BLK with obesity, FADS2 with thrombophlebitis, and BLK and SPTLC3 with 

gallbladder disease (false discovery rate <0.05). The association patterns of lipid-species-associated 

loci supplied clues to their probable roles in lipid metabolism e.g. suggestive role of SYNGR1, 

MIR100HG, and PTPRN2 in desaturation and/or elongation of fatty acids. At known lipid loci 

(FADS2, APOA5 and LPL), genetic associations provided detailed insights to their roles in lipid 

biology and diseases. We also show that traditional lipid measures may fail to capture lipids such as 

lysophospatidylcholines (LPCs) and phosphatidylcholines (PCs) that are potential disease risk 

factors, but are not included in routine screens. The full genome-wide association statistics are 

available on the web-based database (http://35.205.141.92).  

Conclusion: Our study reveals genetic regulation of plasma lipidome and highlights the potential of 

lipidomic profiling in disease gene mapping. 

 

Keywords: Lipidome, Genome-wide association study, Phenome-wide association study, lipid 

metabolism, disease outcomes 
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Introduction 

Plasma lipids are risk factors for various complex disorders like cardiovascular disease (CVD) and 

type 2 diabetes.1,2 Low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein 

cholesterol (HDL-C), non-HDL-C, lipoprotein (a), total triglycerides and total cholesterol are 

“traditional lipid measures” routinely used to dissect dyslipidemia and risks for diseases. Human 

plasma comprises of hundreds of chemically and functionally diverse molecular lipid species,3 

which are not captured in everyday, clinical lipid analysis. Lipid species belonging to cholesterol 

esters (CE), lysophosphatidylcholines (LPC), phosphatidylcholines (PC), 

phosphatidylethanolamines (PE), ceramides (CER), sphingomyelins (SM), and triacylglycerols 

(TAG) species have been shown to improve risk assessment over traditional lipid measures and 

other risk factors for type 2 diabetes and CVD events.4-9 Moreover, the fatty acid compositions of 

phospholipids have been implicated in coronary heart disease beyond traditional lipid measures.10 

Genetic screens have identified over 250 genomic loci associated with traditional lipid 

levels.11,12 These genetic findings have helped to understand lipid biology and physiological 

processes underlying CVD and other diseases. For the majority of the genomic loci, however, the 

causal genes and/or their effects on detailed lipidomes beyond traditional lipid measures are 

unknown. Only a few studies have reported genetic associations for lipid species either through 

studies on subsets of the lipidome 13, 14 or GWASs on metabolomic measures.15-20 In most of these 

studies, however, the lipids have not been resolved on the molecular level of fatty acid or acyl chain 

composition (molecular lipid species).  

We considered that the genetic investigation of detailed lipidomic profiles could provide 

better insight into lipid metabolism and its link to clinical outcomes surpassing traditional lipid 

measures. To test this, we carried out a GWAS of lipidomic profiles of 2,181 individuals followed 

by PheWAS with 44 clinical end-points related to cardiometabolic, psychiatric and gastro-intestinal 

disorders in an independent dataset of 456,941 individuals from the Finnish and UK Biobanks 
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(Figure 1). We aimed to identify genomic loci influencing plasma levels of lipid species and their 

effects on the risk of diseases. We also set out to answer the following questions: (1) how heritable 

are the lipid species and do they share genetic components (2) can we gain mechanistic insights to 

pathways linking genetic variation to disease risk through detailed measures of the lipid species and 

(3) could detailed lipid profiles provide additional biological insights to genetic regulation of lipid 

metabolism for the previously identified lipid loci. 

 

Methods 

Study cohorts 

The detailed description of the subject recruitment and measurements is provided in Supplementary 

Data. Briefly, the study included participant from the following cohorts: 

EUFAM: The European Multicenter Study on Familial Dyslipidemias in Patients with Premature 

Coronary Heart Disease (EUFAM) study cohort is comprised of the Finnish familial combined 

hyperlipidemia families.21 The families in EUFAM study were identified via probands admitted to 

Finnish university hospitals with a diagnosis of premature coronary heart disease. For the lipidomic 

profiling, 1,039 EUFAM participants for which serum samples were available were included 

(Supplementary Table 1). 

FINRISK: The Finnish National FINRISK study is a population-based survey conducted every 5 

years since 1972 (detailed in Supplementary Data).22 Lipidomic profiling was performed for 1,142 

participants that were randomly selected from the FINRISK 2012 survey (Supplementary Table 1).  

Finnish Biobank: The Finnish Biobank data is composed of 47,980 Finnish participants with 807 

phenotypes derived from ICD codes in Finnish national hospital registries and cause-of-death 

registry as a part of FinnGen project.  
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UK Biobank: The UK Biobank data is comprised of >500,000 participants based in UK and aged 

40–69 years, annotated for over 2,000 phenotypes.23 The PheWAS analyses in the present study 

included 408,961 samples from white British participants. 

Written informed consent was obtained from all the study participants. The study protocols 

were approved by the ethics committees of the participating centers. The study was conducted in 

accordance with the principles of the Helsinki declaration.   

Lipidomic profiling 

Mass spectrometry-based lipid analysis of 2,181 participants was performed in three batches-353 

and 686 EUFAM participants in two batches and 1,142 FINRISK participants in third batch at 

Lipotype GmbH (Dresden, Germany) as detailed in Supplementary Data. Data were corrected for 

batch and drift effects. Lipid species detected in <80% of the samples in any of the batches and 

samples (N=64) with low lipid contents were excluded. A total of 141 lipid species from 13 lipid 

classes (Supplementary Table 2) detected consistently in three batches were included in further 

analyses. The total amounts of lipid classes were calculated by summing up respective lipid species. 

The measured concentrations of the lipid species and calculated class total were transformed to 

normal distribution by rank-based inverse normal transformation.  

Genotyping and imputation 

Genotyping for both EUFAM and FINRISK cohorts was performed using the HumanCoreExome 

BeadChip (Illumina Inc., San Diego, CA, USA). Genotype data underwent stringent quality control 

(QC) before imputation using an in-house QC pipeline (Supplementary Data). Imputation was 

performed using IMPUTE2,24 which used two population specific reference panels of 2,690 high 

coverage whole-genome and 5,093 high coverage whole exome sequence data. Variants with 

imputation info score <0.70 were filtered out. After QC on lipidomic profiles and imputed variants, 

all subsequent analyses included 2045 individuals and ~9.3 million variants with MAF >0.005 that 

were available in both cohorts.  
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Genotyping of the Finnish Biobank samples was performed using arrays from Illumina and 

Affymetrix (Santa Clara, CA, USA) and custom-designed Affymetrix array for the FinnGen project. 

Quality control and imputation were performed using the same pipeline as described above. 

Genotyping for the majority of the UK Biobank participants was done using the Affymetrix UK 

Biobank Axiom Array, while a subset of participants was genotyped using the Affymetrix UK 

BiLEVE Axiom Array. Details about the quality control and imputation of UK Biobank cohort are 

described earlier.25  

Heritability estimates and genetic correlations 

For heritability and genetic correlation estimation, rank-based inverse transformed measures of lipid 

species, computed separately for the EUFAM and FINRISK cohorts, were combined to increase 

statistical power. The residuals of transformed measures after regressing for age, sex, first ten 

principal components (PCs) of genetic population structure, lipid medication, hormone replacement 

therapy, thyroid condition and type 2 diabetes were used as phenotypes. A genetic relationship 

matrix (GRM) was generated using GCTA,26 after removing variants with missingness >10% and 

MAF <0.005. The generated GRM was then used to estimate heritability using variance component 

analysis and genetic correlations using bivariate linear mixed model as implemented in biMM.27 

The heritability estimates of lipid species in different groups were compared using Mann-Whitney 

U test. The phenotypic correlations based on the plasma levels between all the pairs of the lipid 

species and traditional lipid measures were calculated using Pearson’s correlation coefficient. The 

heatmaps and hierarchical clustering based on genetic and phenotypic correlations were generated 

using heatmap.2 in R.     

Lipidomics GWAS and meta-analysis 

We performed univariate association tests for 141 individual lipid species, 12 total lipid classes and 

4 traditional lipid measures (HDL-C, LDL-C, total cholesterol and triglycerides), in all batches to 

control for possible batch effects and combined the summary statistics by meta-analysis. The 
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association analyses for the EUFAM cohort were performed using linear mixed models including 

the above-mentioned covariates as fixed effects and kinship matrix as random effect as 

implemented in MMM.28 The kinship matrices for the GWAS analyses were computed separately 

for each chromosome to include the variants from the other chromosomes using directly genotyped 

variants with MAF >0.01 and missingness <2%. The FINRISK cohort was analyzed with linear 

regression model adjusting for age, sex, first ten PCs, lipid medication and diabetes using 

SNPTEST v2.5.29 Meta-analyses were performed using the inverse variance weighted method for 

fixed effects adjusted for genomic inflation factor in METAL.30 In addition, analyses adjusting for 

the traditional lipid measures (in addition to above-mentioned covariates) were also performed for 

the identified variants to determine the independent effect on lipid species.  

Test statistics were adjusted for λ values if >1.0 before meta-analyses. Genomic inflation 

factor (λ) ranged from 0.98-1.19 across the batches whereas the final λ values for meta-analysis 

ranged from 0.998 to 1.045 (Supplementary Table 3). Associations with P value <5.0×10-8 and 

consistent in direction of effect in all three batches were considered significant. Variants were 

designated as novel if not located within 1Mb of any previously reported variants for lipids (any of 

the traditional lipid measures and molecular lipid species); and as independent signal in known 

locus if located within 1 Mb but r2<0.20 with the previous lead variants and confirmed by 

conditional analysis. Variants with the strongest association in the identified lipid species loci was 

identified as the lead variants and were annotated to the nearest gene for the new loci. 

PheWAS 

We identified 95 disease phenotypes that have previously been linked to lipid levels including 

cardiometabolic, psychiatric and gastrointestinal disorders from the derived phenotypes in the 

Finnish Biobank. We manually mapped 44 of these 95 phenotypes to UK Biobank phenotypes 

(Supplementary Table 4). For the Finnish cohort, the associations between the 35 lead variants from 

the identified loci and these 44 phenotypes were obtained from the ongoing PheWAS as a part of 
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the FinnGen project. The associations were tested using saddle point approximation method 

adjusting for age, sex, and first 10 PCs as implemented in SPAtest R package.31 The association 

between these 44 phenotypes and 35 lead variants in UK Biobank were obtained from Zhou et al. 

that were tested using logistic mixed model in SAIGE with a saddle point approximation and 

adjusting for first four principal components, age and sex (https://www.leelabsg.org/resources).32 In 

addition, associations with obesity and body mass index (BMI) were also tested using logistic and 

linear regression models respectively with the same covariates as mentioned above, both for Finnish 

and UK Biobank cohorts. Individuals with BMI ≥30kg/m2 were categorized as obese. Meta-

analyses of both cohorts were performed using the inverse variance weighted method for fixed 

effects model in METAL. All the PheWAS associations with false discovery rate (FDR) <5% 

evaluated using the Benjamini-Hochberg method were considered significant. 

Variance explained  

To determine the variance explained by the known loci for traditional lipid measures, we included 

all the lead variants with MAF >0.005 in 250 genomic loci that have previously been associated 

with one or more of the four traditional lipid measures (Supplementary Table 5). Of the 636 

reported variants, 557 variants with MAF >0.005 (including six proxies) were available in our QC 

passed imputed genotype data. A genetic relationship matrix (GRM) based on these 557 variants 

was generated using GCTA that was used to determine the variance in plasma levels of all lipid 

species explained by the known variants using variance component analysis in biMM.  

 

Results 

Genetic contribution to lipidome 

SNP based heritability estimates ranged from 0.10 to 0.54 (Figure 2A, Supplementary Table 2), 

with considerable variation across lipid classes (Figure 2B), with similar trends as reported 

previously.33,34 Ceramides (CER) showed the greatest estimated heritability (median=0.30, 
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IQR=0.09) whereas phosphatidylinositols (PIs) showed the least heritability (median=0.19, 

IQR=0.045). Sphingolipids had higher heritability than glycerolipids ranging from 0.27 to 0.41 

(Figure 2B), which is similar to a previous study that reported higher heritability for sphingolipids 

ranging from 0.28 to 0.53 estimated based on pedigrees.33  

Lipids containing polyunsaturated fatty acids, particularly C20:4, C20:5 and C22:6, had 

significantly higher heritability compared to other lipid species (Figure 2C). For instance, 

PC(17:0;0-20:4;0) and LPC(22:6;0) had the highest heritability (>0.50) whereas PC(16:0;0-16:1;0) 

and PI(16:0;0-18:2;0) had the lowest heritability estimates (<0.12) (Supplementary Table 2). 

Moreover, longer, polyunsaturated lipids (those with four or more double bonds) had strong genetic 

correlations with each other than with other lipid species (Supplementary Figure 1, Supplementary 

Table 6). This can be seen in the hierarchical clustering based on genetic correlations that segregate 

TAG subspecies into two clusters based on carbon content and degree of unsaturation (Figure 2D). 

These patterns were not seen in phenotypic correlations that were estimated based on the plasma 

levels of lipid species (Supplementary Figure 2).  

We observed low phenotypic and genetic correlation between traditional lipids and 

molecular lipid species, except strong positive genetic correlations of triglycerides with TAG and 

DAG subspecies (average r=0.88) (Figure 3). However, triglycerides had low genetic correlation 

with other lipid species (average (abs) r= 0.26). HDL-C and LDL-C levels had low genetic and 

phenotypic correlations with most of the lipid species (Figure 3, Supplementary Table 6). This 

implies that genetic variants associated with traditional lipid measures would fail to capture the 

variations in plasma levels of many lipid subspecies. Consistently, all of the known lipid variants 

explained 2% to 21% of variances in plasma levels of various lipid species, with the least variance 

accounting for LPCs (Figure 3).  

It is to be noted that this sample size might not provide sufficient power for heritability 

estimations in unrelated samples. However, our study also included the family samples which 
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provides higher statistical power in heritability estimation than unrelated samples. Moreover, lipid 

species with genome-wide significant association had higher heritability estimates compared to the 

lipid species with no significant association (Supplementary Figure 3). 

Genetic architecture of lipidome 

We found 3,754 associations between 820 variants located within 35 genomic loci (1MB blocks) 

and 74 lipid species from 11 lipid classes at genome-wide significance level (P<5.0x10-8) 

(Supplementary Table 7). These included 37 new locus-lipid species pair associations (Figure 4). 

The identified loci included 3 loci for CEs, 6 loci for LPCs, 5 loci for LPEs, 4 loci for PCs, 3 for 

PC-Os, 2 loci for PEs, 3 loci for PE-O, 4 loci for PIs, 4 loci for SMs, 10 for TAGs and 2 loci for 

ceramides (Table 1, Figure 4). In line with our observation of higher heritability for lipids with 

C20:4, C20:5 or C22:6 acyl chains, we detected associations for 18 out of 21 lipids with these acyl 

chains. Moreover, 11 out of 35 identified loci were associated with at least one of the 

polyunsaturated lipids. The genome-wide association statistics for all lipid species are available on 

the web-based database (http://35.205.141.92) for mining and visualization. 

Among the 35 identified loci, 15 loci were located in genomic regions not previously 

reported for any lipid measure or related metabolite, and 9 loci were located near known loci for 

lipids but independent of any previously reported variant (Supplementary Table 8). Of these 24 new 

loci, 8 loci (ROCK1, PTPRN2, MAF, COL5A1, SYT1, DHRS12, TMEM86B and BLK) were located 

in or near genes that are biologically related to lipid/glucose metabolic pathways suggesting 

biological significance. The lead variants with the most significant SNP-lipid species associations at 

the identified loci are presented in Supplementary Table 8, with their genotype-phenotype 

relationships in Supplementary Figure 4. The strongest new association was at an intronic variant 

rs151223356 near ROCK1 with short acyl-chain LPC(14:0,0) (P=1.9x10-10). The SNP is located 

near ABHD3 locus which has previously been shown to associate with a phosphatidylcholine 

species PC(32:2;0),18 but the identified variant is independent of all previously reported variants 
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within 1 Mb of the region (r2<0.01 and Pcondtional=2.3x10-10). ROCK1 encodes for a serine/threonine 

kinase that plays key role in glucose metabolism and has previously been implicated in CVD and 

diabetes pathogenesis.35,36 

We also identified new locus-lipid species pair associations at previously reported lipid loci, 

revealing their specific associations. For example, at ABCG5/8, a previously known loci for total 

cholesterol, LDL-C and CE in LDL,11,16 we found a novel association of ABCG5/8 with CE(20:2;0) 

(P=3.9x10-10). At LPL, previously associated with plasma TG levels,11 our analysis revealed the 

strongest association of LPL variant with TAG(52:3;0). Similarly, at MBOAT7 and LIPC, we 

identified new and specific associations with PI(18:0;0-20:4;0) and PE(18:0;0-20:4;0) respectively. 

Moreover, we replicated previous associations of FADS2, SYNE2, LIPC, GLTPD2, LASS4 and 

MBOAT7,13-20 either with the same lipid species or the same lipid class.  

Lipid species associated loci and metabolic pathways 

Based on the patterns in the associations of the identified loci with various lipid species 

(Supplementary Figure 5), we propose mechanisms for their effects on lipid metabolism. With a 

few examples, we show how lipidomic profiles could help to further increase our understanding of 

lipid biology and gene functions as detailed below. The FADS2 rs28456-G was associated with 

increased levels of lipids with C20:3 acyl chain and decreased levels of lipids with C20:4, C20:5, 

and C22:6 acyl chains  (Supplementary Figure 5). This inverse relationship in lipids with different 

polyunsaturated fatty acids (PUFAs) could be explained by the inverse effect of rs28456-G on 

FADS1 and FADS2 expression [GTEx v7]. The rs28456-G increases FADS2 expression that might 

result in increased desaturation of linoleic acid (C18:2, n-6) and alpha-linolenic acid (C18:3, n-3) 

and hence increased dihomo-gamma-linolenic acid (C20:3, n-6)  (Figure 5). Interestingly, FADS2 

rs28456-G decreases FADS1 expression that might reduce delta 5 desaturation and subsequently 

resulting in decreased arachidonic acid (C20:4, n-5), eicosapentaenoic acid (C20:5, n-3), and 

docosahexaenoic acid (C22:6, n-3).   
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Furthermore, we found that APOA5 rs964184-C and LPL rs964184-T were associated with 

reduced levels of medium length TAGs (C50 to C56), with strongest associations with 

TAG(52:3;0). The striking similar patterns of associations of APOA5 rs964184-C and LPL 

rs11570891-T with TAG species suggest that both these variants might lead to more efficient 

hydrolysis of medium length TAGs (Figure 5). To test this, we determined the effect of LPL 

rs11570891-T on LPL enzymatic activity and relationship between LPL activity and TAG 

subspecies using post-heparin LPL measured in EUFAM cohort. We found that LPL rs11570891-T 

(an eQTL increasing LPL expression) was associated with the increased LPL activity which in turn 

was associated with TAG species with higher effect on medium length TAGs than other TAGs 

(Figure 5).  

SYNGR1 rs186680008-C showed stronger associations with decreased levels of lipid species 

with C20:3 acyl chain from different lipid classes including CEs, PCs and PCOs (Supplementary 

Figure 5). This suggests that SYNGR1 rs18680008-C might have role in negative regulation of 

either desaturation of linoleic acid (C18:2, n-6) or elongation of gamma linoleic acid (C18:3, n-6) 

which could lead to decreased levels of lipids with C20:3 acyl chain, presumably dihomo-gamma-

linolenic acid (DGLA; C20:3, n-6) (Figure 5). PTPRN2 rs10281741-G and MIR100HG 

rs10790495-G showed very similar patterns of associations with reduced levels of long 

polyunsaturated TAG species, suggesting their role in negative regulation of either elongation and 

desaturation of fatty acids or incorporation of long chain unsaturated fatty acids during TAG 

biosynthesis.   

Lipid species associated loci and disease risks 

PheWAS revealed associations of lead variants from six lipid species associated loci (APOA5, 

ABCG5/8, BLK, LPL, FADS2 and SPTLC3) with at least one of the clinical endpoints (FDR<5%) 

(Table 2, Supplementary Table 9). These included novel associations of variants at FADS2, BLK 

and SPTLC3 with various disease outcomes. FADS1-2-3 is a well-known lipid modifying locus, 
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however, like many other known lipid loci, its effects on CVD risk has been unclear. We found 

association of FADS2 rs28456-G with lower risk of phlebitis and thrombophlebitis.  

The PC(16:0;0-16:0;0) associated locus-BLK (rs1478898-A), which is an eQTL for BLK, 

showed association with decreased risk of obesity and hypertension, and increased risk of 

gallbladder disorders. In addition to its role in B-cell receptor signaling and B-cell development, 

BLK stimulates insulin synthesis and secretion in response to glucose and enhances the expression 

of several pancreatic beta-cell transcription factors.37 Consistent to its physiological roles, BLK has 

previously been implicated in autoimmune diseases such as systemic lupus erythematosus,38 

maturity-onset diabetes of the young (MODY),37 and hypertension,39 however its role in obesity and 

gallbladder disorder has not been described before.  

SPTLC3 rs364585-G (associated with reduced levels of ceramides) showed association with 

reduced risk of gallbladder disorders (cholelithiasis). SPTLC3 is a rate-limiting enzyme involved in 

ceramide biosynthesis. Inhibition of ceramides biosynthesis has been suggested to suppress the 

gallstones formation in animal model,40 however the relationship has not been explored in humans 

yet. Our results suggest that rs364585-G, which is an eQTL for SPTLC3 leading to reduced 

expression of SPTLC3, might modulate the risk of gallbladder disorders through its effect on 

ceramide biosynthesis. Altogether, our PheWAS results suggest potential disease susceptibility 

genes that warrant further investigation to validate and understand their role in disease outcomes. 

Lipidomics provide higher statistical power 

As intermediate phenotypes are known to provide more statistical power, we assessed whether the 

lipid species could help to detect genetic associations with greater power than traditional lipid 

measures using variants previously identified for traditional lipid measures (number of 

variants=557). We found that molecular lipid species have much stronger associations than 

traditional lipid measures with the same sample size, except for well-known APOE and CETP 

(Figure 6, Supplementary Table 10). The associations were several orders of magnitudes stronger 
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for the variants in or near genes involved in lipid metabolism such as FADS1-2-3, LIPC, ABCG5/8, 

SGPP1, SPTLC3. This shows that the lipidomics provides higher chances to identify lipid-

modulating variants, particularly the ones with direct role in lipid metabolism, with much smaller 

sample size than traditional lipid measures. 

 

Discussion 

Our study integrates lipidome, genome and phenome to reveal detailed description of genetic 

regulation of lipid metabolism and its effect on disease risk. To the best of our knowledge, this is 

the first large-scale study of genetics of lipidomics presenting the SNP based heritability, genetic 

sharing of the lipid species, and new genomic loci associated with one or several lipid species and 

disease risks in humans. The detailed profiling also provided clues to probable molecular 

mechanisms for genetic variants both at new and previously reported loci.  

The results presented here allow us to draw several conclusions. First, despite the influence 

of dietary intake on the circulatory levels of lipids, plasma levels of lipid species are found to be 

heritable, suggesting considerable role of endogenous regulation in lipid metabolism. Importantly, 

genetic mechanisms seem not to regulate all lipid species in a lipid class in the same way, as also 

observed in recent mice lipidomics studies.41,42 Longer and more unsaturated lipid species from 

different lipid classes clearly display a greater genetic sharing. These observations are consistent 

with a previous study based on family pedigree.33 Our finding is important in the light of the 

proposed role of lipids containing PUFAs in CVD, diabetes, and neurological disorders.43-45 

Identification of genetic factors regulating these particular lipids is important for understanding the 

subtleties of lipid metabolism and devising disease preventive strategies; including dietary 

interventions for these common complex diseases that cause an enormous public health burden 

globally. Our study provides multiple leads in this direction by identifying 11 genomic loci 

(KLHL17, APOA1, CD33, SHTN1, FADS2, LIPC, MBOAT7, MIR100HG, PTPRN1, and 
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TMEM86B) associated with long, polyunsaturated lipids. Of these, FADS2, APOA1, and LPL 

variants were also associated with cardiovascular related phenotypes in our PheWAS analysis 

(Figure 5). We discuss below how identification of genetic variants in these lipid species associated 

loci has helped us to provide new insights to their role in lipid metabolism.   

Second, we identified genetic variants associated with 74 lipid species from 11 lipid classes. 

Individual lipid species from several lipid classes including CERs, CEs, TAGs, and PCs have been 

shown to predict risk for CVD and diabetes.4-10 This knowledge can directly fuel studies on disease 

markers or drug target discovery. For example, Cer(d18:1/24:0) is recently reported to be associated 

with increased risk of CVD events.46 We have identified a variant associated with Cer(42:1;2) (this 

species presumably includes Cer(d18:1/24:0) molecular species) near ZNF385D. The ZNF385D 

rs13070110-C was associated with increased levels of Cer(42:1;2). We also observed nominal 

association of rs13070110-C with increased risk of arterial and venous thrombosis (Supplementary 

Table 9). CEs have also been reported to modulate the risk of CVD events.4,8 Our study revealed 

three loci associated with CEs, including two novel loci-ABCG5/8 and SYNGR1. The rs76866386-C 

at ABCG5/8, which codes for ABC sterol transporters G5 and G8, has previously been associated 

with TC, LDL-C and CEs in LDL,11,16 however we identified a specific association of rs76866386-

C with reduced level of cholesteryl ester species CE(20:2;0). CE(20:2;0) has been shown to be 

positively associated with high LDL-C,47 suggesting that the previously observed associations of 

rs76866386 with LDL-C and CE in LDL may have been contributed by the specific lipid species 

CE(20:2;0).  

Third, our genetic associations give several clues to new biology, both in new and known 

lipid loci. With a few examples, we show here how detailed profiling of molecular lipid species can 

help us understand the effects of genetic variants or genes in specific metabolic pathways at 

molecular level. Genetic variants at FADS gene cluster have been consistently reported to be 

associated with omega-3 and omega-6 fatty acids levels with inverse effects on different PUFAs, 
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however, its mechanism has not been fully deciphered. Linoleic acid and alpha-linolenic acid are 

essential fatty acids and substrates for delta-6 desaturation by FADS2.48 This desaturation step 

generates gamma-linolenic acid and stearidonic acid that by elongation yields dihomo-gamma-

linolenic acid and  eicosatetraenoic acid (Figure 5). Further, delta-5 desaturation of dihomo-gamma-

linolenic acid by FADS1 generates arachidonic acid and eicosapentaenoic acid. Subsequent 

elongations and desaturations generate docosatetraenoic acid, docosapentaenoic acid, and 

docosahexaenoic acid. Thus, as depicted in Figure 5, the inverse efffects of FADS2 rs28456-G on 

FADS2 and FADS1 expressions explain its effects on different PUFAs with opposite directions.  

Our integrated approach provided first clue to the probable variable efficiency of LPL and 

APOA5 in lipolysis of TAGs. LPL codes for lipoprotein lipase that is the master lipolytic factor of 

TAGs in TAG-enriched chylomicrons and VLDL particles, whereas APOA5 codes for the activator 

that stimulates LPL-mediated lipolysis of TAG-rich lipoproteins and their remnants. Our results 

suggest that LPL and APOA5 might have varied effects on different TAG species with more 

efficient lipolysis of medium length TAGs (Figure 5). It is interesting that both LPL and APOA5 

genetic variants had very similar association patterns with hypercholesterolemia and ischemic heart 

diseases also.  

Similarly, lipidomic profiles helped to understand the physiological roles of variants in the 

newly identified genes. The patterns of associations of PTPRN2 rs10281741-G and MIR100HG 

rs10790495-G with reduced levels of long, polyunsaturated TAG species, suggested their probable 

role in lipid metabolism. PTPRN2 codes for protein tyrosine phosphatase receptor N2 with a 

possible role in pancreatic insulin secretion and development of diabetes mellitus.49 MIR100HG 

codes for long non-coding RNAs that act as regulators of cell proliferation.50 The MIR100HG 

rs10790495 is an eQTL for the heat shock protein HSPA8 that also has a role in cell proliferation.51 

However, it is not known if PTPRN2 and MIR100HG or HSPA8 have any role in lipid metabolism. 

Our results suggest that these variants might have role in negative regulation of either elongation 
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and desaturation of fatty acids or incorporation of long chain unsaturated fatty acids during TAG 

biosynthesis.   

Fourth, our results point to probable risk/protective variants for diseases, highlighting the 

potential of using detailed lipidomics profiles in disease gene mapping. Two lipid species associated 

loci-BLK and SPTLC3 were found to be associated with cholelithiasis (gallstones). BLK was also 

identified as a new susceptibility locus for obesity in the present study. Cholelithiasis is one of the 

most prevalent gastrointestinal diseases with up to 15% prevalence in adult populations. Although 

up to two thirds of patients do not suffer any symptoms, cholelithiasis is the most significant risk 

factor for acute cholecystitis.52 Risk factors of cholelithiasis include obesity, hyperlipidemia and 

type 2 diabetes. Also, the pathogenesis of cholelithiasis is now recognized to be influenced by the 

immune system.53 Owing to its role in immune response, insulin synthesis and insulin secretion, 

BLK seems to be a potential risk modifying gene for obesity and cholelithiasis. Relationship 

between ceramides and cholelithiasis has also been suggested previously,40 and given the role of 

SPTLC3 in ceramide biosynthesis, the SPTLC3 variant might influence the risk for gallstones. 

However, the associations of these variants with disease risks warrant further investigation. 

Finally, we show that genetic investigation utilizing only those lipid measures that are 

traditionally used in routine clinical work would fail to capture the association with molecular lipid 

species which are potential independent disease risk factors. For example, LPCs and PCs have 

previously been associated with incident coronary heart disease risk.4-6 But we show that these lipid 

measures have very low phenotypic and genotypic correlations with traditional lipid measures and 

known variants for traditional lipid measures explain only a small percentage of variance in their 

plasma levels. This again highlights the potential of lipidomic profiles in disease gene 

identification. We also demonstrate that individual lipid species have stronger statistical power to 

detect the associations compared to the traditional lipid measures at all known lead variants using 

the same dataset. These findings suggest that lipidomic profiles capture information beyond 
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standard lipid measures and provide opportunity to identify additional genetic variants influencing 

lipid metabolism. 

Our study had some potential limitations. To the best of our knowledge, the present study is 

the largest genetic screen of lipidomic variation, but larger cohorts are needed to achieve full 

understanding of the genetic regulation of detailed lipid metabolism. The EUFAM cohort samples 

were from fasting state whereas the FINRISK cohort samples were semi-fasting. This does not 

seem to have substantial effect on lipidomic profiles as we demonstrated similar lipidomic profiles 

for dyslipidemias from the EUFAM and FINRISK cohorts.47 Moreover, the recent guidelines from 

the European Atherosclerosis Society and European Federation of Clinical Chemistry and 

Laboratory Medicine recommends non-fasting blood samples for assessment of plasma lipid 

profiles.54 The UK Biobank cohort is reported to have “healthy volunteer” effect,55 which may 

affect the PheWAS results. However, given the large sample size, the selection bias is unlikely to 

have substantial effect on genetic case-control association analyses. Furthermore, lipidomic profiles 

were measured in whole plasma comprising of all lipoprotein classes and particle sizes, which does 

not provide information at the level of individual lipoprotein subclasses and limits our ability to 

gain detailed mechanistic insights. We also excluded poorly detected lipid species from all the 

analyses to ensure high data quality that narrowed the spectrum of lipidomic profiles. Further 

advances in lipidomics platforms might help to capture more comprehensive and complete 

lipidomic profiles, including the position of fatty acyl chains in glycerol backbone of TAGs and 

glycerophospholipids and detection of sphingosine-1-P species and several other species, that would 

allow to overcome these limitations.  

In conclusion, our study demonstrates that lipidomics enable deeper insights to the genetic 

regulation of lipid metabolism than clinically used lipid measures, which in turn might help guide 

future biomarker and drug target discovery and disease prevention.   
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Table 1: Genomic loci with molecular lipid species at genome-wide significance. 

 

The strongest association between SNP and lipid species in the genome-wide significant loci are 

presented. The SNPs are annotated to the nearest gene if identified in this study (*) or to previously 

known gene if in linkage disequilibrium with the known loci for any lipid measure. The effect sizes 

presented are change in standard deviation of the lipid species per minor allele. 

  

SNP Position Gene Change MA AA MAF Lipid Species Effect SE P 

rs201385366 1:897866 KLHL17  Intronic T C 0.019 LPE(22:6;0) -0.87 0.16 3.6x10-8 

rs187163948 1:14399146 KAZN ∗ Intronic A G 0.011 TAG(53:3;0) 0.95 0.17 3.5x10-8 

rs76866386 2:44075483 ABCG5/8 Intronic C T 0.077 CE(20:2;0) -0.39 0.06 3.9x10-10 

rs58029241 2:98701245 VWA3B ∗ Intergenic A T 0.062 TAG(50:1;0) 0.37 0.07 1.9x10-8 

rs13070110 3:21393248 ZNF385D ∗ Intergenic C T 0.085 Total CER 0.33 0.06 3.9x10-9 

rs10212439 3:142655053 PAQR9  Intergenic C T 0.398 PI(18:0;0-18:1;0) 0.18 0.03 3.1x10-8 

rs13151374 4:8122221 ABLIM2 ∗ Intronic A G 0.153 TAG(50:1;0) 0.25 0.04 3.7x10-8 

rs186689484 4:97033701 PDHA2 ∗ Intergenic A G 0.051 TAG(52:4;0) -0.40 0.07 4.2x10-8 

rs543895501 6:74120350 DDX43 ∗ Intronic T C 0.013 Total LPC 0.87 0.16 2.9x10-8 

rs4896307 6:138297840 TNFAIP3 ∗ Intergenic T C 0.216 PCO(16:1;0-16:0;0) -0.23 0.04 3.3x10-8 

rs534693155 7:101081274 COL26A1 ∗ Intronic G A 0.010 LPC(16:1;0) 1.24 0.23 3.9x10-8 

rs10281741 7:157793122 PTPRN2 ∗ Intronic C G 0.225 TAG(54:6;0) 0.21 0.04 2.2x10-8 

rs1478898 8:11395079 BLK ∗ Intronic A G 0.440 PC(16:0;0-16:0;0) 0.17 0.03 2.5x10-8 

rs11570891 8:19822810 LPL Intronic T C 0.075 TAG(52:3;0) -0.33 0.06 2.9x10-8 

rs146717710 9:137549865 COL5A1 ∗ Intronic T C 0.011 PC(16:0;0-16:1;0) -1.03 0.19 2.8x10-8 

rs140645847 10:118863255 SHTN1 ∗ Intronic T G 0.101 LPE(20:4;0) -0.32 0.06 3.3x10-8 

rs28456 11:61589481 FADS2 Intronic G A 0.405 CE(20:4;0) -0.59 0.03 1.1x10-77 

rs964184 11:116648917 APOA5 Intergenic C G 0.145 TAG(52:3;0) -0.258 0.045 9.5x10-9 

rs10790495 11:122198706 MIR100HG ∗ Intronic G A 0.410 TAG(56:4;0) -0.20 0.04 2.1x10-8 

rs117388573 12:78980665 SYT1 ∗ Intergenic G A 0.020 LPC(14:0;0) -0.77 0.13 9.8x10-10 

rs512948 13:52374489 DHRS12 ∗ Intronic C T 0.225 LPE(18:2;0) -0.22 0.04 1.4x10-8 

rs8008070 14:64233720 SYNE2 Intronic T A 0.133 SM(32:1;2) 0.48 0.05 2.9x10-26 

rs3902951 14:69789755 GALNT16 Intronic G T 0.361 PEO(18:1;0-18:2;0) 0.19 0.03 1.9x10-8 

rs35861938 15:45637343 GATM ∗ Intergenic C T 0.398 PCO(18:2;0-18:1;0) 0.18 0.03 2.7x10-8 

rs261290 15:58678720 LIPC Intronic C T 0.383 PE(18:0;0-20:4;0) -0.37 0.03 4.0x10-31 

rs35221977 16:79563576 MAF ∗  Intronic C G 0.054 LPC(16:0;0) -0.46 0.08 1.3x10-9 

rs79202680 17:4692640 GLTPD2 Intronic T G 0.032 SM(34:0;2) -0.85 0.09 3.4x10-22 

rs143203352 17:77293933 RBFOX3 ∗ Intronic C T 0.024 PC(16:0;0-18:1;0) 0.60 0.11 3.2x10-8 

rs151223356 18:18627427 ROCK1 ∗ Intronic C A 0.013 LPC(14:0;0) 0.97 0.15 1.9x10-10 

rs7246617 19:8272163 LASS4 Intergenic A G 0.402 SM(38:2;2) 0.25 0.03 2.5x10-15 

rs2455069 19:51728641 CD33 ∗ Missense G A 0.383 TAG(52:5;0) -0.19 0.03 9.3x10-9 

rs8736 19:54677189 MBOAT7 UTR T C 0.388 PI(18:0;0-20:4;0) -0.38 0.03 9.8x10-28 

rs4374298 19:55738746 TMEM86B ∗ Synonymous A G 0.166 PEO(16:1;0-20:4;0) -0.25 0.04 2.3x10-8 

rs364585 20:12962718 SPTLC3 Intergenic G A 0.330 Total CER -0.20 0.03 9.1x10-10 

rs186680008 22:39754367 SYNGR1 ∗ Intronic C A 0.015 CE(20:3;0) -0.81 0.15 2.6x10-8 
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Table 2: Association of lipid species associated loci with disease outcomes 

Gene SNP Phenotype 
Effect 

allele 

Other 

allele 

Effect on 

PhenomeΨ 

P value 
Effect on  

lipidome # 

Effect on 

transcriptome* 

ABCG5/8 rs76866386 Cholelithiasis C T 2.06 (2.01-2.10) 9.8x10-238 CE(20:2;0)   - ABCG5 + (spleen) 

ABCG5/8 rs76866386 Acute pancreatitis C T 1.46 (1.25-1.76) 2.2x10-10 CE(20:2;0)   - ABCG5 + (spleen) 

ABCG5/8 rs76866386 Hypercholesterolemia C T 0.90 (0.87-0.93) 1.4x10-9 CE(20:2;0)   - ABCG5 + (spleen) 

ABCG5/8 rs76866386 Coronary artherosclerosis C T 0.92 (0.89-0.96) 1.1x10-4 CE(20:2;0)   - ABCG5 + (spleen) 

BLK rs1478898 Hypertension A G 0.96 (0.95-0.98) 2.1x10-9 PC(16:0;0-16:0;0)   + BLK + (fibroblasts) 

BLK rs1478898 Obesity A G 0.97 (0.96-0.98) 5.6x10-8 PC(16:0;0-16:0;0)   + BLK + (fibroblasts) 

BLK rs1478898 Cholelithiasis  A G 1.06 (1.03-1.08) 1.9x10-6 PC(16:0;0-16:0;0)   + BLK + (fibroblasts) 

LPL rs11570891 Hypercholesterolemia T C 0.95 (0.92-0.97) 1.0x10-4 TAG(52:3;0)   - LPL + (nerve-tibial) 

LPL rs11570891 Ischemic heart diseases T C 0.95 (0.92-0.98) 1.1x10-4 TAG(52:3;0)   - LPL + (nerve-tibial) 

LPL rs11570891 Myocardial infarction T C 0.93 (0.89-0.97) 5.3x10-4 TAG(52:3;0)   - LPL + (nerve-tibial) 

FADS2 rs28456 Cholelithiasis  G A 1.08 (1.05-1.10) 5.7x10-9 CE(20:4;0)   - 
FADS2 + (blood) 

FADS1 - (pancreas) 

FADS2 rs28456 
Phlebitis and 

thrombophlebitis 

G A 0.92 (0.88-0.96) 3.9x10-4 CE(20:4;0)   - 
FADS2 + (blood) 

FADS1 - (pancreas) 

APOA5 rs964184 Hypercholesterolemia C G 0.86 (0.84-0.89) 1.5x10-32 TAG(52:3;0)   - 
 

APOA5 rs964184 Hypertension C G 0.95 (0.93-0.97) 7.2x10-8 TAG(52:3;0)   - 
 

APOA5 rs964184 Coronary artherosclerosis C G 0.94 (0.91-0.97) 1.3x10-4 TAG(52:3;0)   -  

SPTLC3 rs364585 Cholelithiasis  G A 0.95 (0.93-0.98) 1.2x10-4 Total CER   - SPTLC3 - (liver) 

 

Only the associations with consistent directions of effects in both the Finnish and UK Biobanks 

with FDR <0.05 are presented. Ψ The effects are odds ratio (95% Confidence interval) with respect 

to minor allele. #The most strongly associated lipid species for the associated genomic loci is 

provided as presented in Table 1. *Data source: GTEx database V7. The + and - signs indicate the 

increase and decrease in lipid species/gene expression for the effect allele. 
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Figure Legends 
 
 

Figure 1: Genetics of human plasma lipidome. The figure illustrates the study design and key 

findings of the study.  

 

Figure 2: Heritability of lipidomic profiles and genetic correlations among the lipid species. 

(A) Histogram and kernel density curve showing the distribution of heritability estimates across all 

the lipid species. (B) Boxplot showing the medians and ranges of heritability estimates in each lipid 

class. (C) Boxplot showing comparison of the median heritability estimates of lipid species 

containing C20:4, C20:5 and C22:6 acyl chains and all others. (D) Hierarchical clustering of lipid 

species based on genetic correlations showing genetic sharing among lipid species. Lipids 

containing polyunsaturated fatty acids C20:5, C20:4, and C22:6 are highlighted with black bars. 

CER=Ceramide, DAG=Diacylglyceride, LPC=Lysophosphatidylcholine, 

LPE=Lysophosphatidylethanolamine, PC=Phosphatidylcholine, PCO=Phosphatidylcholine-ether, 

PE=Phosphatidylethanolamine, PEO=Phosphatidylethanolamine-ether, PI=Phosphatidylinositol, 

CE=Cholesteryl ester, SM=Sphingomyelin, ST=Sterol, TAG=Triacyglycerol.  

 
 
Figure 3: Lipidomic profiles capture information beyond traditional lipid measures.  The 

genetic and phenotypic correlations between traditional lipid measures and molecular lipid species 

are shown in lower panel. The bar plot in the upper panel shows the heritability estimates of each 

lipid species (red bars) and the variance explained by all the known loci together (green bars). The 

lipid species are ordered as in lower panel.  

 

Figure 4: Genetic architecture of lipidome. (A) Manhattan plot showing associations for all 141 

lipid species. Only the associations with P<1.0x10-4 and consistent directions in all three batches are 

plotted. Y-axis is truncated for better representation of the data. The dotted line represents the 

threshold for genome-wide significant associations at P<5.0x10-8. (B) Genome-wide significant 

associations between the identified lipid species associated loci and lipid species showing effect of 

the loci on lipidome. The associations presented with blue dots are novel whereas previously 

reported associations are presented in red dots. Novel hits with P<5.0x10-8 are shown as red dots, 

new independent hits in previously reported loci are presented as blue dots and hits in previously 

known loci are presented as black dots.  
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Figure 5: Patterns in associations and proposed mechanisms for the effect of the selected lead 

variants from lipid species associated loci on lipid metabolism and clinical outcomes. (A) P 

values for associations of LPL and APOA5 variants with TAGs showing patterns in associations. 

The data points are color coded by the direction of effect on lipid species-increased level (red), 

decreased level (blue) and inconsistent direction across the cohorts (grey). (B) Association of LPL 

activity with TAGs. The change (Beta ±SE) in plasma levels of different TAGs with per increase in 

standard deviation of LPL activity (upper panel) and their respective P values (lower panel) in 978 

individuals are plotted. (C) Association of LPL variant rs11570891 with LPL activity. Plotted are 

the measured LPL activity after 15mins of heparin load for 626 individuals with different 

genotypes. (D) Based on the patterns of the association of lipid species associated loci with different 

lipid species, we propose that: (1) LPL rs11570891-T and APOA5 rs964184-C might result in more 

efficient hydrolysis of medium length TAGs which might results in reduced CVD risk (2) FADS2 

rs28456-G have observed effect on PUFA metabolism (shown by red colored + and – signs) 

through its inverse effect on FADS2 and FADS1 expressions (2) SYNGR1 rs18680008-C might have 

role in negative regulation of either desaturation of linoleic acid (C18:2,n-6) or elongation of 

gamma linoleic acid (C18:3,n-6) which could lead to decreased levels of lipids with C20:3 (blue 

color). (4) PTPRN2 rs10281741-G and MIR100HG rs10790495-G, which have very similar patterns 

of association with reduced level of long chain polyunsaturated TAG species, might have role in 

negative regulation of either elongation and desaturation of fatty acids or incorporation of long 

chain unsaturated fatty acids in glycerol backbone during TAG biosynthesis (purple color). The + 

and - signs indicate increase or decrease in the level of lipid species or risk of disease respectively 

as observed in our study, with different colors for different variant. 

 

Figure 6: Association of known variants for traditional lipids with lipid species and traditional 

lipid measures. The P values for the associations of the lead SNPs (557 SNPs available in our 

dataset) identified through different genome-wide or exome-wide studies of traditional lipid 

measures (HDL-C, LDL-C, TG, TC) with lipid species (upper panel) and traditional lipid measures 

(lower panel) are plotted. The SNPs on the x-axis are serially arranged based on their chromosomal 

positions and as listed in the Supplementary Table 9. The points on the plots are color coded by the 

lipid classes in upper panel and traditional lipid measure in lower panel.  
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