
1 

 

Genome-wide association study of peripheral blood DNA methylation and 
conventional mammographic density measures 
 

 

Shuai Li1,2*, Pierre-Antoine Dugué1,3*, Laura Baglietto4, Gianluca Severi1,3,5, Ee Ming 
Wong6,7, Tuong L. Nguyen1, Jennifer Stone8, Dallas R. English1,3, Melissa C. Southey6,7, 
Graham G. Giles1,3, John L. Hopper1,3†‡, and Roger L. Milne1,3† 

 

1. Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global 
Health, The University of Melbourne, Australia 

2. Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, 
University of Cambridge, UK 

3. Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Australia 
4. Department of Clinical and Experimental Medicine, University of Pisa, Italy 
5. Centre de Recherche en Épidémiologie et Santé des Populations (INSERM U1018), 

Université Paris-Saclay, Université Paris-Sud, Université Versailles Saint-Quentin-en-
Yvelines, Institut Gustave Roussy, Villejuif, France 

6. Genetic Epidemiology Laboratory, Department of Clinical Pathology, The University of 
Melbourne, Australia 

7. Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, 
Australia 

8. Centre for Genetic Origins of Health and Disease, Curtin University and the University 
of Western Australia, Australia 

*These authors contributed equally to this work 

†These authors contributed equally to this work 

 

‡Corresponding author 

Address: Centre for Epidemiology and Biostatistics, Melbourne School of Population and 
Global Health, The University of Melbourne, 207 Bouverie Street, Carlton, Victoria 3053, 
Australia 

Email: j.hopper@unimelb.edu.au 

Telephone: +61 3 8344 0697   

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 2, 2018. ; https://doi.org/10.1101/458299doi: bioRxiv preprint 

https://doi.org/10.1101/458299
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Abstract  

Age- and body mass index (BMI)-adjusted mammographic density is one the strongest breast 
cancer risk factors. DNA methylation is a molecular mechanism that could underlie inter-
individual variation in mammographic density. We aimed to investigate the association 
between breast cancer risk-predicting mammographic density measures and blood DNA 
methylation. For 436 women from the Australian Mammographic Density Twins and Sisters 
Study and 591 women from the Melbourne Collaborative Cohort Study, mammographic 
density (dense area, non-dense area and percentage dense area) defined by the conventional 
brightness threshold was measured using the CUMULUS software, and peripheral blood 
DNA methylation was measured using the HumanMethylation450 (HM450) BeadChip assay. 
Associations between DNA methylation at >400,000 sites and mammographic density 
measures adjusted for age and BMI were assessed within each cohort and pooled using fixed-
effect meta-analysis. Associations with methylation at genetic loci known to be associated 
with mammographic density were also examined. We found no genome-wide significant 
(P<10-7) association for any mammographic density measure from the meta-analysis, or from 
the cohort-specific analyses. None of the 299 methylation sites located at genetic loci 
associated with mammographic density was associated with any mammographic density 
measure after adjusting for multiple testing (all P>0.05/299 = 1.7 × 10-4). In summary, our 
study did not detect associations between blood DNA methylation, as measured by the 
HM450 assay, and conventional mammographic density measures that predict breast cancer 
risk.   
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Introduction 

Mammographic density has conventionally been defined as the white or bright region on a 
mammographic image of the breast. Mammographic density declines with increasing age and 
body mass index (BMI). After adjustment for age and BMI, mammographic density has been 
found to be one of the strongest risk factors for breast cancer in terms of differentiating cases 
from controls: age- and BMI-adjusted mammographic density has an odds per adjusted 
standard deviation (OPERA) of approximately 1.4, which is comparable to other strong 
breast cancer risk factors such as polygenic risk scores1. Women with more than 75% dense 
breast tissue have a four- to five-fold increased breast cancer risk compared with women of 
the same age and BMI with less than 10% dense breast tissue2.  

Variation across the population in mammographic density has both environmental and 
genetic determinants. Age, BMI, and other breast cancer risk factors explain about 30% of 
the variation in mammographic density, and over 60% of the residual variation appears to be 
accounted for by additive genetic factors3. Genome-wide association studies (GWAS) have 
identified variants at specific genetic loci associated with mammographic density4, 5, and 
about 15% of the genetic variants known to be associated with breast cancer risk are also 
associated with mammographic density measures6, although they explain only a small 
fraction of the latter. Despite these known determinants, the molecular mechanisms 
underlying variation in mammographic density are not well understood, nor is how 
mammographic density translates into breast cancer risk at the biological level7. 

DNA methylation, a process whereby typically a methyl group is added to a cytosine-guanine 
dinucleotide, plays an important role in modulating gene expression without changing the 
underlying DNA sequence. There is increasing evidence that blood DNA methylation is 
associated with variation in traits or disease risks, and also considerable interest in 
determining if there is any relationship between blood DNA methylation and breast cancer 
risk8. We tested the hypothesis that blood DNA methylation underlies inter-individual 
variation in breast cancer risk-predicting mammographic density measures using data for 
middle-aged women from two Australian cohorts.  

  

Material and methods 

Sample 

The study sample included 436 women from the Australian Mammographic Density Twins 
and Sisters Study (AMDTSS) and 591 women from the Melbourne Collaborative Cohort 
Study (MCCS). Included participants from the two cohorts had, on average, similar 
characteristics (Table 1).  

The AMDTSS is a twin family cohort study of mammographic density9. Between 2004 and 
2009, twins aged 40-70 years who participated in the Australian Twin Study of 
Mammographic Density between 1995 and 1999 were asked to participate further, and their 
non-twin sisters were also invited to participate. Participants completed questionnaires 
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through telephone-administered interviews, and gave blood samples and permission to access 
their mammograms. A total of 479 women from 130 families oversampled for having one or 
more participating sisters were selected for DNA methylation research10. Among them, 436 
women also had mammographic density data available and were included in this analysis. All 
women were of European descent.  

The MCCS is a prospective cohort of 41,513 adults (24,469 women) aged between 27 and 76 
years (99.3% aged 40-69) when recruited between 1990 and 199411. Participants completed 
questionnaires in face-to-face interviews, had clinical measures taken by trained staff and 
gave a blood sample, the latter collected as dried blood spots on Guthrie cards, as peripheral 
blood mononuclear cells or as buffy coats. All MCCS participants were of European descent, 
including 25% born in Italy or Greece. Blood DNA methylation was measured for  6,404 
participants in one of six nested-case control studies for breast cancer, colorectal cancer, 
mature B cell neoplasms, urothelial cell carcinoma, kidney cancer, or lung cancer12, 13. In the 
breast cancer study, only women who included as controls were selected, to avoid the 
possibility of collider bias14. A total of 591 women who had mammographic density and 
DNA methylation data available were included in this analysis.  

DNA methylation 

DNA was extracted from peripheral blood samples and methylation was measured using the 
Illumina Infinium HumanMethylation450 (HM450) BeadChip and following the same 
protocol for both cohorts 10, 13. DNA was extracted from dried blood spots stored on Guthrie 
cards using a previously reported method15, and from peripheral blood mononuclear cells and 
buffy coat specimens using QIAamp mini spin columns (Qiagen, Hilden, Germany). Bisulfite 
conversion was performed using EZ DNA Methylation-Gold single-tube kit (Zymo Research, 
Irvine, CA) according to the manufacturer’s instructions. A total of 200ng of bisulfite-
converted DNA was whole-genome amplified and hybridised onto HM450 BeadChips. DNA 
methylation was assessed according to manufacturer’s instructions. Raw intensity data was 
processed using the Bioconductor minfi package. Illumina’s reference factor-based 
normalization methods (preprocessIllumina) and subset-quantile within array normalization 
for type I and II probe bias correction16 were used for data normalisation. In the AMDTSS, 
the empirical Bayes batch-effects removal method ComBat17 was applied. Probes with 
missing value (detection P-value>0.01) in one or more samples were excluded. In the MCCS, 
samples were excluded if >5% probes had a detection P-value higher than 0.01, which were 
regarded as missing values, while probes were excluded from further analysis if more than 20% 
of samples had missing values. After quality control, 439,085 autosomal methylation sites 
were common to both datasets. 

Mammographic density measures 

Both cohorts measured mammographic density using the same protocol9, 18. In the AMDTSS, 
mammograms were retrieved from BreastScreen Services, from private clinics, and from 
women who kept their films at home. In the MCCS, mammograms were retrieved from 
BreastScreen Victoria via record linkage. For a woman with several mammograms available, 
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the mammogram taken closest to the date at blood draw was selected. Mammographic films 
were digitized by the Australian Mammographic Density Research Facility at the University 
of Melbourne. The digitized images were then masked so that extraneous features on the 
mammogram other than the breast were excluded, and randomized into reading sets of 
approximately 100 images. The total breast area and the dense area defined as the amount of 
the white or bright regions were measured by independent readers using a computer-assisted 
thresholding technique CUMULUS 3.0 (Imaging Research Program, Sunnybrook Health 
Sciences Centre, University of Toronto, Toronto, Canada). The non-dense area was 
calculated as the total breast area minus the dense area, and the percentage dense area was 
calculated as the dense area divided by the total breast area. 

Genome-wide association study  

We used linear mixed-effects models to assess the association between the M-value (logit 
transformation of Beta-value, which quantifies the percentage of methylated cytosines) of 
each methylation site as the dependent variable, and each mammographic density risk 
measure as an independent variable. Because mammographic density measures were right-
skewed, they were power-transformed to obtain approximately Gaussian distributions (dense 
area, power 0.25; non-dense area, power 0.4; percentage dense area, power 0.3). Models were 
adjusted by fitting fixed effects for age at blood draw (continuous), the difference between 
age at mammogram and age at blood draw (continuous), BMI (continuous), smoking status 
(never/ever in the AMDTSS and never/former/current in the MCCS), menopausal status (pre-
/post-menopausal), use of hormone replacement treatment (never/ever), number of live births 
(continuous), all collected at blood draw and cell type proportions (CD4T cells, CD8T cells, 
natural killer cells, B cells, monocytes, granulocytes) estimated from DNA methylation data 
using the Houseman algorithm19. For the AMDTSS, the model was additionally adjusted for 
family and zygosity as random effects. For the MCCS, the model was additionally adjusted 
for sample type (dried blood spots/mononuclear cells/buffy coats) and country of birth 
(Australia/UK/Italy/Greece) as fixed effects, and for study, plate and chip as random effects20. 
For the AMDTSS, the Bioconductor package bacon was used to adjust for the observed 
inflation of test statistics. Results from the two cohorts were pooled using fixed-effect meta-
analysis21. A P-value of 10-7 was used to account for multiple testing. 

Associations for methylation sites at genetic loci associated with mammographic density 

We annotated the analysed methylation sites to genetic loci associated with mammographic 
density identified by the largest GWAS to date4, using the column ‘UCSC_RefGene_Name’ 
of the annotation file provided by Illumina. A total of 299 methylation sites were annotated: 4 
sites to the AREG locus, 76 sites to the ESR1 locus, 15 sites to the IGF1 locus, 48 sites to the 
LSP1/TNNT3 locus, 60 sites to the PRDM6 locus, 40 sites to the SGSM3/MKL1 locus, 17 
sites to the TMEM184B locus and 39 sites to the ZNF365 locus. Associations between these 
299 sites and mammographic density measures were examined using results from the meta-
analysis. The observed number of sites with P<0.05 was compared with the expected number 
using the binomial test. 
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Results 

None of the studied mammographic density measures was associated with DNA methylation 
at any site (all P>3.4 × 10-7 from meta-analysis; Figure 1). No evidence of inflation was 
found from the meta-analysis: inflation factors were 0.99, 0.97 and 0.96 from the analyses of 
dense area, non-dense area and percentage dense area, respectively. No genome-wide 
significant association was found from either of the cohort-specific analyses (all P>1.5 × 10-7; 
Figure 2). 

Of the 299 methylation sites located at the eight genetic loci associated with mammographic 
density, none was associated with any of the studied mammographic density measures after 
Bonferroni adjustment for multiple testing (all P>0.05/299 = 1.7 × 10-4). From the analyses of 
dense area, non-dense area and percentage dense area, a total of 22, 21 and 21 sites, 
respectively, had a nominally significant association at P<0.05, but this was not significantly 
greater than expected by chance (all P>0.08).  

 

Discussion 

Our genome-wide analysis of data for middle-aged Australian women did not detect 
associations between blood DNA methylation and conventional mammographic density 
measures that predict breast cancer risk. No association was found either at any of the loci for 
which genetic variants were reported to be associated with mammographic density. 

Several factors could explain our null results. First, our study included over 1,000 participants, 
but this might not have been sufficient to detect existed but moderate or weak associations. 
Second, DNA methylation was measured with the widely used HM450 assay, which covers 
the promoter regions of 99% RefSeq genes but only a fraction of the genome and might 
therefore not include sites associated with mammographic density. Third, there could be 
substantial measurement error in methylation measures obtained from the HM450 assay, 
which would have weakened the statistical power of our analysis13, 22. Fourth, we used the 
conventional site-by-site analytic approach and a stringent threshold for statistical 
significance, which might not detect gene- or region-level methylation associated with 
mammographic density. Fifth, we measured DNA methylation in peripheral blood, not breast 
tissue, because it is easily accessible and potentially useful for public and clinical health 
translation23. While methylation marks are usually quite stable across tissues, to our 
knowledge this has not been carefully studied for breast tissue compared with peripheral 
blood, and not regarding biological relevance to mammographic density. Finally, peripheral 
blood DNA methylation might not be related to mammographic density at all, or at most 
trivially, which is indirectly supported by the fact that inconsistent or null results were 
observed in studies of the relationship between blood DNA methylation and breast cancer 
risk8. 

In this study, mammographic density was defined by the conventional brightness threshold 
using the CUMULUS software and has been referred to as Cumulus. New mammographic 
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density measures defined by higher pixel brightness thresholds, Cirrocumulus and 
Altocumulus, have been found to predict breast cancer risk better than the Cumulus measures, 
and multivariate analyses suggest that the Cumulus measures are only surrogates for the 
causal aspects of a mammographic image that predict risk24. A new breast cancer risk-
predicting measure called Cirrus has also been developed using machine learning25. The 
Cirrocumulus, Altocumulus and Cirrus measures might be more aetiologically relevant to 
breast cancer risk. Further research is therefore warranted to investigate associations between 
DNA methylation and these new mammographic density measures.  

Our study has two main strengths. First, to the best of our knowledge, it is the first to 
investigate the association between DNA methylation and mammographic density. Second, 
we pooled data from relatively homogenous samples of middle-aged Australian women, for 
whom DNA methylation and mammographic density were measured using the same 
protocols.  

In summary, no association between blood DNA methylation measured by the HM450 assay 
and conventional mammographic density measures that predict breast cancer risk was 
detected by our analysis of middle-aged Australian women.  
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Figure legends 

Figure 1. Q-Q plot of the genome-wide association analysis results from the meta-analysis of 
the two cohorts 

Figure 2. Q-Q plots of the genome-wide association analysis results from the AMDTSS and 
MCCS 

a) AMDTSS; b) MCCS 
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Table 1. Characteristics of samples from the two cohorts 

Sample characteristics AMDTSS (N=436) MCCS (N=591) 

Age at mammogram (years), mean ± SD 55.6 ± 8.1 59.5 ± 7.3 

Age at blood draw (years), mean ± SD 56.7 ± 7.9 57.2 ± 7.9 

Body mass index (kg/m2), mean ± SD 26.8 ± 5.8 26.6 ± 4.5 

Post-menopausal, N (%) 305 (70) 435 (74) 

Hormone replacement therapy use, N (%) 53 (12) 119 (20) 

Number of live births, mean ± SD 2.6 ± 1.5 2.4 ± 1.5 

Ever smoker, N (%) 166 (38) 198 (34) 

Mammographic density measures    

Dense area (cm2), median (IQR) 25.6 (10.1-45.7) 11.3 (4.2-20.7) 

Non-dense area (cm2), median (IQR) 99.1 (65.8-143.3) 116.4 (82.7-159.2) 

Percentage dense area (%), median (IQR) 21.5 (7.0-39.6) 9.5 (3.1-19.2) 

N, sample size; SD: standard deviation; IQR: inter-quartile range 
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