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ABSTRACT 23 

Copy-number variants (CNVs) are a major cause of several genetic disorders, making their 24 

detection an essential component of genetic analysis pipelines. Current methods for detecting 25 

CNVs from exome sequencing data are limited by high false positive rates and low concordance 26 

due to the inherent biases of individual algorithms. To overcome these issues, calls generated by 27 

two or more algorithms are often intersected using Venn-diagram approaches to identify “high-28 

confidence” CNVs. However, this approach is inadequate, as it misses potentially true calls that 29 

do not have consensus from multiple callers. Here, we present CN-Learn, a machine-learning 30 

framework (https://github.com/girirajanlab/CN_Learn) that integrates calls from multiple CNV 31 

detection algorithms and learns to accurately identify true CNVs using caller-specific and 32 

genomic features from a small subset of validated CNVs. Using CNVs predicted by four exome-33 

based CNV callers (CANOES, CODEX, XHMM and CLAMMS) from 503 samples, we 34 

demonstrate that CN-Learn identifies true CNVs at higher precision (~90%) and recall (~85%) 35 

rates while maintaining robust performance even when trained with minimal data (~30 samples). 36 

CN-Learn recovers twice as many CNVs compared to individual callers or Venn diagram-based 37 

approaches, with features such as exome capture probe count, caller concordance and GC 38 

content providing the most discriminatory power. In fact, about 58% of all true CNVs recovered 39 

by CN-Learn were either singletons or calls that lacked support from at least one caller. Our 40 

study underscores the limitations of current approaches for CNV identification and provides an 41 

effective method that yields high-quality CNVs for application in clinical diagnostics.  42 

  43 
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INTRODUCTION 44 

Copy-number variants (CNVs) are a major source for genomic variation, evolution, and disease 45 

(Sebat et al. 2004; Redon et al. 2006; Perry et al. 2008; Girirajan et al. 2011). About 15% of 46 

affected individuals referred for clinical genetic testing carry a disease-associated CNV (Miller et 47 

al. 2010), making CNV detection an essential aspect of genetic analysis pipelines 48 

(Sathirapongsasuti et al. 2011; Krumm et al. 2012). Although the clinical utility of microarrays 49 

has not diminished (Coughlin et al. 2012), exome sequencing is becoming a prevalent 50 

technology for genetic testing (Yang et al. 2013; Stark et al. 2016; Tan et al. 2017; Retterer et al. 51 

2016; de Ligt et al. 2013). Several algorithms are available to call CNVs from exome sequencing 52 

data in both clinical (Retterer et al. 2016) and disease-specific cohorts, including autism (Krumm 53 

et al. 2012), schizophrenia (Fromer et al. 2012), epilepsy (Epilepsy Phenome/Genome Project & 54 

Epi4K Consortium 2015), and cancer (Koboldt et al. 2012). A common strategy employed by 55 

these CNV callers is to apply various statistical distributions to model the aggregate read depth 56 

of the exons and use read depth fluctuations between adjacent exons to identify duplication or 57 

deletion events (Backenroth et al. 2014; Jiang et al. 2015; Packer et al. 2015; Krumm et al. 2012; 58 

Fromer et al. 2012).  59 

Several themes have emerged due to variations in the approaches employed by different 60 

CNV callers to model read-depth distributions. First, the distributions and algorithms chosen to 61 

model read depth depend on the expertise of the researchers and their subjective assumptions 62 

about the underlying data. For example, callers such as XHMM (Fromer et al. 2012) assume the 63 

read-depth distribution to be Gaussian, while CANOES (Backenroth et al. 2014) assumes a 64 

negative binomial distribution, CODEX (Jiang et al. 2015) assumes a Poisson distribution, and 65 

CoNIFER (Krumm et al. 2012) makes no assumptions about the read-depth distribution. Second, 66 

while every method normalizes data to eliminate noise and outliers resulting from GC and repeat 67 

content biases, the number of samples required for normalization and the definition of outliers 68 

are inconsistent among the callers. For example, a principal component analysis (PCA) based 69 

method such as XHMM requires at least 50 unrelated samples for effective normalization, while 70 

CANOES only requires as low as 15 samples (Backenroth et al. 2014). Similarly, the annotations 71 

for “extreme” GC content differ among XHMM (<0.1 or >0.9), CODEX (<0.2 or >0.8), and 72 

CLAMMS (<0.3 or >0.7) (Packer et al. 2015). Further, XHMM only considers exome-capture 73 

targets between the size range of 10 bp and 10 kbp and with average coverage >10X across all 74 
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samples, while CODEX uses targets that are >20 bp long and with median coverage >20X. 75 

CODEX eliminates targets with mappability scores <0.9, while CLAMMS eliminates regions 76 

with scores <0.75 along with a custom list of “blacklisted” regions (Packer et al. 2015). Fourth, 77 

the validation methods and the subsets of CNV calls used to estimate sensitivity and specificity 78 

measures vary widely among the callers. For example, large CNVs (>100 kbp) validated with 79 

microarrays and analyzed with PennCNV (Wang et al. 2007) were used to estimate the 80 

performance of CANOES (Backenroth et al. 2014), while only a subset of CLAMMS calls with 81 

minor allele frequency <0.1 were validated using PCR. Also, not all callers report confidence 82 

scores for the CNVs they identify. Even when they do, their confidence scales are not directly 83 

comparable. These issues influence the number and type of CNVs detected by each caller in a 84 

given sample, resulting in pronounced differences in accuracy, false positive rates, and 85 

concordance among the callers (Hong et al. 2016; Yao et al. 2017). Finally, studies using exome-86 

sequencing data to detect CNVs either utilize predictions made by a single caller (Krumm et al. 87 

2013; Poultney et al. 2013) or use a Venn-diagram approach to identify calls with concordance 88 

among multiple callers as “high-confidence” CNVs (Kataoka et al. 2016; Priest et al. 2016; 89 

Bademci et al. 2016; Krumm et al. 2015). While using data from multiple callers minimizes false 90 

positive rates, this approach discards a large subset of non-concordant CNVs, thereby reducing 91 

the overall CNV yield (Hong et al. 2016). In addition to a low CNV yield, the reported 92 

breakpoints of the concordant calls do not necessarily agree between callers. These limitations 93 

associated with individual CNV callers as well as the methods used to integrate predictions from 94 

different CNV callers necessitate a better approach to identify and prioritize clinically relevant 95 

CNVs.  96 

 Here, we propose a machine-learning method called CN-Learn that overcomes the 97 

limitations of high false positive and low concordance rates among calls generated by different 98 

CNV algorithms to identify high-confidence CNVs. Our method leverages several attributes 99 

intrinsic to each CNV call, such as GC content, mappability of the genomic region, and CNV 100 

size, in addition to concordance among the callers. CN-Learn learns the associations between 101 

these attributes and the presence or absence of CNVs using a small subset of validated CNVs in 102 

the cohort (known truth), and then segregates true CNVs from false positives in the test samples 103 

with high precision. Using exome-sequencing data and validations from 503 samples, we 104 

demonstrate CN-Learn’s ability to recover more than twice as many potentially true variants 105 
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compared to a Venn-diagram approach. Our study reiterates the limitations of existing CNV 106 

detection and integration methods, and offers a better alternative that yields a set of high-quality 107 

CNVs for application in clinical diagnostics. 108 

 109 

RESULTS 110 

We developed CN-Learn as a binary Random Forest classifier that can be trained to differentiate 111 

true CNV predictions from false positives using a small subset of validated CNVs (Figure 1). 112 

We identified twelve features that represented the extent of support from individual algorithms 113 

and the genomic context for each CNV (see Methods). We detected statistically significant 114 

correlations for several pairs of the quantitative features (Figure 2; Supplemental Table 1). 115 

Based on a collection of decision trees built using the twelve features extracted from CNVs in 116 

the training samples, CN-Learn estimates the probability of each CNV in the test sample to be 117 

true (Figure 2). In addition to a Random Forest classifier, CN-Learn can also be built as a 118 

Logistic Regression (LR) or Support Vector Machine (SVM) based classifier (Supplemental 119 

file).  120 

 121 

CN-Learn detects high-confidence CNVs with high precision and recall rates 122 

To build the CN-Learn classifier, we first identified 41,791 CNV predictions from 503 samples 123 

using four exome-based CNV callers (CANOES, Codex, CLAMMS, and XHMM). Using a read-124 

depth based method (Supplemental Fig. S1) to resolve breakpoint conflicts of overlapping CNV 125 

predictions obtained from different callers, we identified 29,101 unique CNV events among the 126 

503 samples (Supplemental file). An alternate approach to resolve breakpoint conflicts 127 

(Supplemental Fig. S2) also provided the same number of unique CNV events. We selected 128 

2,506 of these CNVs from 291 samples with microarray validations that were between 50 kbp 129 

and 5 Mbp and spanned regions covered by microarray probes (Supplemental Fig. S3). After 130 

determining the proportion of CNVs that overlapped with microarray validations at different 131 

thresholds (Supplemental Table 2), we labeled each of the selected CNVs as either “true” or 132 

“false” based on a 10% reciprocal overlap threshold. We next used CNVs from 70% of the 291 133 

samples to train CN-Learn as a Random Forest classifier and the remaining 30% of samples to 134 

test its performance. Given the uneven distribution of the labels between the two CNV classes 135 

(11% true vs. 89% false), we chose precision and recall as the measures of classifier performance 136 
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Figure 1: Overview of the CN-Learn pipeline. The CN-Learn pipeline consists of pre-processing steps (Step 1 and 2), followed by 138 

building the classifier using training data and discriminatory features, and finally running the classifier on the test data. The complete 139 

pipeline is outlined as follows. Step 1: CNV predictions were made using four exome-based CNV callers. While CANOES, CODEX, 140 

CLAMMS and XHMM were used in this study, a generic pipeline can be constructed with a different set or number of callers. 141 

Breakpoints of overlapping calls from multiple callers were then resolved. Step 2: Breakpoint-resolved CNVs were labeled as “true” 142 

or “false” based on the overlap with “gold standard” calls and subsequently used to train CN-Learn. Step 3: Caller-specific and 143 

genomic features were extracted for the labeled CNVs in the training and testing set. Step 4: CN-Learn was trained as a Random 144 

Forest classifier using the extracted features of the CNVs in the training set to make predictions on the CNVs from the testing set. 145 
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Figure 2: Illustration of the Random Forest model used to build CN-Learn. (A) The inner workings of the random forest model 147 

used for training CN-Learn is shown. Twelve features were used to grow 100 trees with different subsamples of predictors and 148 

training data to classify each CNV in the test set as either “True” or “False”. If the predicted probability score was greater than 0.5, the 149 

CNV call was classified as “True”. Calls with predicted probability score <0.5 were labeled as “False”. (B) A Spearman rank 150 

correlation between pairs of quantitative predictors used by the CN-Learn classifier is shown. The color of the circles indicates the 151 

direction of the correlation, while the size of the circles indicates the strength of the correlation. The correlation scores are provided in 152 

the supplemental file (Supplemental Table 1).  (C) The frequency of microarray validated and invalidated CNVs, distributed across 153 

20 bins of increasing predicted probability scores, is shown. For the probability bins less than 0.5, the proportion of CNVs that were 154 

validated was higher than the proportion of CNVs that was not validated. This indicated that classification score of 0.5 is an 155 

appropriate threshold for distinguishing “true” and “false” CNVs.156 
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(Supplemental Table 2). We captured the aggregate performance of CN-Learn using ten 157 

random draws of training data (10-fold cross validation), stratified by sample. CN-Learn used the 158 

twelve predictors supplied with each CNV in the test set (see Methods) and classified the calls as 159 

either “true” or “false” at 91% precision and 86% recall rates. The overall diagnostic ability of 160 

the binary classifier, measured as the area under the Receiver Operating Characteristic (ROC) 161 

curve, was 95% (Figure 3A). Despite sampling different sets of training data for each iteration 162 

during cross-validation, the performance of CN-Learn was consistent across all ten iterations for 163 

both precision (91±5%) and recall rates (86±5%) (Figure 3B). 164 

 165 

We also assessed the relative importance of each feature towards making accurate CNV 166 

predictions by calculating the Gini index (defined as the total decrease in improvements to the 167 

node purity for all splits on each feature averaged over all trees in the forest) (Breiman 2001). 168 

We found that features such as the number of exome capture probes spanning a given call, the 169 

extent to which CANOES agreed with a CNV prediction, concordance among the callers, and 170 

GC content provided the most discriminatory power to the classifier (Figure 3C). Post-171 

classification analysis of the concordance profile indicated that only 34% of all CNVs classified 172 

as “true” had support from all the four callers, while the remaining 66% lacked support from at 173 

least one caller (Supplemental Fig. S4). Overall, these results highlight the ability of CN-Learn 174 

to look beyond the single measure of concordance typically used in a Venn-diagram based 175 

approach, and to utilize the discriminatory power of additional variables to identify high-176 

confidence CNVs in a systematic manner.  177 

 178 

Performance of CN-Learn is robust across varying CNV sizes and training sets 179 

We independently trained CN-Learn using varying proportions of training data (between 10% 180 

and 70% in increments of 10%) and observed steady performance gains with increase in the 181 

number of training samples (Figure 3A). Interestingly, even when the classifier was built using 182 

just 10% of the total samples (n=29 samples), we obtained 90% precision and a recall rate of 183 

75%, indicating the robustness of the classifier when learning from minimal training data. We 184 

further trained CN-Learn independently at four size ranges of CNVs and observed a modest 185 

increase in precision with increase in CNV size (90% for 50-100 kbp CNV to 97% for 0.5-5 Mbp 186 

CNV) (Figure 3D). In fact, the precision achieved by CN-Learn at each size interval was 187 
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Figure 3: Characteristics of the CN-Learn binary Random Forest classifier. (A) Receiver operating characteristic (ROC) curves 189 

indicating the trade-off between the precision and recall rates when CN-Learn was trained as a Random Forest classifier are shown. 190 

Each curve represents the performance achieved when using different proportions of samples to train CN-Learn, starting from 10% up 191 

to 70% in increments of 10%. The results shown were from experiments aggregated across 10-fold cross validation. (B) Variability 192 

observed in the precision and recall measures during the 10-fold cross validation at various proportions of training data is shown. Both 193 

measures varied within ±5% of their corresponding averages. (C) Precision rates for CNVs when CN-Learn was trained at four 194 

different size ranges compared to the precision rates of CNVs from individual callers are shown. Precision rates for CN-Learn were 195 

estimated as its classification accuracy (True positives/ [True positives + False positives]), while the precision rates for the individual 196 

callers were calculated as the proportion of CNVs at each size range that were validated by the microarray calls. (D) The relative 197 

importance of each genomic and caller-specific feature supplemented to CN-Learn is shown. Data shown here are the averages of the 198 

values obtained across 10-fold cross-validation after using 70% of the samples for training.  199 
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substantially higher than the precision achieved by the individual CNV callers. We also observed 200 

comparable precision and recall rates when CN-Learn was run on breakpoint-resolved CNVs 201 

obtained by merging overlapping predictions (Supplemental Fig. S5). While the performance of 202 

the Random Forest classifier was robust, Logistic Regression & SVM classifiers failed to match 203 

its performance (See Supplemental file; Supplemental Figs. S6 & S7). 204 

 We next assessed the performance of CN-Learn by considering calls made by CLAMMS 205 

as the truth set and classified CNVs obtained from predictions made by the other three callers 206 

(CANOES, CODEX and XHMM). We categorized 25,019 breakpoint-resolved CNVs 207 

(Supplemental Fig. S3) from all 503 samples as either “true” or “false” based on their 208 

intersection (10% reciprocal overlap) with CNVs predicted by CLAMMS. Given the higher 209 

resolution of CNVs detected from exome data relative to SNP microarrays, we used a total of 210 

16,497 CNVs between 5 kbp and 5 Mbp in size to build CN-Learn (Supplemental Fig. S3). CN-211 

Learn achieved an aggregate precision rate of 94% with an overall recall rate of 85% during the 212 

10-fold cross validation, and achieved comparable performance when independently trained with 213 

CNVs at different training sample proportions (Supplemental Fig. S8A). Performance 214 

variability observed both during cross-validation and across the size ranges were comparable to 215 

the variability observed when microarray was used as the truth set (Supplemental Figs. S8B & 216 

S8C). Among the features used by CN-Learn to classify the CNVs, the relative importance of the 217 

mappability score was the highest, with GC content being the next important feature 218 

(Supplemental Fig. S8C). While caller-specific features contributed to the discriminatory power 219 

of CNV classification when microarray was used for validation, genomic features played a more 220 

prominent role when a sequence-based method was used for validation (Supplemental Fig. S9). 221 

These results show that the performance of CN-Learn is robust with minimal training data, at 222 

different size ranges and even when orthogonal validations are not available. 223 

 224 

CN-Learn recovers true CNVs that lack complete concordance among callers 225 

To assess the ability of CN-Learn to correctly identify true CNVs that lack support from multiple 226 

callers, we analyzed the concordance profile of all CNVs classified by CN-Learn as “true”, based 227 

on microarray validations, before and after CN-Learn classification. Using a single random draw 228 

of 29 samples (10%) to train CN-Learn and 262 samples as the test set, we obtained predictions 229 

for 2,245 CNVs with microarray validations (Figure 4A). Among these predictions, only 230 
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122/2,245 CNVs (5.4%) were supported by all four CNV callers prior to classification by CN-231 

Learn. The strong concordance of the four methods for these CNV predictions was corroborated 232 

by a high microarray validation rate (116/122, 95%) (Figure 4A). In contrast, CNVs that lacked 233 

support from one or more callers were less likely to intersect with microarray data. For example, 234 

only 41% (11/27) of the CNVs with support from XHMM, CODEX and CLAMMS intersected 235 

with microarray data. After classification by CN-Learn, 84% (266/315) of all CNVs labeled as 236 

“true” intersected with microarray calls, indicating the high classification accuracy achieved by 237 

the classifier (Figure 4A). All CNVs classified as “true” from this analysis are provided in 238 

Supplemental Table 3. Of the 266 CNVs validated by microarrays and correctly identified as 239 

“true” by the classifier, only 42% (112/266) were supported by all four CNV callers. The 240 

remaining 58% (154/266) were either singletons or calls that lacked support from at least one 241 

caller, and would have been excluded if complete concordance was used as the only determinant 242 

for selecting high confidence CNVs. For example, 13% of all true CNVs (35/266) recovered by 243 

CN-Learn were missed by CLAMMS but were identified by one or more of the other callers, 244 

reiterating the limitations of using a single exome-based CNV caller for variant predictions. 245 

Further, CN-Learn managed to recover 97% (112/116) of the true CNVs validated by 246 

microarrays that were supported by all of the four callers. Although these 112 CNVs could have 247 

been identified by a simple caller intersection approach, CN-Learn was uniquely able to recover 248 

CNVs that lacked support from at least one other caller. For example, CN-Learn classified 66 249 

CNVs supported by CANOES, CODEX and XHMM as “true”, of which 51% (34/66) were also 250 

validated by microarrays. This result is notable because, without using CN-Learn for 251 

classification, only 31% (46/148) of CNVs supported by CANOES, CODEX and XHMM would 252 

intersect with the microarray calls, indicating the inherently high false positive rate associated 253 

with simply intersecting calls from individual callers using a Venn diagram. Our results indicate 254 

that in addition to correctly identifying almost every “true” CNV reported by the four callers, 255 

CN-Learn overcame the limitations of the Venn-diagram based approach and recovered 154 256 

additional high-confidence CNVs with sub-optimal concordance, thereby improving the CNV 257 

yield by 2.37-fold (266/112). Further, the true positive calls recovered by CN-Learn spanned the 258 

entire spectrum of CNV size range (Figure 4B). We also obtained comparable improvements in 259 

CNV yield when CNVs predicted by CLAMMS were used as the truth set (Supplemental file; 260 

Supplemental Figs. S10 & S11, Supplemental Table 3).  261 
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 262 
Figure 4: Concordance profile of CNVs before and after classification by CN-Learn using microarray calls as the “gold 263 

standard” validation set. (A) Venn diagrams are shown for CNVs (≥50 kbp) identified from a random draw of 262 samples out of 264 

the total 291 samples before (Top panels) and after (Bottom panels) classification by CN-Learn. The Venn diagrams show the 265 

overlap of calls among the four callers (Top left) versus those that were validated by microarrays (Top right). Venn diagrams 266 

depicting the overlap of all “true” calls among the four callers after classification by CN-Learn (Bottom left) and “true” calls that 267 

were also validated by microarrays are shown (Bottom right). (B) The distribution of all calls within the 262 samples based on the 268 
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probability scores (Y-axis) predicted by CN-Learn across four size ranges (X-axis) is shown. The number of overlaps of each CNV 269 

with exome-based CNV callers is represented by different colors. CNVs that validated with microarrays are indicated by filled circles, 270 

while CNVs that did not validate with microarrays are represented by hollow circles.271 
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DISCUSSION 272 

Exome sequencing is a cost-effective assay to accurately identify single base pair mutations and 273 

small insertions or deletions within protein-coding genes, which are more likely to cause disease 274 

than mutations in other regions of the genome (Bamshad et al. 2011). Even with the emergence of 275 

whole genome sequencing (WGS) techniques, exome sequencing has continued to flourish, 276 

resulting in an increase in the availability of datasets for analysis. This widespread data availability 277 

has allowed for repurposing data generated for single nucleotide variant detection to identify CNVs 278 

as well (Koboldt et al. 2013). Given the high false positive rates among calls reported by individual 279 

exome-based callers (Tan et al. 2014), existing CNV identification pipelines that leverage more than 280 

one calling algorithm have depended on naïve Venn diagram-based integration approaches to 281 

identify high-confidence CNVs. One reason for the overwhelming trust in such approaches could be 282 

the fact that the self-reported performance measures of each individual algorithm are typically high. 283 

Therefore, there is little reason to doubt that performance variations among the callers could affect 284 

the precision of Venn diagram-based integration approaches. While we found that the likelihood of 285 

a CNV prediction to be true increased with an increase in the number of callers supporting it 286 

(Supplemental Fig. S12), there are two key limitations of this approach. First, even among 287 

completely concordant predictions, the observed false positive rates were not zero. Inflated false 288 

positives pose a large hurdle for researchers interested in identifying clinically relevant CNVs, as it 289 

is time consuming to validate a large number of false positive CNVs using orthogonal methods. 290 

Second, the Venn diagram approach failed to identify a large subset of non-concordant or singleton 291 

CNVs supported by microarray validations. In fact, approximately one true CNV (>50 kbp) per 292 

individual in our cohort would have been discarded under a Venn-diagram based approach. This 293 

evidence reiterates that Venn diagram-based approaches do not have the required precision for 294 

usage in both clinical and research settings.  295 

The utility of alternate methods for CNV detection hence rests on the ability to both 296 

eliminate false positives among completely concordant predictions and recover true CNVs that lack 297 

adequate support from multiple callers. Therefore, instead of addressing the shortcomings of 298 

existing methods by developing yet another CNV detection tool, our study focused on offering a 299 

reliable integrative approach. In this study, we demonstrate a machine-learning approach that 300 

leverages caller-specific and genomic contexts from a subset of validated calls to identify high-301 

confidence CNVs more thoroughly than individual callers on their own or Venn diagram-based 302 
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approaches. CN-Learn achieved precision as high as 94% while doubling the CNV yield, showing 303 

its ability to capture singletons that would have been missed by other approaches. Importantly, the 304 

precision of CN-Learn is robust to variation in CNV size, ratio of training to testing samples, and 305 

validation method/type, indicating the utility of CN-Learn in a variety of clinical or research 306 

contexts. The use of multiple variables that capture the genomic context of each CNV in addition to 307 

caller concordance is a major reason for the high recovery and precision rates achieved by CN-308 

Learn. In fact, GC content and mappability scores were some of the most useful features in 309 

predicting true CNVs.  310 

One of the limitations of CN-Learn is its dependency on a small set of biologically validated 311 

CNVs. Our study leverages microarray validations to evaluate the predictions of each caller and to 312 

label the breakpoint-resolved CNV predictions as either “true” or “false”. While microarrays may 313 

not be considered as a “gold standard” for CNV detection, we were able to use microarray calls as 314 

an orthogonal validation to demonstrate the utility of CN-Learn. Our study also serves as a proof-of-315 

principle for future studies that could utilize CN-Learn with “gold-standard” CNVs curated from 316 

multiple genomic technologies, such as PacBio SMRT sequencing (John et al. 2009), Illumina long-317 

read sequencing (Voskoboynik et al. 2013), 10X linked-read sequencing (Zheng et al. 2016), 318 

BioNano Genomics genome mapping (Lam et al. 2012; Mak et al. 2016) or PCR. Another limitation 319 

of our study is the time and computational capacity required to run four different CNV callers. Each 320 

CNV calling algorithm extracts read-depth information for each sample using tools such as 321 

Samtools (Li et al. 2009), Bedtools (Quinlan and Hall 2010) or Genome Analysis Toolkit (GATK) 322 

(McKenna et al. 2010), which are often the rate-limiting steps for each pipeline. Future studies 323 

could simplify this data extraction layer by using a single read-depth tool without adversely 324 

impacting the results of the individual callers. Finally, we also acknowledge the complexity 325 

associated with resolving breakpoint conflicts from multiple callers that arise during data 326 

integration. While we presented two strategies to resolve breakpoints of concordant CNVs (see 327 

Methods), future studies could explore more effective strategies before using CN-Learn. As 328 

population-scale projects continue to generate large exome-sequencing datasets, the need and 329 

importance of robust CNV integration approaches such as CN-Learn is apparent. 330 

Overall, CN-Learn integrates predictions from multiple CNV callers and overcomes the 331 

limitations of existing integration approaches, even when the availability of samples with biological 332 

validations is limited. Although we chose a set of four CNV calling algorithms with microarray 333 
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validations, CN-Learn framework can be extended to use different sets of CNV callers or validation 334 

types to identify high-confidence CNVs, making our framework easy to adopt and customize. This 335 

can allow clinicians and researchers to use their preferred callers and validation methods to detect 336 

CNVs from exomes. Our results suggest that a small set of high-quality validated CNVs and an 337 

objective machine learning method can help alleviate several shortcomings of existing integration 338 

approaches to generate an informed set of clinically relevant CNVs. 339 

  340 
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METHODS 341 

Samples 342 

We obtained exome sequencing data from 503 individuals in the Simons Variation in Individual 343 

Project (SVIP), which were generated using the Agilent Sure-Select Human All Exon v2.0 capture 344 

kit containing 182,430 autosomal probes (Spiro and Chung 2012). Overall, 187 individuals within 345 

this cohort carry the 16p11.2 deletion, and 143 individuals carry the reciprocal duplication. Single 346 

nucleotide polymorphism (SNP) based microarray data were available for 291 samples, and CNVs 347 

>100 kbp were confirmed experimentally using array CGH (Duyzend et al. 2016).  348 

  349 

Exome CNV callers 350 

We chose four exome CNV callers to obtain the initial sets of CNV calls: CANOES, CLAMMS 351 

(v1.1), CODEX (v0.2.2), and XHMM (Backenroth et al. 2014; Packer et al. 2015; Jiang et al. 2015; 352 

Fromer et al. 2012). As the SVIP samples were sequenced in two sets (312 and 191 samples), each 353 

set of samples was treated as individual batches for running the CNV-calling pipelines. CANOES 354 

and CODEX were run using the default parameters. CLAMMS models were built with the 355 

assumption that the samples were independent without accounting for batch effects, and XHMM 356 

was run with a “PVE_mean_factor” parameter value of 0.7. Running the four CNV callers yielded 357 

41,791 calls of varying sizes (Supplemental Fig. S13). These original CNV calls (deletions and 358 

duplications) were then characterized based on their level of concordance among the four callers 359 

(Supplemental file). 360 

 361 

Resolving breakpoint conflicts for overlapping predictions 362 

Multiple CNV callers can make predictions that overlap with each other in a given genomic region. 363 

Treating such overlapping predictions with different breakpoints as separate CNVs would result in 364 

double-counting the calls for the same CNV event. Therefore, it is important to merge concordant 365 

predictions and represent them as a single event for downstream analyses. We developed a five-step 366 

procedure that uses fluctuations in local read depth to resolve breakpoint conflicts among 367 

overlapping predictions by identifying the most likely start and end coordinates of the underlying 368 

event. A detailed explanation of this strategy is presented in the Supplemental file (Supplemental 369 

Figs. S1 & S14). As an alternate strategy, we resolved breakpoint conflicts by simply selecting the 370 

smallest and largest coordinates among the overlapping predictions as the start and end coordinates 371 
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of the underlying CNV event. This strategy is also described in the Supplemental file 372 

(Supplemental Fig. S2). Applying both methods to the 41,791 CNVs detected in the SVIP samples 373 

yielded 8,382 unique breakpoint-resolved CNV events, in addition to the 20,719 singleton calls 374 

(Supplemental Fig. S3).  375 

 376 

Microarray validations 377 

SNP microarray data were generated by the SVIP consortium (Duyzend et al. 2016) using Illumina 378 

OmniExpress-12 microarrays for 272 samples and OmniExpress-14 for 19 samples. PennCNV 379 

(v.1.0.3) was used to identify CNVs from microarray data for all 291 individuals using standard 380 

parameters (Wang et al. 2007). Individual and family-based (trios and quads) CNV calls were 381 

combined for autosomal chromosomes, while CNVs on chromosome X were called only at the 382 

individual level. CNV calls with ≥1 bp overlap or gaps <20% of the total CNV length and <50 kbp 383 

were merged. CNVs ≥50 kbp in length and containing ≥5 SNP target probes were subsequently 384 

considered for further analyses. 385 

 386 

Feature selection for CN-Learn classifier 387 

We identified twelve features that represent the extent of support provided by the four individual 388 

callers and genomic context as predictors of true CNVs to the CN-Learn Random Forest classifier. 389 

Since we used four callers in our study, the extent of overlap calculated during the breakpoint-390 

resolution process (Supplemental file & Supplemental Fig. S1) served as individual predictors. 391 

Concordance count and read-depth ratio (RDratio) for both breakpoint-resolved concordant calls and 392 

singletons were also supplied as features. As individual algorithms use different GC and repeat 393 

content (mappability) thresholds to classify CNV predictions as outliers, CNVs with extreme GC 394 

content or low mappability could be predicted by one caller but discarded as an outlier by the other 395 

callers. To take this into account, we extracted GC content data using the “nuc” option in bedtools 396 

(Quinlan and Hall 2010) and mappability scores (Derrien et al. 2012) using the 397 

“bigWigAverageOverBed” option in kentUtils (Kent et al. 2010) for use as predictors. Similarly, the 398 

efficacy of CNV detection can vary across chromosomes, size ranges, and CNV type 399 

(duplication/deletion). To take these variations into account, we used chromosome number, CNV 400 

size, CNV type and the number of exome capture probes as the final set of CN-Learn features.  401 

 402 
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Probability estimation and classification using CN-Learn 403 

CN-Learn leverages the features extracted for the CNVs in the training samples to build a Random 404 

Forest (Breiman 2001) classifier with hundreds of decision trees and estimates the probability of 405 

each CNV in the test samples to be true (Figure 2A). Decision trees have been shown to perform 406 

well when the distribution of observations is unbalanced between the classes of interest (Cieslak and 407 

Chawla 2008). Given the high false positive rates of CNV callers, an uneven split between the 408 

number of true and false predictions is likely to occur in clinical samples. In the samples we 409 

analyzed, 10% of the CNVs overlapped with the truth sets derived from microarray calls at a 10% 410 

reciprocal overlap threshold (Supplemental Table 2). To address the imbalance between the 411 

number of true and false CNVs, we stratified the training data by sample to accurately reflect the 412 

clinical setting as follows: CNVs in p% of the samples were used for training, and the remaining (1-413 

p)% were used as the testing set. For a random forest built with “N” trees, “M” predictors and “C” 414 

classes, the probability of an observation “o” belonging to the class “c” (“true” or “false”) can be 415 

expressed as po,c  = Pr(Y = c | X = xi), where xi is a vector that captures the values for each of the 12 416 

predictors and Y is the outcome variable. The probability po,true of the CNV “o” being “true” in the 417 

test set was then measured as the proportion of trees in the forest that assigned it to the “true” class. 418 

Specifically, the probability of a CNV prediction can be represented as: 419 

 420 

Po,true       = Pr(Y = True |  X = xi) 421 

   = 
!"#$%&	()	*&%%+	*,-*	./%0*.)1	*,%	2!3	-+	4&"%

!"#$%&	()	*&%%+	.0	*,%	)(&%+*   422 

 423 

where X represents the values of the following features for the observation “o”: 424 

         x1 = Overlap proportion with CANOES 425 

         x2 = Overlap proportion with CODEX 426 

         x3 = Overlap proportion with CLAMMS 427 

         x4 = Overlap proportion with XHMM 428 

         x5 = Concordance among callers 429 

         x6 = Read depth ratio 430 

         x7 = Chromosome number 431 

         x8 = CNV type (Duplication/Deletion) 432 

         x9 = CNV size 433 
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         x10 = Target probe count 434 

         x11 = GC Ccontent 435 

         x12 = Mappability 436 

 437 

CNV calls with predicted probability score >0.5 were then classified as “true”. We selected this 438 

cutoff based on the distribution of validated (“true”) and invalidated (“false”) CNVs across the 439 

predicted probability scores (ranging between 0 and 1). For both duplications and deletions, the 440 

proportion of true calls compared to false calls was higher for CNVs with probability scores >0.5 441 

(Figure 2C). This indicated that at a 0.5 threshold, the classifier recovers as many true CNVs 442 

(recall) as possible without compromising on the false positive rate (precision). 443 

 444 

Statistical analysis 445 

All statistical analyses, including the calculation of precision-recall rates, feature importance, and 446 

ROC areas, were performed using the Python library scikit-learn (v 0.18.1) (Pedregosa et al. 2012). 447 

Plots were generated using the R package ggplot2 and the Python library matplotlib. 448 

 449 

Code availability 450 

CN-Learn is available as an open-source software at https://github.com/girirajanlab/CN_Learn. 451 

Sample input files to test the CN-Learn pipeline are provided with the software package. Both the 452 

exome and microarray-based CNV caller pipelines and the parameters used to obtain the original 453 

CNV calls are also available at 454 

https://github.com/girirajanlab/CN_Learn/tree/master/scripts/callers/. 455 

  456 
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