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Abstract 

Introduction 

Numerous vancomycin population pharmacokinetic (PK) models of neonates have been 

published. We aimed to comparatively evaluate a set of these models by quantifying their 

model-based and Bayesian concentration prediction performances using an external 

retrospective dataset, and estimate their attainment rates in predefined therapeutic target 

ranges. 

Methods 

Implementations of 12 published PK models were added in the Bayesian dose optimisation 

tool, DosOpt. Model based concentration predictions informed by variable number of 

individual concentrations were evaluated using multiple error metrics. A simulation study 

assessed the probabilities of target attainment (PTA) in trough concentration target ranges 10–

15 mg/L and 10–20 mg/L.  

Results 

Normalized prediction distribution error analysis revealed external validation dataset 

discordances (global P < 0.05) with all population PK models. Inclusion of a single 

concentration improved both precision and accuracy. The model by Marques-Minana et al. 

(2010) attained 68% of predictions within 30% of true concentrations. Absolute percentage 

errors of most models were within 20-30%. Mean PTA with Zhao et al. (2013) was 40.4% 

[coefficient-of-variation (CV) 0.5%] and 62.9% (CV 0.4%) within 10–15 mg/L and 10–20 

mg/L, respectively.  

Conclusion 

Predictive performances varied widely between models. Population based predictions were 

discordant with external validation dataset but Bayesian modelling with individual 
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concentrations improved both precision and accuracy. Current vancomycin PK models 

achieve relatively low attainment of commonly recommended therapeutic target ranges. 
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Introduction 

For several decades, vancomycin has been one of the most widely used antibiotics in neonatal 

intensive care unit [1]. Therapeutic drug monitoring (TDM) is recommended due to narrow 

therapeutic window, especially in special patient populations like neonates, severely or 

critically ill etc. [2,3]. However, despite some agreement on optimal vancomycin 

pharmacodynamic (PD) indices and target values [4], there is little consensus on TDM based 

dose adjustment strategies that effectively account for high inter-individual variability [5]. 

The area under the curve (AUC)/ minimum inhibitory concentration (MIC) of >400 has been 

suggested as the best predictor of vancomycin efficacy in adults with MRSA infection [2]. 

However, specific software for AUC calculation as well as MIC values may not be readily 

available in many hospitals. Also, resulting AUC estimates are often inconsistent due to 

differences in choices of time-concentration curve fitting model, sampling times and 

estimation method [6,7]. Therapeutic considerations and relative ease of trough concentration 

(Ctrough) measurements make it a common proxy for therapeutic vancomycin targeting [8–10]. 

Ctrough of 10 mg/L has been demonstrated as predictive and sufficient to achieve AUC>400 

with high probability in paediatric populations with intermittent infusion [11–15].  

A large number of population models have attempted elucidating vancomycin 

pharmacokinetic (PK) properties in neonates, and have applied a wide range of different 

structural models, covariates and methodological approaches in development [11,16–26]. 

These models mostly apply internal checks while only a small subset has been externally 

validated [27–29]. Such neglect causes prediction biases in external populations, as 

demonstrated by Zhao et al. [30]. Therefore, external assessments of model generalizability 

are essential for successful model portability and use in TDM applications. 
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Development of computational methods has introduced novel precision dosing methods to the 

TDM toolset [31,32]. Simple population-based empiric dose calculators can attain higher 

concentration prediction accuracy with Bayesian approaches that combine individual 

concentration measurements with population models [32,33]. Consequently, several recent 

software apply Bayesian methods for TDM dose optimisation including BestDose, TDMx, 

and DosOpt [34–36]. For example, our developed DosOpt (https://www.biit.cs.ut.ee/DosOpt) 

uses timed patient concentrations combined with population PK data to generate individual 

estimates, time-concentration curve simulations, and estimations of attainment probability for 

selected PK/PD target ranges.  

Bayesian TDM tools require estimates of population PK that are often derived from published 

models. Thus, comparative model evaluations can help guide the selection of PK models for 

TDM tools by elucidating model prediction performance dynamics. Such evaluations that 

include Bayesian diagnostics, by accounting for kinetics re-adjustments with individual 

concentrations, have so far been performed for tacrolimus and cyclosporine but are still 

missing for most other drugs, including vancomycin [37,38]. 

We aimed to externally evaluate published neonatal vancomycin PK models to identify 

suitable prior population PK estimates for Bayesian vancomycin TDM. For that, we first 

assessed between- and within model predictive performances, while also considering re-

adjustment to new patient observations. Next, we estimated vancomycin trough concentration 

attainment rates in therapeutic ranges to assess practical model utility. 

 

Methods 

Vancomycin PK models 

Vancomycin PK models were included based on following criteria: (a) use of population-

based, non-linear mixed effects PK modelling, (b) detailed characterisation of model 
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structure, its compartments, and provided estimates of fixed, residual, and random effects, and 

(c) the average postnatal age (PNA) of the population less than 4 months.  

To identify eligible models, we conducted a PubMed search by using the terms, “vancomycin 

AND (infant OR paediatric OR neonate) AND pharmacokinetic AND (model OR review)” 

until October 2017. This primary search was additionally filtered for studies published in 

English and involving human species. Identified articles were filtered for evidence of fitted 

PK models in neonatal populations. Models were further checked for availability of reported 

estimates, model duplications and PNA. Review articles of PK models were also identified. 

 

Extrenal validation dataset 

The external validation dataset consisted of all patients who were admitted to the paediatric 

intensive care unit of Tartu University Hospital, received vancomycin, had PNA < 90 days 

and had at least one vancomycin concentration measurement collected for TDM between 1 

January 2010 and 31 December 2015, as described previously [34]. TDM samples collected 

up to 2-hours before the next dose were denoted as Ctrough and those collected 50-70 minutes 

after commencement of infusion were classified as peak measurements (Cpeak). Patient cases 

were handled as multiple individual episodes if at least a one-week gap occurred between two 

courses of vancomycin treatment. The following parameters were collected from hospital 

records: gestational age (GA), PNA, postmenstrual age (PMA), birth weight (BW), current 

weight (CW), serum creatinine measurement according to the Jaffe kinetic method 

standardized by isotope dilution mass spectrometry, use of ibuprofen or indomethacin, 

inotropes, and gentamicin, and respiratory support. Vancomycin was dosed according to 

Neofax [39] and given via a 1-hour infusion. Required dose adjustments were made at the 

discretion of the treating physician. Vancomycin concentrations were measured using a 

fluorescence polarization immunoassay (FPIA) according to the manufacturer’s instructions 
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(Cobas Integra 400/800 Analyzer, Roche, Mannheim, Germany). The average vancomycin 

assay coefficient of variation was 3.5% and the lower limit of quantification was 0.74 mg/L.  

The Ethics Committee of the University of Tartu approved the study in Protocol No. 256/T-

23. This study was a retrospective analysis with anonymized data so informed consent was 

not required. 

 

Evaluation framework 

All of the external evaluation operations were performed by using Bayesian TDM software 

DosOpt [34]. Eligible vancomycin PK models were implemented into DosOpt and made 

available at https://biit.cs.ut.ee/DosOpt. Other computations were performed with R (version 

3.3.3) [40]. 

 

Population model diagnostics 

We first evaluated the predictive diagnostics of population models using normalized 

prediction distribution error (NPDE) approach implemented in R package npde (version 2.0). 

A model was concordant with data when prediction errors followed a standardized Gaussian 

distribution. Simulation based visual predictive checks were not informative due to highly 

variable individually adjusted dosing schedules, sampling times and intervals [41]. 

We then tested if inclusion of individual concentrations improves population model fits. For 

accuracy, we estimated the model-wise individual mean prediction errors (MPE) as 
���

�
�

∑ ��� � ��� ��
��

� . Here, n is number of concentrations measured for an individual, y is the 

observed and f the predicted concentration value. For precision, we used mean absolute 

prediction errors (MAPE), 
���

�
� ∑ 	��� � ��� ��

� 	�
� . Concentration predictions were derived 

from the median of time-concentration curves simulated from 1000 posterior sets of PK 
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parameters estimated with DosOpt, and were derived firstly for base population model 

predictions and secondly for Bayesian estimates of base models combined with full set of 

individual concentration measurements collected over the course of individual treatments. We 

also computed a priori and a posteriori adjusted-R2 between observed and predicted data to 

estimate the proportion and the magnitude of explained variability induced by inclusion of 

individual concentrations. 

 

Bayesian diagnostics 

Next, we quantified predictive performances in groups of 0, 1 or 2 individual concentrations 

included in PK estimation. We used the median of simulated time-concentration curves to 

predict the next available timed concentration not included in modelling. As such, prediction 

accuracy was separately evaluated for individual cases with at least 1, 2 or >2 available 

concentrations.  Accuracy for the ith individual was evaluated in terms of prediction errors 

(PE), ��� � ��� ��
� , absolute errors (AE) as, |��� � ���|, and absolute percentage errors (APE) 

as 	��� � ��� ��
� 	.  Endpoints F20 and F30 denote the percentage of individual PEs within 

±20% and ±30%, respectively.  

 

Probability of target attainment simulations 

Finally, DosOpt was used to estimate the probabilities of achieving therapeutically desired 

target Ctrough ranges in a Bayesian setup given a prior PK model, individual dosing history and 

variable number of concentrations guiding kinetics estimation. 

DosOpt optimization searched for a dose that generated time-concentration curves which 

attain the target Ctrough window with highest probability. We devised an optimization scenario 

to find a dose for 1-hour infusion that would achieve the maximal PTA at the trough 
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concentration, 8-hours after the start of infusion, in target Ctrough ranges of 10–15 mg/L and 

10–20 mg/L. The dose administration was simulated to start from steady-state concentration 

of 10 mg/L 

Variance of simulated PK profiles is dependent on the variability of model between-subject 

parameters and residual model parameters, and the extent of shrinkage in kinetics estimation 

with individual data. As such, narrow targets would theoretically be better attained with 

models of low variability even if systematically biased. To remove that source of bias, we 

adjusted our concentration predictions with simulated values of expected percentage errors. 

First, we collected retrospectively observed mean percentage errors as described in 

Population model diagnostics. These were computed for each PK model with 0, 1 and 2 

modeled concentrations that include individuals with at least 1, 2 or >2 available 

concentrations, respectively. Corresponding distribution parameters were estimated by fitting 

the values with a log-normal distribution from which 1,000 values were simulated. 

Beforehand, distributional assumptions were checked with Kolmogorov-Smirnov test. 

Therefore, simulated concentrations were scaled with model-specific log-normally distributed 

values that reflect expected biases in predictions. Adjustment of DosOpt concentration 

simulations by PE was performed according to the rearrangement of the prediction error 

equation: ��� �  ����� �1 � ������ , where obsi is the adjusted concentration, predi is the 

DosOpt simulated concentration, and MPEi is a simulated value from the distribution fit. The 

estimate for PTA is calculated as the proportion of adjusted concentration simulations as 

follows: ��� �  ��� 

�
� ∑ ��

�  ��� � min �� �!��" #!�� & ��� % max �� �!��" #!��], 

with targetRange being the therapeutic target range.  

 

Results 
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External validation dataset 

External validation dataset consisted of 121 patients with 149 treatment episodes. A total of 

309 time-concentration points were obtained. Patient characteristics together with treatment 

data are presented in Table 1A and Table 1B. There was a total of 149, 84 (56.4%), and 38 

(25.5%) patient treatment episodes that had at least 1, 2, and >2 vancomycin time-

concentration points available, respectively. One sample was a Cpeak (0.3% of total), 291 were 

denoted as Ctrough (94% of total) and the remaining were in-between.  

 

Vancomycin PK models 

Our initial search identified 96 publications. A manual review of the abstracts for these 

publications (performed by RK and TT) identified 24 individual studies with PK model 

specifications. Further filtering identified nine PK models that satisfied the inclusion criteria 

for original research articles (Fig. 1) [11,18–21,23–26]. Three additional models [16,17,22] 

were identified from review articles by Zhao et al. and Marsot et al. [30,42]. Characteristics 

of the models and their study populations are summarized in Electronic Supplementary Table 

1.  

There were several issues and ramifications regarding the models selected. First, we selected 

the independent vancomycin reference model and not the amikacin covariate model from De 

Cock et al. [18]. In the study by Seay et al. [25], no differences were reported between the 1 

and 2-compartmental models. Therefore, we included the 1-compartmental model for 

simplicity. Since our initial simulations indicated significantly lower PTA values when a renal 

function component was included, the Allegaert et al. and Anderson et al. models were 

simplified by assuming normal renal function, i.e., a value of one [16,17]. None of the 

external dataset patients received spironolactone or amoxicillin-clavulcanic acid which were 

included as covariates in the Marques-Minana et al. model [21]. Patient height data were 
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required for the Bhongsatiern et al. model but were not recorded in the external dataset. They 

were derived from Fenton growth charts based on current body weights and PNA [19,43]. 

These charts were also used to define SGA patients with the limit set at the 10% weight 

quantile for GA.  

 

Population model diagnostics 

Population-model prediction diagnostics showed discordances of all models with our external 

data dataset (Fig. S1). Mean NPDE values were unbiased (Bonferroni corrected p-value 

threshold 0.004, n = 12) in Kimura et al., De Cock et al., Marques-Minana et al. and Zhao et 

al. models (Electronic Supplementary Table 2) [18,20,21,24]. However, we observed larger 

variances than expected for all models indicating worse than expected precision. Variance of 

Marques-Minana et al. NPDE values were lower than others (Fig. 2). 

Inclusion of individual concentration observations improved the goodness of fit of all the PK 

models. Modelling with individual concentrations always reduced median individual MPE 

values towards zero and decreased MAPE values compared to population-based predictions 

(Table 2). Moreover, fits of observed and predicted concentrations showed increases in the 

explained proportion of variability to 74% on average (Table 2, Fig. S2). This represents a 

38% improvement by inclusion of all available concentrations.  

 

Bayesian diagnostics 

Medians of APE estimated with all population models were above 31%. Population-based 

PEs were consistently closer to zero (t-test, P = 0.006) in all assayed patients (n = 149) 

compared to its subgroup with >2 concentration measurements (n = 38). Precision estimates 

improved when at least a single concentration (n = 84) was included in estimation, as 

demonstrated by decreased APE values (t-test, P = 5E-4) below 25% for seven models. 
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Accuracy also improved as concentration inclusion approximated all models’ PE values 

towards zero (Fig. 3). Inclusion of a second concentration (n = 38) did not induce statistically 

significant changes to PEs or APEs, regardless of nominal improvement. Results of Bayesian 

diagnostics are reported in Electronic Supplementary Table 3. 

No model attained more than 50% of the PEs within 30% of the true values with no 

concentration data. The upper limit within 20% was 36.2% with Lo et al. [23]. However, 

predictions including a single concentration obtained more than 50% within 30% in 8 out of 

12 models, the highest F30 value was 68% with Marques-Minana et al. model [21]. 

Correspondingly, six models attained more than 40% within 20% of the PEs (Electronic 

Supplementary Table 3). 

 

Probability of target attainment simulations 

None of the condition-specific error collections used in the adjustment of DosOpt simulated 

concentrations differed statistically from log-normal distribution (Electronic Supplementary 

Table 4, Fig. S3). The PTAs for both the 10–15 mg/L and 10–20 mg/L target ranges exceeded 

the base model estimates (12 models; n = 149) when at least one concentration guided the PK 

parameter estimation (n = 84). When predictions were made based on two prior 

concentrations (n = 38), the model-wise PTA estimates remained similar, with attainment 

probabilities approximately 40% and 60% within 10–15 mg/L and 10–20 mg/L of Ctrough, 

respectively (Electronic Supplementary Table 5; Fig. 4).  

For example, we observed that a single individual concentration improved the average 

individual PTAs in the Zhao et al. model from 31.6% to 40.4% for target 10–15 mg/L (Fig. 

4A) and from 50.4% to 62.9% for target 10–20 mg/L (Fig. 4B). Simulations based on other 

models also attained relative improvements of around 25% from the population-based 
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predictions. This implies that inclusion of individual concentrations to models with more 

accurate initial attainment leads to improved achievable PTA.  

 

Discussion 

To the best of our knowledge, this is the first study that compares vancomycin models in 

neonates whilst also considering individual concentrations in kinetics re-estimation. All 

published PK models were found biased in population-model based validation but both 

precision and accuracy improved when including individual concentrations were included. 

Bayesian inclusion enabled the best performing models to attain around 60% of the 

concentration predictions within ±30% of the actually measured concentrations. Observed 

concentration prediction accuracies translated into highly variable simulated target attainment 

rates, the best performing models achieving around 40% for Ctrough 10-15 mg/L and 63% for 

10-20 mg/L. These results describe the prediction performances attainable with current 

models and highlight the importance of model selection for TDM applications like DosOpt. 

Models underlying precision-based dosing approaches need to be reliably applicable to new 

populations [32]. Published neonatal vancomycin population PK models have been validated 

to a different extent. Using an external dataset, we showed that population based NPDE 

variances were statistically different from expected values in all tested models. Population-

based validation of Zhao et al. (n = 78) [30] reported similar replication difficulties with only 

PK models by Grimsley and Thomson and Capparelli et al. (did not qualify for this study due 

to cohort PNA dissimilarity) passing NPDE mean and variance qualification [26,44]. Still, 

their reported NPDE results were dependent on the assay method used for concentration 

measurements. This highlights the importance of multiple replications, differences in 

replication cohorts and complexities of model transferability.  
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All included models assumed linear PK. Only one [18] was two-compartmental, the rest 

assumed a single compartment. Uniform model structure limits the feasibility of developing a 

new population model on our data for component importance assessment. In terms of 

covariates, all models contained a variable to represent patient age (postnatal, postmenstrual 

or gestational) and weight (current / birth). The effect of attributes such as creatinine, 

concomitant medications and artificial ventilation is inconclusive and variably used in models 

[45]. We hypothesise that continuous dosing used only by Zhao et al. and higher similarity of 

patient age and weights to our retrospective set exemplified by full range cover by Frymoyer 

et al. and Zhao et al. [11,20] may have contributed towards improved predictions in our study. 

However, the small number of evaluated models would leave any attempt at single variable 

effect estimation statistically under-powered. We also note that two models with consistently 

the worst predictive accuracy (Seay et al. [25], Grimsley and Thomson [26]) were also two of 

chronologically the oldest. This is a possible indication of improving model development 

practices. 

Large unexplained and inter-individual PK variability of vancomycin in neonates have a 

negative effect on resulting prediction accuracy. This is illustrated by relatively large residual 

model component values (Electronic Supplementary Table 1). For example, Zhao et al. 

reported combined error model parameter sizes of 2.28 mg/L for the additive component and 

20.3% for the proportional component [20] which add to reported between-subject variability.  

Individual concentrations help in explaining some uncertainty, but most models still predicted 

with an absolute error of 20-30% after inclusion of 1 or 2 concentrations. One likely cause is 

the often un-characterised within-subject PK variability. Another issue would be the failure to 

incorporate significant covariates in PK models. The extent of such contributory but missing 

terms is currently unknown as no studies have attempted to partition vancomycin 

concentration variability into biological and environmental. Nevertheless, identification of 
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novel terms with small effects would require much higher sample sizes than are currently 

available. 

We chose vancomycin Ctrough ranges of 10-15 mg/L and 10-20 mg/L as the therapeutic targets 

of PTA simulations as these provide both therapeutic effectiveness and the utility and 

usefulness in clinical settings. In an experimental study, Ramos-Martin et al. suggested that a 

AUC/MIC higher than 400 is necessary for successful eradication of coagulase negative 

staphylococci (CoNS)[46]. Padari et al. could not correlate AUC/MIC >400 with increased 

efficacy in neonates treated for CoNS-related bloodstream infections [47]. Studies evaluating 

the relationship of trough concentration (Ctrough) with AUC have shown that the two measures 

are not perfect substitutes [7] but relative ease of Ctrough measurement makes it commonly 

used for vancomycin therapeutic targeting in guidelines and in clinics [8–10]. Whereas 

attainment of 10 mg/L Ctrough has been multiply linked with AUC>400 in paediatric 

populations [11–15], the estimates on the non-toxic upper end of the PD target ranges are less 

conclusive and warrant future work. Increased probability of nephrotoxicity has been 

associated with AUC values exceeding 700 mg*h/L [7,48]. Similarly, some evidence relates 

Ctrough >20 mg/L to increased toxicity [49]. 

Previous assessments of targeted dose adjustment methods have demonstrated the benefit of 

population PK and Bayesian-based models versus empirical approaches. Compared to the 

25.1% of patients achieving 10–20 mg/L Ctroughs with empirical dosing in a study by 

Ringelberg [8],  Leroux et al. reported 72% of patients consistently achieving 15–25 mg/L 

troughs when the Zhao et al. model was used for dose calculations [9]. In a study by Nunn et 

al. [10], Bayesian adjustments resulted in an improvement from 33.8% of patients to 75.0% of 

patients having a Ctrough of 10–20 mg/L over the course of a full treatment period. Several in 

silico studies have further showed that Bayesian kinetics estimates improve with the inclusion 

of additional individual TDM data [10,34,50]. The above studies use a variety of different 
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study designs and Ctrough ranges to report PTA results, which complicates between-study 

comparisons. Our simulations similarly showed that inclusion of individual concentrations 

improved model-wise attainment rates of clinically applicable therapeutic Ctrough ranges. 

Inclusion of a single concentration increased the PTA for an average patient from 20–30% to 

35–40% in target range 10–15 mg/L (Fig. 3A), and from 35–43% to 55–63% in 10–20 mg/L 

target range. Firstly, these indicate that development of general Bayesian-guided bedside 

TDM applications like DosOpt, are beneficial to dose adjustment accuracy. Secondly, the 

probabilistic attainment of vancomycin therapeutic targets with current models would not 

provide outcome certainty in the form of PTA values around and above 90% [34].  

The present study has several limitations. We did not evaluate concentration performances 

within patient’s condition severity subgroups, which may have had an unknown effect. The 

precision of Bayesian parameter estimation may have been influenced by several confounding 

factors. First, all our samples were assayed using FPIA. Measurement errors and minimal 

quantifiable concentrations may have varied between our data and in those used for assessed 

models. Secondly, our samples were overwhelmingly Ctrough. Also, our retrospective dataset 

consisted of patients with uneven number of available concentrations in comparison groups 

that complicated comparisons between groups. To assess this effect, we performed additional 

performance evaluations with 0 and 1 included concentrations for patients with >2 total 

available concentrations (n = 38), and 0 concentrations for all patients with 2 available 

concentrations (n = 84). 

 

Conclusion 

Predictions based on previously published vancomycin PK models exhibited considerable 

performance variability. All population based model predictions were discordant with external 

validation dataset. However, when at least one treatment concentration was included, both 
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precision and accuracy of predictions improved. Still, relatively low predictive precision of 

current population models limits attainment of narrow therapeutic targets of vancomycin. 
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Tables 

Table 1 

Demographic and clinical patient data 

(A) Patient attributes (n = 149) 

Variable (unit) Mean (Range) Frequencies by attribute ranges 
Postmenstrual age 
(weeks) 

31.7 (24.6-53.1)  <28: 38 

28-33: 68 

33-38: 18 

>38: 25 

Birth weight (kg) 1.32 (0.45-4.82) <0.8: 56 

0.8-1.5: 56 

1.5-2.5: 17 

>2.5: 20 

Current weight (kg) 1.47 (0.46-5.23) <0.8: 30 

0.8-1.5: 74 

1.5-2.5: 20 

>2.5: 25 

Postnatal age (days) 19.2 (4.18-90) <10: 55 

10-25: 60 

25-50: 23 

>50: 11 

Creatinine (μmol/L) 47.3 (18-116) <30: 35 

30-50: 54 

50-75: 47 

75-120: 13 

(B) 
Therapeutic 
interventions 
(n=149) 

Inotropes Respiratory 
support 

Gentamicin Ibuprofen 

Count (%) 81 (54) 132 (89) 64 (43) 15 (10) 
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Table 2 

Mean percentage errors (MPE), mean absolute percentage errors (MAPE) and adjusted-R2 of 

the 12 population pharmacokinetics model based predictions with and without inclusion of 

individual concentration data. Evaluations in “All data included” group combine all individual 

data points with population model information, whereas “No data included” uses only 

population model information 

PK model       

 All data included No data included 

 Median 
MAPE  

(SE) 

Median 

MPE  

(SE) 

 

R2 

Median 
MAPE  

(SE) 

Median 
MPE  

(SE) 

 

R2 

Allegaert et al. 0.167 
(0.012) 

0.084 
(0.011) 

0.753 0.418 
(0.023) 

0.281 
(0.045) 

0.296 

Anderson et al. 0.182 
(0.012) 

0.131 
(0.008) 

0.779 0.457 
(0.019) 

0.394 
(0.027) 

0.413 

Bhongsatiern et 
al. 

0.246 
(0.016) 

0.156 
(0.018) 

0.72 0.354 
(0.024) 

0.233 
(0.034) 

0.508 

De Cock et al. 0.169 
(0.011) 

0.061 
(0.015) 

0.606 0.35 
(0.024) 

0.246  

(0.03) 

0.236 

Frymoyer et al. 0.159 
(0.011) 

0.345 
(0.022) 

0.787 0.35 
(0.022) 

0.482 
(0.028) 

0.403 

Grimsley and 
Thomson 

0.367 
(0.018) 

0.046 
(0.022) 

0.666 0.523 
(0.021) 

0.072 
(0.049) 

0.448 

Kimura et al. 0.209 
(0.016) 

-0.087 
(0.02) 

0.739 0.399 
(0.3) 

-0.209 
(0.058) 

0.352 

Lo et al. 0.173 
(0.014) 

0.057 
(0.008) 

0.706 0.396 
(0.033) 

0.233 
(0.044) 

0.198 

Marques-
Minana et al. 

0.134 
(0.011) 

0.07 
(0.007) 

0.843 0.348 
(0.022) 

0.324 
(0.032) 

0.352 

Oudin et al. 0.165 
(0.011) 

0.014 
(0.009) 

0.789 0.409 
(0.02) 

0.191 
(0.054) 

0.418 
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Seay et al. 0.217 
(0.015) 

-0.196 
(0.042) 

0.705 0.933 
(0.084) 

-0.912 
(0.136) 

0.295 

Zhao et al. 0.173 
(0.012) 

0.083 
(0.013) 

0.776 0.319 
(0.019) 

0.202 
(0.036) 

0.428 
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Figure captions 

Fig. 1 Flowchart of the model selection process  

Fig. 2 Normalized prediction distribution error (NPDE) plots of the model by Marques-

Minana et al. (2010). (A) histogram of the distribution of the NPDE against standardized 

gaussian distribution (semitransparent blue fields), (B) quantile–quantile plot of the NPDE 

against theoretical distribution (semitransparent blue fields), (C) NPDE vs. predicted 

concentrations (mg/L) (D) NPDE vs. Time (h). In plot C and D, the solid red line represents 

the median NPDE of the observations and the semitransparent red field represents a 

simulation�based 95% confidence interval (CI) for the median. Solid blue lines represent the 

NPDE of the observed 5th and 95th percentiles and semitransparent blue fields represent a 

simulation�based 95% CI for the corresponding model predicted percentiles. The NPDE of 

the observations are represented by blue circles 

Fig. 3 Boxplots of the concentration prediction percentage errors (PE) of 12 vancomycin 

population PK models. PE distributions are visualized in 3 subsets of individuals. All assayed 

individuals with at least 1 measured concentration (n = 149) were used to predict the first 

concentration based on a population model. Subset of individuals with at least 2 

concentrations (n = 84) was used to predict the first and second concentrations based on 0 and 

1 included individual concentrations, whereas prediction of the third concentration was 

included for individuals with at least 3 concentrations (n = 38). Dashed lines denote 30% 

percentage errors 

 

Fig. 4 Probability of target attainment estimates with individual pharmacokinetics estimated 

with 0 (n = 149), 1 (n = 84), and 2 (n = 38) individual concentrations entered in DosOpt. Each 

point represents the estimated maximal probability of attaining targeted trough concentrations 
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with an individually optimized dose. Simulations assume a dose administered from a baseline 

concentration of 10 mg/L with a 1-hour infusion and 8-hour interval. Targeted trough 

concentration ranges (A) 10-20 mg/L, (B) 10-15 mg/L 

 

Supplementary Material 

Supplementary Material 1 – ESM1.pdf - captions of supplementary tables 1-5 and 

supplementary figures 1-3 

Electronic Supplementary Table 1 – ESMTable1.docx 

Electronic Supplementary Table 2 – ESMTable2.xlsx 

Electronic Supplementary Table 3 – ESMTable3.xlsx 

Electronic Supplementary Table 4 – ESMTable4.xlsx 

Electronic Supplementary Table 5 – ESMTable5.xlsx 

Fig. S1 – ESMFig1.pdf 

Fig. S2 – ESMFig2.pdf 

Fig. S3 – ESMFig3.pdf 
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