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Abstract

Single-cell RN A-seq quantifies biological heterogeneity across both discrete cell types and continuous
cell transitions. Partition-based graph abstraction (PAGA) provides an interpretable graph-like
map of the arising data manifold, based on estimating connectivity of manifold partitions (https:
//github.com/theislab/paga). PAGA maps provide interpretable discrete and continuous latent
coordinates for both disconnected and continuous structure in data, preserve the global topology of
data, allow analyzing data at different resolutions and result in much higher computational efficiency
of the typical exploratory data analysis workflow — one million cells take on the order of a minute,
a speedup of 130 times compared to UMAP. We demonstrate the method by inferring structure-rich
cell maps with consistent topology across four hematopoietic datasets, confirm the reconstruction of
lineage relations of adult planaria and the zebrafish embryo, benchmark computational performance
on a neuronal dataset and detect a biological trajectory in one deep-learning processed image dataset.

Introduction

Single-cell RN A-seq offers unparalleled opportunities for comprehensive molecular profiling of thou-
sands of individual cells, with expected major impacts across a broad range of biomedical research.
The resulting datasets are often discussed using the term transcriptional landscape. However, the
algorithmic analysis of cellular heterogeneity and patterns across such landscapes still faces fun-
damental challenges, for instance, in how to explain cell-to-cell variation. Current computational
approaches attempt to achieve this usually in one of two ways [1]. Clustering assumes that data
is composed of biologically distinct groups such as discrete cell types or states and labels these
with a discrete variable — the cluster index. By contrast, inferring pseudotemporal orderings or
trajectories of cells [2-4] assumes that data lie on a connected manifold [5] and labels cells with a
continuous variable — the distance along the manifold. While the former approach is the basis for
most unsupervised analyses of single-cell data, the latter enables a better interpretation of contin-
uous phenotypes and processes such as development, dose response and disease progression. Here,
we unify both viewpoints.
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A central example of dissecting heterogeneity in single-cell experiments concerns data that originate
from complex cell differentiation processes. However, analyzing such data using pseudotemporal
ordering [2, 6-10| faces the problem that biological processes are usually incompletely sampled. As
a consequence, experimental data do not conform with a connected manifold and the modeling of
data as a continuous tree structure, which is the basis for existing algorithms, has little meaning.
This problem exists even in clustering-based algorithms for the inference of tree-like processes [11-
13], which make the generally invalid assumption that clusters conform with a connected tree-like
topology. Moreover, they rely on feature-space based inter-cluster distances, like the euclidean
distance of cluster means. However, such distance measures quantify biological similarity of cells
only at a local scale and are fraught with problems when used for larger-scale objects like clusters.
Efforts for addressing the resulting high non-robustness of tree-fitting to distances between clusters
[11] by sampling [12, 13] have only had limited success.

Partition-based graph abstraction (PAGA) [14] resolves these fundamental problems by generating
graph-like maps of cells that preserve both continuous and disconnected structure in data at multiple
resolutions. The data-driven formulation of PAGA allows to robustly reconstruct branching gene
expression changes across different datasets and, for the first time, enabled reconstructing the lineage
relations of a whole adult animal [15]. Furthermore, we show that PAGA-initialized manifold learning
algorithms converge faster, produce embeddings that are more faithful to the global topology of high-
dimensional data and introduce an entropy-based measure for quantifying such faithfulness. Finally,
we show how PAGA abstracts transition graphs, for instance, from RNA velocity and compare to
previous trajectory-inference algorithms.

Results

PAGA maps discrete disconnected and continuous connected cell-to-cell variation.

Both established manifold learning techniques and single-cell data analysis techniques represent data
as a neighborhood graph of single cells G = (V, E), where each node in V' corresponds to a cell and
each edge in F represents a neighborhood relation (Figure 1) [3, 16-18|. However, the complexity
of G and noise-related spurious edges make it both hard to trace a putative biological process from
progenitor cells to different fates and to decide whether groups of cells are in fact connected or
disconnected. Moreover, tracing isolated paths of single cells to make statements about a biological
process comes with too little statistical power to achieve an acceptable confidence level. Gaining
power by averaging over distributions of single-cell paths is hampered by the difficulty of fitting
realistic models for the distribution of these paths.

We address these problems by developing a statistical model for the connectivity of groups of cells,
which we typically determine through graph-partitioning [18-20] or alternatively through clustering
or experimental annotation. This allows us to generate a simpler PAGA graph G* (Figure 1) whose
nodes correspond to cell groups and whose edge weights quantify the connectivity between groups.
The statistical model considers groups as connected if their number of inter-edges exceeds a fraction
of the number of inter-edges expected under random assignment. The connection strength can be
interpreted as confidence in the presence of an actual connection and allows discarding spurious,
noise-related connections (Supplemental Note 1). While G represents the connectivity structure of
data at single-cell resolution, the PAGA graph G* represents the connectivity structure of data at
the chosen coarser resolution of the partitioning and allows to identify connected and disconnected
regions of data. Following paths along nodes in G* means following an ensemble of single-cell paths
that pass through the corresponding cell groups in G. By averaging over such an ensemble of
single-cell paths, it becomes possible to trace a putative biological process from a progenitor to fates
in a way that is robust to spurious edges, provides statistical power and is consistent with basic
assumptions on a biological trajectory of cells (Supplemental Note 2). Note that by varying the
resolution of the partitioning, PAGA generates PAGA graphs at multiple resolutions, which enables
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Figure 1 | Partition-based graph abstraction generates a topology-preserving map of single
cells. High-dimensional gene expression data is represented as a kNN graph by choosing a suitable low-
dimensional representation and an associated distance metric for computing neighborhood relations — in
most of the paper we use PCA-based representations and Euclidean distance. The kNN graph is partitioned
at a desired resolution where partitions represent groups of connected cells. For this, we usually use the
Louvain algorithm, however, partitions can be obtained in any other way, too. A PAGA graph is obtained by
associating a node with each partition and connecting each node by weighted edges that represent a statistical
measure of connectivity between partitions, which we introduce in the present paper. By discarding spurious
edges with low weights, PAGA graphs reveal the denoised topology of the data at a chosen resolution and
reveal its connected and disconnected regions. Combining high-confidence paths in the PAGA graph with a
random-walk based distance measure on the single-cell graph, we order cells within each partition according
to their distance from a root cell. A PAGA path then averages all single-cell paths that pass through the
corresponding groups of cells. This allows to trace gene expression changes along complex trajectories at
single-cell resolution.

a hierarchical exploration of data (Figure 1, Supplemental Note 1.3).

To trace gene dynamics at single-cell resolution, we extended existing random-walk based distance
measures (Supplemental Note 2, Reference [8]) to the realistic case that accounts for disconnected
graphs. By following high-confidence paths in the abstracted graph G* and ordering cells within
each group in the path according to their distance d from a progenitor cell, we trace gene changes at
single-cell resolution (Figure 1). Hence, PAGA covers both aspects of clustering and pseudotemporal
ordering by providing a coordinate system (G*,d) that allows us to explore variation in data while
preserving its topology (Supplemental Note 1.6). PAGA can thus be viewed as an easily-interpretable
and robust way of performing topological data analysis [10, 21] (Supplemental Note 3).

PAGA-initialized manifold learning produces topology-preserving single-cell embeddings.

The computationally almost cost-free coarse-resolution embeddings of PAGA can be used to initialize
established manifold learning and graph drawing algorithms like UMAP [22] and ForceAtlas2 (FA)
[23]. This strategy is used to generate the single-cell embeddings throughout this paper. In contrast
to the results of previous algorithms, PAGA-initialized single-cell embeddings are faithful to the
global topology, which greatly improves their interpretability. To quantify this claim, we took
a classification perspective on embedding algorithms and developed a cost function KLge, (Box
and Supplemental Note 4), which captures faithfulness to global topology by incorporating geodesic
distance along the representations of data manifolds in both the high-dimensional and the embedding
space, respectively. Independent of this, PAGA-initialized manifold learning converges about 6 times
faster with respect to established cost functions in manifold learning (Supplemental Figure 10).
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Boz: Taking a classification view on embedding algorithms, we quantify how faithful an embed-
ding is to the global topology of the high-dimensional data by comparing the distributions P
and @ of edges in the high-dimensional and embedding spaces using a weighted Kullback-Leibler
divergence

KLgeo(Pl|Q) = KLdl“(P 1Q) + KL (P|Q)

geo geo
Pe de 1—pe
= Z ppe IOg dq( _pe) log 1_ s
ecEx. de
disconnected cost overlapping cost

where p. and g, are the probabilities for an edge being present in the kNN graphs in the high-
dimensional and embedding spaces, respectively. Analogously, d? and d¢ denote random-walk
based estimators of geodesic distances on the manifolds in these spaces, respectively. Fg. denotes
the edge set of the fully connected graph (Supplemental Note 4, Supplemental Figure 10).

PAGA consistently predicts developmental trajectories and gene expression changes in datasets re-
lated to hematopoiesis.

Hematopoiesis represents one of the most extensively characterised systems involving stem cell dif-
ferentiation towards multiple cell fates and hence provides an ideal scenario for applying PAGA to
complex manifolds. We applied PAGA to simulated data (Supplemental Note 5) for this system
and three experimental datasets: 2,730 cells measured using MARS-seq [24], 1,654 cells measured
using Smart-seq2 [25] and 44,802 cells from a 10x Genomics protocol [26]. These data cover the dif-
ferentiation from stem cells towards, cell fates including erythrocytes, megakaryocytes, neutrophils,
monocytes, basophils and lymphocytes.

The PAGA graphs (Figure 2) capture known features of hematopoiesis, such as the proximity of
megakaryocyte and erythroid progenitors and strong connections between monocyte and neutrophil
progenitors. Under debate is the origin of basophils. Studies have suggested both that basophils
originate from a basophil-neutrophil-monocyte progenitor or, more recently, from a shared erythroid-
megakaryocyte-basophil progenitor [27, 28]. The PAGA graphs of the three experimental datasets
highlight this ambiguity. While the dataset of Paul et al. falls in the former category, Nestorowa et
al. falls in the latter and Dahlin et al., which has by far the highest cell numbers and the densest
sampling, allows us to see both trajectories. Aside from this ambiguity that can be explained by
insufficient sampling in Paul et al. and Nestorowa et al., even with the very different experimental
protocols and vastly different cell numbers the PAGA graphs show consistent topology between the
three datasets. Beyond consistent topology between cell subgroups, we find consistent continuous
gene expression changes across all datasets — we observe changes of erythroid maturity marker genes
(Gata2, Gatal, Kifl, Epor and Hba-a2) along the erythroid trajectory through the PAGA graphs
and observe sequential activation of these genes in agreement with known behaviour. Activation of
neutrophil markers (Elane, Cepbe and Gfil) and monocyte markers (Irf8, Csflr and Ctsg) are seen
towards the end of the neutrophil and monocyte trajectories, respectively. While PAGA is able to
capture the dynamic transcriptional processes underlying multi-lineage hematopoietic differentiation,
previous algorithms fail to produce robust or meaningful results (Supplemental Figures 8 and 9).

PAGA maps single-cell data of whole animals at multiple resolutions.

Recently, Plass et al. [15] reconstructed the first cellular lineage tree of a whole adult animal, the
flatworm Schmidtea mediterranea, using PAGA on scRNA-seq data from 21,612 cells. While Plass et
al. focussed on the tree-like subgraph that maximizes overall connectivity — the minimum spanning
tree of G* weighted by inverse PAGA connectivity — here, we show how PAGA can be used to
generate maps of data at multiple resolutions (Figure 3a). Each map preserves the topology of
data, in contrast to state-of-the-art manifold learning where connected tissue types appear as either
disconnected or overlapping (Figure 3b). PAGA’s multi-resolution capabilities directly addresses
the typical practice of exploratory data analysis, in particular for single-cell data: data is typically
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Figure 2 | PAGA consistently predicts developmental trajectories and gene expression changes
across datasets for hematopoiesis. The three columns correspond to PAGA-initialized single-cell embed-
dings, PAGA graphs and gene changes along PAGA paths. The four rows of panels correspond to simulated
data (Supplemental Note 5) and data from Paul et al. [24], Nestorowa et al. [25] and Dahlin et al. [26],

respectively. The arrows in the last row mark the two trajectories to Basophils.

One observes both consis-

tent topology of PAGA graphs and consistent gene expression changes along PAGA paths for 5 erythroid,

3 neutrophil and 3 monocyte marker genes across all datasets.

The cell type abbreviations are: Stem for

stem cells, Ery for erythrocytes, Mk for megakaryocytes, Neu for neutrophils, Mo for monocytes, Baso for
basophils, B for B cells, Lymph for lymphocytes.
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Figure 3 | PAGA applied to a whole adult animal. a, PAGA graphs for data for the flatworm
Schmidtea mediterranea [15] at tissue, cell type and single-cell resolution. Only by initializing a single-cell
embedding with the embedding of the cell-type PAGA graph, it is possible to obtain a topologically meaningful
embedding. Note that the PAGA graph is the same as in Reference [15], only that here, we neither highlight
a tree subgraph nor used the corresponding tree layout for visualization. b, Established manifold learning for
the same data. c, d, Predictions of RNA velocity evaluated with PAGA for two example lineages: epidermis
and muscle. We show the RNA velocity arrows plotted on a single-cell embedding, the standard PAGA
graph representing the topological information (only epidermis) and the PAGA graph representing the RNA
velocity information.

reclustered in certain regions where a higher level of detail is required.
PAGA abstracts information from RNA wvelocity.

Even through the connections in PAGA graphs often correspond to actual biological trajectories, this
is not always the case. This is a consequence of PAGA being applied to kNN graphs, which solely
contain information about the topology of data. Recently, it has been suggested to also consider
directed graphs that store information about cellular transition based on RNA velocity [29]. To
include this additional information, which can add further evidence for actual biological transitions,
we extend the undirected PAGA connectivity measure to such directed graphs (Supplemental Note
1.2) and use it to orient edges in PAGA graphs (Figure 3c). Due the relatively sparsely sampled,
high-dimensional feature space of scRNA-seq data, both fitting and interpreting an RNA velocity
vector without including information about topology — connectivity of neighborhoods — is prac-
tically impossible. PAGA provides a natural way of abstracting both topological information and
information about RNA velocity.

Next, we applied PAGA to 53,181 cells collected at different developmental time points (embryo days)
from the zebrafish embryo [30]. The PAGA graph for partitions corresponding to embryo days accu-
rately recovers the chain topology of temporal progression, whereas the PAGA graph for cell types
provide easily interpretable overviews of the lineage relations (Figure 4a). Initializing a ForceAt-
las2 layout with PAGA coordinates from fine cell types automatically produced a corresponding,
interpretable single-cell embedding (Figure 4a). Wagner et al. [30] both applied an independently
developed computational approach with similarities to PAGA (Supplemental Notes 3) to produce a
coarse-grained graph and experimentally validated inferred lineage relations. Comparing the PAGA
graph for the fine cell types to the coarse-grained graph of Wagner et al. reproduced their result
with high accuracy (Figure 4b).
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Figure 4 | PAGA applied to zebrafish embryo data of Wagner et al. [30]. a, PAGA graphs obtained
after running PAGA on partitions corresponding to embryo days and coarse cell types and a PAGA-initialized
single-cell embedding colored by the same quantities. b, Performance measurements of the PAGA prediction
compared to the reference graph of Wagner et al. show high accuracy. False positive edges and false negative
edges for the threshold indicate by a vertical line in the left panel are also shown.

PAGA increases computational efficiency and interpretability in general exploratory data analysis
and manifold learning.

Comparing the runtimes of PAGA with the state-of-the-art UMAP [22] for 1.3 million neuronal cells
of 10x Genomics [31] we find a speedup of about 130, which enables interactive analysis of very
large-scale data (90s versus 191 min on 3 cores of a small server, tSNE takes about 12 10h). For
complex and large data, the PAGA graph generally provides a more easily interpretable visualization
of the clustering step in exploratory data analysis, where the limitations of two-dimensional repre-
sentations become apparent (Supplemental Figure 12). PAGA graph visualizations can be colored by
gene expression and covariates from annotation (Supplemental Figure 13) just as any conventional
embedding method.

PAGA is robust and qualitatively outperforms previous lineage reconstruction algorithms.

To assess how robustly graph and tree-inference algorithms recover a given topology, we developed a
measure for comparing the topologies of two graphs by comparing the sets of possible paths on them
(Supplemental Note 1.3 and 1.4, Supplemental Figure 4). Sampling widely varying parameters, which
leads to widely varying clusterings, we find that the inferred abstraction of topology of data within
the PAGA graph is much more robust than the underlying graph clustering algorithm (Supplemental
Figure 5). While graph clustering alone is, as any clustering method, an ill-posed problem in the
sense that many highly degenerate quasi-optimal clusterings exist and some knowledge about the
scale of clusters is required, PAGA is not affected by this.

Several algorithms [6, 11-13] have been proposed for reconstructing lineage trees (Supplemental Note
3, [4]). The main caveat of these algorithms is that they, unlike PAGA, try to explain any variation
in the data with a tree-like topology. In particular, any disconnected distribution of clusters is
interpreted as originating from a tree. This produces qualitatively wrong results already for simple
simulated data (Supplementary Figure 6) and only works well for data that clearly conforms with
a tree-like manifold (Supplementary Figure 7). To establish a fair comparison on real data with
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the recent popular algorithm, Monocle 2, we reinvestigated the main example of Qiu et al. [6] for a
complex differentiation tree. This example is based on the data of Paul et al. [24] (Figure 2), but
with cluster 19 removed. While PAGA identifies the cluster as disconnected with a result that is
unaffected by its presence, the prediction of Monocle 2 changes qualitatively if the cluster is taken
into account (Supplementary Figure 8). The example illustrates the general point that real data
almost always consists of dense and sparse — connected and disconnected — regions, some tree-like,
some with more complex topology.

Discussion

In view of an increasing number of large datasets and analyses for even larger merged datasets, PAGA
fundamentally addresses the need for scalable and interpretable maps of high dimensional data. In
the context of the Human Cell Atlas [32] and comparable databases, methods for their hierarchical,
multi-resolution exploration will be pivotal in order to provide interpretable accessibility to users.
PAGA allows for the first time to present information about clusters or cell types in an unbiased,
data-driven coordinate system by representing these in PAGA graphs. In the context of the recent
advances of the study of simple biological processes that involve a single branching [7, 8], PAGA
provides a similarly robust framework for arbitrarily complex topologies. In view of the fundamental
challenges of single-cell resolution studies due to technical noise, transcriptional stochasticity and
computational burden, PAGA provides a general framework for extending studies of the relations
among single cells to relations among noise-reduced and computationally tractable groups of cells.
This could facilitate obtaining clearer pictures of underlying biology.

In closing, we note that PAGA not only works for scRNA-seq based on distance metrics that arise
from a sequence of chosen preprocessing steps, but can also be applied to any learned distance metric.
To illustrate this point, we used PAGA for single-cell imaging data when applied on the basis of a
deep-learning based distance metric. Eulenberg et al. [33] showed that a deep learning model can
generate a feature space in which distances reflect the continuous progression of cell cycle. Using
this, PAGA correctly identifies the biological trajectory through the interphases of cell cycle while
ignoring a cluster of damaged and dead cells (Supplemental Note 5.6).

Code and Data availability

PAGA as well as all processing steps used within the analyses are available within Scanpy [34]:
https://github.com/theislab/scanpy. The analyses and results of the present paper are available
from https://github.com/theislab/paga. Data is linked from https://github.com/theislab/

paga.
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Supplemental Note 1: Theoretical background of PAGA

The simplest measure for connectivity of two partitions of G is the number of connecting edges
between two partitions. However, this number alone depends strongly on the partition sizes, which
prevents its meaningful interpretation. Instead, we compute a statistic of this number that measures
confidence in an actual connection between two partitions of G, as opposed to a connection that is
based on spurious edges. Hence, in the visualization of PAGA graphs, edge width should be inter-
preted as a measure of connectivity whose strength indicates the presence of an actual connection.

Note that topological data analysis (TDA) [21] uses clustering algorithms that lead to overlapping
clusters and by that circumvents a statistical definition of a connectivity measure: two clusters are
connected if they have finite overlap. In contrast to the easily interpretable, essentially parameter-free
and computational efficient Louvain algorithm for modularity optimization [19] — which therefore
has become the standard for single-cell analysis [18] — TDA comes with problems in all three
respects and is hence not widely used despite it’s recent proposition for scRNA-seq [10]. Also, to
date, overlapping graph partitioning algorithms, which also provide a notion of connectivity based
on overlaps are, to date, no practical alternative.
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Supplemental Note 1.1: PAGA for mapping connectivity between partitions

In order to derive a statistical model for connectivity between partitions of kNN graphs of data we
need to study the distribution of inter-edges between partitions of the graph. In the simplest case,
the model is a distribution conditioned on partition sizes. However, a priori, it is somewhat unclear
on which degree distribution of a graph a model for inter-edges should be based. By construction,
kNN graphs display a degree distribution “close to a constant degree k”. However, this is not an exact
constraint and can be violated. As model systems, we investigate graphs with constant and arbitrary
degree distribution. We will then choose the appropriate model by comparing model predictions with
the empirical estimates of inter-edge distributions that we obtain from kNN graphs.

Graphs with constant degree distribution.

Consider the case of a partitioned directed graph G = (V, E) with h; half-edges or “edge stubs”
attached to nodes in a given partition ¢, h; half-edges attached to nodes in a partition j and a total
of h =3, hy half-edges, which we require to be even. Connected among each other, the half-edges
give rise to the e = % = |E| edges of G. Assuming half-edges to be distinguishable and randomly
connecting half-edges constrained to a constant outdegree distribution of £k = 1 in ¢ and indegree
distribution of £ = 1 in j, one has £2:9%l possibilities of combining edges and 25, possibilities so
that exactly €;; inter-edges from partitions 7 and j are obtained, with

Qconst — (h)' Qconst — hz'h]' (h — hl — hj)‘ ' (1)
total|h 2%(%)!7 eijlhi,hj h sij!Q(hﬁeij)/z(@)!Q(hjfsij)/g(hj;aij)! 2%&_,@_%)!

The resulting probability is pdirected (| h;, hj, h) = ngﬁ,sfu hyh / thgfait’hl We now wish an estimate for
the number of inter-edges that is useful also for undirected graphs, hence, the sampling procedure
should be symmetric between 7 and j and the distribution of interest is the one of the summed

inter-edges € = €;; + €;; when connecting outgoing edges both from 7 and j,

€
Peonst(elhis hjs B) = D paest®(eijlha, hy, h)ponss (€ — il by, hi, ). (2)

67;]':0

Graphs with arbitrary degree distribution.

Consider again a partitioned directed graph G = (V, E), but now with e = |E| edges and n = |V/|
nodes. Imagine we have e; dangling outgoing edges attached to m; nodes in partition ¢ and we
randomly connect each of the dangling edges to a random node in the graph. Enumeration as
before gives Qfglf’;f possibilities of connecting these edges and Q?fjbit possibilities so that exactly €;;
inter-edges from partition ¢ to j are obtained,

bit 5 bit _ [ G\ eij i—€ij
i = (=0, 2= (O Y5y = 1), )
ij

where Q?;kretl nyom is the product of the possibilities for ¢;; inter-edges from 7 to j and the total
possibilities of edges among the remaining nodes 7. Upon definition of 6; = ™, the resulting

probability becomes a binomial

. e; i .
P (eijles ni, ny) = (;.)951(1 —0;)7 ", (4)
ij

! This is a simple expression in the bipartitioned case h = h; + h;j

directed €ij (hl + hJ)/2 (hl + hJ)/Q —E&ij
ijlhi, hj,h = h; + hjy) = 274 ’
Pconst (E Jl J + ]) ( Eij (hz - €ij)/2

10


https://doi.org/10.1101/208819
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/208819; this version posted November 4, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

n=10,n=4,k=1 n=100,n;=40,k=1 n =100, n; =50, arbit n =100, k =5, arbit, gauss
— pred const — pred const | —predk=5 0.061 —n;=10

= 04 : = 0.151 ! = 0.04 =
s ll —-- estim const s --- estim const s --knnk=5 < 0.051 -==--n;=20
| — pred arbit | — pred arbit | - umap k=5 | N | T R E R ni=30
3:(, 0.3 --- estim knn ECZ ool --- estim knn § 0.031 . i —pred k=10 § 0.04 —.— ;=50
I 44y estim umap y 0107 i estim umap I 3 --knn k=10 Il
f 02 (E l?J: 0.021 g -+ umap k=10 01: 0.031
£ $ £ £ 000
[ o1 I 0.05 1 0.01 i 00
@ 0. @ @ 0.014 @
O ‘ © O B 0.01
(=% [ [} (=% a

0.0 0.004 0.00 0.00

0O 2 4 6 8 10 12 0 200 400 600 800 1000 0 200 400
€ &€ & &€

Supplemental Figure 1 | Distribution of inter edges for random bipartitions of fixed degree and
for knn graphs. Shown are both sampling basted estimates and model predictions for different parameters.
or equivalently,

ein; einj(n —n; — 1)

€ij ™~ Binomial(ei, (9]'), E[&‘ij] = eiG- = Var[sij] = 61'(9]'(1 - 9]) = (5)

n—1 n—1

We can interpret €;; as the number of “hitting” partition j when randomly distributing the e; edges
of partition ¢ where 6; is the probability for “hitting” j for a single edge from .

As before, we wish the sampling procedure to be symmetric between ¢ and j, hence are interested
in the distribution of € = €;; + ;;, which reads

3
Parbit (€]€4, €5, ni, nj,n) = Z (6'2.> < €j > Gjij (1— Qj)ersijeif—&'j (1— ei)ej*EJrEij_ (6)
€i;=0 €ij €%

Often, we consider sufficiently large partitions and the binomial distributions become well-approximated
by Gaussians with means and variances as in (5). Hence, ¢ is well-approximated as the sum of two
Gaussian random variables

ASym

parbit(5|ei7€j7ni7nj7n) 2N(£|5 (ei7ej?”ivnjan)v&Sym(eiaejvnivnbn))? (7)

: A e;njt+e;n;
with  £%%(e;, ej,n4,nj,n) = L=,
ASYM (. o o o o) — Gni(n=ni—Dtemi(n_n;—1)
V™ (e, €4, m4,m5,n) = T :

Assuming a knn graph with, at least on average, e; = kn; and e; = kn;, this simplifies further

ASym . ASym 2kn;n;
nb;nj,n = EVM(kng, kng,ni,nj,n) = = =37
A A kn;nj(2n—n;—n;—2)
Sym P Sym . 3 ) . — (4] 1 J
nimngm - 0 (knzv knj,mi,nj, n) = (n—1)2 (8)

Comparing model predictions with sampling based estimates for kNN graphs.

To assess how well models (2) and (7) capture the distribution of the number of inter-edges &
in sampling-based simulations, we studied three sampling-based models for bipartitioned graphs.
The first model randomly connects half-edges in a bipartitioned set of nodes to simulate constant-
outdegree k = 1 graphs with partition sizes n; and n; = n — n;. The second and third model fit
kNN graphs to data sampled from a Gaussian and proceed with randomly partitioning this graph
by assigning nodes to random binary partition label — again for fixed n; and n; = n—mn;. The third
model is equivalent to the second but uses instead of the non-symmetric kNN graph, the symmetrized
kNN graph — as results, for instance, in UMAP from the fuzzy union of local simplicial sets to each
data point [22].

Results of the sampling simulations based on estimates of 1000 samples show the following findings
(Supplemental Figure 1).
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1. There is a strong difference in the functional form of distributions for constant and arbitrary
degree graphs for small numbers of nodes (n = 10 n; = 4). For higher values (n = 100,
n; = 40), both distributions approach Gaussians (two left panels of Supplemental Figure 1).

2. The constant-degree sampling based estimate agrees well with the prediction for the constant-
degree model (2), the kNN-fitting based sampling estimate agrees well with the prediction of
the arbitrary-degree model (7) (two left panels of Supplemental Figure 1).

3. If one evaluates the kNN graph as in UMAP, one obtains a an empirical distribution that is
no longer well-described by (7) (center panels of Supplemental Figure 1).

4. The number of inter-edges depends on the partition-sizes (right panel of Supplemental Figure
1). The relation on n; and nj = n — n; can be seen to be quadratic from (2).

As mentioned, kNN graphs do not have constant-degree k distributions as nearest-neighbor-relations
among two observations x,, and x,, are often not symmetric. Still kNN graphs are somewhat “close”
to a constant degree k distribution. Supplemental Figure 1 provides strong evidence that this is also
the case when using model (7), which, in principle, accounts for arbitrary degree distributions. This
can also be theoretically understood by acknowledging that also in the model, strong deviations from
degree k are unlikely, in particular for sparse graphs with k£ < n which implies a comparatively low
variance of k.

Statistical test for disconnectedness and PAGA connectivity measure.

Given equation (7), it is straight-forward to write down a hypothesis test for disconnectedness of two

partitions ¢ and j with the null hypothesis that edges of ¢ and j are randomly connected among each

other. One can reject the hypothesis of connectedness at a p-value p with an observed inter-edge
sym s - .

number €j > observed edge numbers of partitions e;, e; and partition sizes n;, n;

8sym Sym A
ij €5 = £(es, e4,n4,n5,n)
b= dsparbit(dehejani7nj7n) ~ erf &
0

9)

(€i7 €5, nianj')n)

In order to define a connectivity measure for a PAGA graph, this p-value has the desired property
of varying in [0, 1] taking large values if it is likely that partitions are connected and taking small
values if it is unlikely. Given that we expect the null model of random connections to strongly
overestimate inter-edge numbers when applied in practice, the exponential variation of the p-value
hampers interpretation and visualization of PAGA graphs, in which edge thickness should indicate
connectivity. Using the p-values logarithmized version resolves the exponential variation, but does
not vary in [0, 1] anymore.

So, instead of using the p-value for quantifying connectivity ¢ of partitions in a PAGA graph, we
suggest a linear function of the test statistic

sym

e
Z
Cij = CL( J

such that the connectivity measure takes values in [0, 1] with ¢ = 0 corresponding to connectivity
c =0 and € > ¢ corresponding to connectivity ¢ = 1. Solving these conditions for a and b results in

(10)

—é(ei,ej,ni,nj,n) b)

(e, ej,n4,n5,m)

ESYM (eg,€5,M4,1,10)
1 else.

gym
ij : sSym Asym (. . . .
2 if E: < € €, €5, Ny, M, M
Cij — { iJ ( (2 RRAL SRR B ) (11)

This provides the basic model for “PAGA connectivity” through this paper — below we discuss how
this measure could presumably be improved.

Relation to modularity.

In practice we are not interested in random partitions but in partitions that show stronger intra-
partition than inter-partition connectivity. Typically, one uses modularity optimization [19, 35, 36|
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to compute such a partitioning. To conform with our previous notation, we not only give modularity
m;; but also a symmetrized version m:;'m of it

N . sym _ o Sym _gemod(, oy gmod(, ) _ _©i%
mij = €ij — €7°%(e4, €5), mg; =mg+my; =g — 26 (ei,e5), €M%%ei,e5) =

K e;+e;

, (12)

where e; is the number of outgoing edges of nodes in partition 7, €;; is the number of edges from
partition 7 to partition j and e;; = ;; + €; is the number of inter-edges, as before. Note that in
modularity optimization algorithms, the modularity measure is only evaluated for the same partition
i = j. Here, ém‘)d(ei, e;) is the expected number of inter-edges between partitions when randomly
connecting edges to edges — and not edges to nodes as in (7). This results in a probability 6; = %
for connecting a given edge in partition ¢ to an edge in partition j, hence e;0; expected edges from
i to j. If one assumes a directed constant-outdegree k& kNN graph with e; = kn;, €™ (e;, e;) and
2émed(e; e;) agree up to a small difference in the denominator — (e; + e; — k) versus (e; + e;) —
which comes from avoiding self-loops in é%¥™(e;, e;) — a property of kNN graphs fitted to data.

Feature-space based connectivity.

Let us now investigate whether we can relate the graph-based statistical measures of connectivity to
a notion of connectivity for the feature space X of observations «,. This will also provide the basis
for systematically benchmarking the previous graph-based measures on simulated data.

Consider the Gaussian mixture

p(@) = 5N (@) + Nz~ 5)) (13)
where N () is the standard normal distribution (g1 = 0, X' = diag(1)) and pe = § denotes the
mean of a second shifted normal distribution. Data sampled from this model show two clusters if
the distance between the cluster centers § = |d| is large enough. Otherwise, upon visual inspection,
the data “appear to be connected” even though model selection on Gaussian mixture models might
still select (13) as the model that most likely explains the data. While the structure of the model
(13) should be considered topologically disconnected as it does not rely on the parametrization of a
connected manifold, clearly, a kNN-graph fitted to data sampled is strongly connected across clusters
if the cluster centers are close enough.

Can we define a notion of connectivity on the level of the model that reflects the connectivity
observed in the knn graph? We suggest to define a “connected region” of the model as a subset of its
support in which it is not possible to determine the cluster origin of a given sample with confidence
higher than €, that is

C = {@|p(aln = p1) - plaln = p2) < €. (14)

We can then consider clusters as connected if the “connected region” has probability mass greater
than some threshold «a:

po = /Cdccp(zc) > a, (15)

hence pc provides a measure of connectivity that measures how likely one observes “unassignable
points” or “connecting points” when sampling from the cluster model. The corresponding empirical
estimator for {x,} and n observations

o = Hx, |z, € C’}|’

n

(16)
provides a measure for the connectivity of the empirical distribution, given the model assumption.

Clearly, this is not yet a confidence measure for connectivity as arises from a hypothesis test. Testing
the null hypothesis that clusters are disconnected requires to fix the parameter §: then one can test
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whether the fraction of “connecting points” p¢ is significantly higher than po as predicted the null
model — if this is the case, one judges that the data is connected. However, fixing a parameter §
to some value can only be done in an ad-hoc way. Considering the alternative of testing the null
hypothesis that cluster centers are identical does not provide an answer that uses the wished notion of
connectivity. Finally, testing the null hypothesis that clusters are connected would require to specify
a model class that models connectivity accurately, which would require a manifold-based model with
continuous latent variables that parametrize the manifold. To circumvent these problems, we further
investigate the estimator pc as a direct measure for connectivity.

In particular, we want to compare p¢c as arises from a cluster model with the subset of inter-cluster
edges in the corresponding kNN graph. In the case of example (13), this amounts to determining
the probability mass of the connected region

é“1‘3’36
2
pC :A dws/dwiap(l'% (17)

2 Te

where points on the hyperplane | g fulfill p(x|p = 0) — p(x|p = §) = 0 and =, determines how
“thick” the “connected region” subspace around this hyperplane is. It is determined according to

(14),
$+a S+
/s dzxs /da:J_,;N(w) = ﬁ da:(;/dacu/\/'(a: —9d) —e (18)

2 2

This can be easily solved by exploiting the radial symmetry of the integrand for the second term in
T = x5+ x s in the d — 1 dimensional subspace. Using additionally the simple form of the isotropic
Gaussian

) %—l—:cg [e%¢] %—&-:ce
Sd/ dppd_z./\/'(p)ﬁ dxsN(xs) = Sd/ dppd_Qj\f(p)/S desN(xs —06) — € (19)
0 2 0 2
d—1
where Sy = %. While this cannot be solved in closed form, the expression could be trivially
2

further simplified using the error function erf. However, note the following.

While points that fall in the “connected region” surely qualify as inter-partition edges of the kNN
graph that is partitioned according to the cluster labels, the assumption of a constant “thickness” x.
of the corresponding subspace is incompatible with KNN graphs. For large § and large p, i.e. large
distance of the “connected region” from the cluster centers, data points are more sparsely sampled
and nearest neighbors are further separated. Hence, inter-cluster edges in a kNN graph correspond
to different uncertainties € about cluster membership depending on the value of § and p and one has
to assume z. = z(d, p). As a rough approximation, we estimate (17) using x. oc xE°"*(§ + p) and

obtain, assuming z¢nst

¢ is small,

g+xe
pC /s d:L‘g/da:J_gN(m) o 02N (). (20)

2~ Le

Benchmarks for Louvain-partitioned kNN graphs for clustering data.

Let us study the result of connectivity measures (11) and (20) when applied to the Gaussian mixture
model (13) in 20 dimensions. We consider 500 randomly generated datasets {zx,} of 100 observations
x,. We consider both random partitions and Louvain partitions for increasing cluster distance § in
(13). The result is shown in Supplemental Figure 2:

a, Random partitions lead to the parabolic form of the number inter-edges predicted by (11) and
the PAGA connectivity measure ¢ is observed to vary between 0.5 and 1. The observed variance
of ¢ is the variance of the rescaled ¢/ ém,nj,n sum of Binomial variables, hence decreases as a
square root for increasing values of n;.
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Supplemental Figure 2 | The PAGA connectivity measure provides a low-variance estimate of
inter-partition connectivity that is independent of partition sizes. While in the first three rows,
the number of inter-partition edges ¢ varies as a parabola with partition size n;, PAGA connectivity is
independent n;. The figure is based on the Gaussian mixture model (13) and considers different cluster
distances 0. From the model, we sample 100 observations x, in each of 500 simulations. a, Results for
random bipartitions. b, Results for Louvain bipartitions. ¢, Summary of subpanels of b. d, Feature-space
based estimate of connectivity (20).

b, Louvain partitioning a kNN graph deviates considerably from the random model already for
cluster distance § = 0, which is expected as the number of inter-edges is optimized to a local
minimum. However, the PAGA connectivity measure ¢ correctly corrects for the variation of
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Supplemental Figure 3 | Connectivity of clusters sampled from Gaussian mixture model for
different values of the standard deviation. Here, we show samples from three Gaussian mixture models,
which display different degrees of clustering structure: the number of centers is fixed to 5 but the standard
deviation o is increases from 4 to 6. The figure makes evident that the same number of inter-edges for a
small cluster leads to higher confidence in a connection than for a large cluster.

€ with respect to partition sizes n;.

¢, The summary statistics clearly shows that PAGA connectivity ¢ is distributed with a much
lower relative variance as compared to the number inter-edges .

d, Comparing the graph-based measures with the feature-space based measure of the frequency
of points falling into a “connecting region”, one observes the expected qualitative agreement.

While Supplemental Figure 2¢ shows that the connectivity measure ¢ of (11) has the desired property
of showing low variance by virtue of the corrected partition-size effect, it would be desirable to have
null model that correctly estimates the observed number of inter-edges of a Louvain-partitioned graph
at cluster distance § = 0. Evidently, such a model cannot be obtained as a simple expression but has
to be fitted to data or obtained by sampling-based techniques. Independent of the computational
burden introduced by this, which could hamper an efficient application in practice, there are many
open conceptual problems of how to estimate the null model for real data, which is beyond the scope
of this paper.

Let us finally inspect an example with several partitions sampled from a Gaussian mixture with five
cluster centers. It can be seen that connectivity of clusters shows meaningful variation and reflects
the basic assumption that a fixed number of inter-edges for small cluster gives higher confidence in
its connection than for a large cluster (Supplemental Figure 3).

Supplemental Note 1.2: PAGA for mapping transitions between partitions

In this section, we briefly outline the generalization of the PAGA idea of abstracting from single-cell
neighborhood relations to relations among groups by discarding insignificant relations attributed to
a noisy graph.

In the context of RNA velocity [29], consider again a kNN graph in d-dimensional feature space
{z,} = X = R? given a distance measure § such as Euclidean distance. Fitting a model for the
steady state of reaction dynamics from unspliced to spliced RNA for each gene allows to define a
velocity vector v, € R? for each cell ¢. By computing the projection of the velocity vector onto the
directions between the k neighbors of the cell in the kNN graph, it is possible to define a weight
matrix W with entries

(mu — wbl) " Uy

Wyypy = . 21
e T, — Ty #)

The resulting directed graph provides indication for that a cell transitions from node ¢1 to o with
a transition tendency or strength w,,,,. We note that W is not a stochastic matrix but simply the
weighted adjacency matrix of a directed graph — hence we use the convention of adjacency matrices
where w,,,, is associated with an edge pointing from ¢; to t2. For a stochastic matrix, one usually
follows the opposite convention (row vectors of probabilities and right stochastic matrices).
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In order to judge whether a given group of cells ¢ shows a significant drift or only random transitions
to another group of cells j, we first need to correct for the group sizes n; and n;. Intuitively, one
requires more transitions from ¢ to j if n; is large. In order to correct for the size effect, we again
consider the expected number of inter-edges from i to j under random sampling as in (7). This time,
however, we do not consider the symmetrized version ;5" but consider e;;. The estimator that is
corrected for n; hence reads

5 i,
L1€%,L2€ L1t2
vy = =AW 7 where g = )
J €4 ’ T n—1
ij

emj

(22)

This is in complete analogy to (11) only that here, we consider edge weights that deviate from one.

To judge whether the corrected summed difference of transition tendencies

’U?jiﬁ = Uij — Uji (23)
provide significant evidence for transitions to one group — deviates from 0 — we use a t-test. If v%iff
takes a positive significant value, we orient an arrow in the PAGA graph from ¢ to j. The negative
log p-value of the test has the desired property of taking large values if we can be confident in

transitions from ¢ to j. However, it approaches infinity for large values of w?jiff, which is undesirable.

Instead of the p-value, therefore, we use the summed transitions vldjiﬁ normalized to the standard

deviation of the n,,; = [{1]v,;.,, # 0V v,,,, # 0}| observations of

diff,i,j _ { Vi1 if Uiiig 7é 0

i A ] . 24
L1L2 _UL2L17 lf 'UL2L1 # 0’ L1 c 1,19 S ] ( )

(%

Hence, v%iff = p(vfidy and Ul(-ijiﬁ = o (vf43) and we define the PAGA transition tendency as
diff
[
~ 1]
= 2

ij

Examples are shown in Figure 3. We note that a completely different approach to modeling tran-
sitions between partitions has been proposed by David and Averbuch [37]. We also note that the
approach here does not suffer from the problems discussed in [38]. Regarding the general interpre-
tation of single-cell trajectories on snapshot data, we refer the reader to [8] and [38].

Supplemental Note 1.3: PAGA for multi-resolution analysis of data

Consider the finite node set V' of observations of cells. To define a multi-scale graph, we assume an
additional filtration {V(i)}i on V, i.e. V() being a partition or clustering of V, with at its lowest
level i = 0 being the whole set V(® = {V}, and at its highest i = n being the set of nodes
V) = {{v,}s € V}, such that for i > 0

YW e VOIw’' e v w c W, (26)

We interpret a low filtration level ¢ as a coarse-grained clustering of observations, which means a low-
resolution representation of the topology of data. Going to higher resolutions i, we aim to describe
more fine-grained aspects of the data and eventually, for ¢ = n, the single-cell level. Usually we are
only interested in a small set of coarse-grained resolutions {i1,i2} that have a meaningful biological
interpretation.

We can describe the filtration more explicitly by V® = {Wl(i), ce ,53,3}, where by definition Wl(i) L
..y qufl) = V. Then the partial order of the filtration induces a map
FO {1, mi = {1, mi) (27)
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Supplemental Figure 4 | Illustration of multi-resolution analysis for simulated data. a, b,
Partitions obtained using Louvain clustering in two runs with different parameters, equivalent to those shown
in Figure 2a: both abstracted graphs describe the same topology. Note that in Figure 2a. ¢, d, Map between
clusters of different resolutions. e, Reference partitions colored with the associated new partition that has
the largest overlap.

such that
(@) (i—-1)
W;7 C Wf(i)(j). (28)
We can concatenate this to get for i/ < ¢

f(i:i/) = f(i/) o f(i/-H) ©...0 f(i)’ (29)

which lets us map any cluster on level 7 to a lower resolution 7.

Beyond Figure 3 and Figure 4, Supplementary Figure 4 shows a particularly simple example for
a multi-resolution embedding for the simulated data of Figure 2. Supplemental Figure 4a and b
show partitioned single-cell graphs and the associated PAGA graphs at two resolutions that differ
from the one in Figure 2. Supplemental Figure 4c and d visualize the map (29) between clusters
at different resolutions via association matrices. Supplemental Figure 4e shows the single-cell graph
colored with mapped partitions.

Within PAGA, we combine this with an additional connectivity structure between vertices (v1, v2).
We therefore assume a given graph G = (V, E) on V' with edges e = {v1,v2} such that vy # vy € V.
The edges may possibly be weighted with a function w(e) or be directed (vy,v2).

The filtration V® induces coarse-grained graphs G = (V(i), E(i)), where multiple definitions of
coarse-grained edge sets could make sense. For instance, one could define the “complete abstracted
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graph” for resolution 4 by identifying F(™) := E and demanding

i =1 i—1 i—
e = {wy,uy € BO o (WD) Wiy e BUY, (30)

That is, any two supersets are connected if there is a connection one level below and hence on any
level below. This is theoretically attractive since it is transitive, but is problematic in practice. It is
not robust for noisy graphs and leads to strongly connected coarse-grained graphs that reflect the
exact connectivity of the single-cell graph.

PAGA solves this by generating weighted coarse-grained graphs, which are then “abstracted” by
thresholding low-weight edges. The simplest weight would be the corresponding number of inter-
edges in the single-cell graph. Within PAGA, we use a statistical model to derive the weight (11)
as the number of inter-edges in the single-cell graph divided by the expected number of inter-edges
when assuming random connections (Supplemental Note 1.1).

Given an abstracted graph {G } as defined above, we can now study paths across resolutions. We

i—1) _ (i-1)

say that a low-resolution path p(i—1) = (wj1 e j(k)) on GU~1 represents a high-resolution path

p' on G if
fwl w ye B, k=00, ko= 06 +1). (31)

Conversely, we say that a high-resolution path p(® = (w](-?, .. .,wj(.i)) on G is represented by a

low-resolution path p—1 on GG—1 if

(D i
{w Wi Gy Wpe Gi+1) } € B, (32)

Note that the complete abstracted graph represents all high-resolution paths. However, a “good
abstraction” of a high-resolution graph represents many high-resolution paths while being as sparse
as possible. Sparsity arises naturally by demanding that the abstracted graph only represents those
high-resolution paths that are statistically well supported, which is achieved through (11). This also
defines the sense in which an abstracted graph can be said to be “topology preserving”.

Supplemental Note 1.4: Robustness of PAGA

Let us take a more practical view on the question of whether the topology of two abstracted graphs
G7 and G35 agree under the constraint that the node labels of G7 and G35 are consistent with each
other. Moreover, instead of only detecting exact matches, we aim for a continuous measure of
agreement.

Associating a partitioning with a reference partitioning.

To establish such a measure, we first compute the overlaps of the partitions labelled by G7 and by
G35 (Supplemental Figure 4a, b). By that, we generate non-unique associations between partitions,
as visualized in an association matrix (Supplemental Figure 4c). The association matrix can either
be normalized with respect to the reference groups V;* (Supplemental Figure 4c), with respect to
the new groups V5 (Supplemental Figure 4d) or with respect to the union of partitions, which
leads to the Jaccard index. Instead of the Jaccard index we want a score that measures how well
two partitions mutually overlap — are mutually contained in each another — and consider the
minimum of both mentioned normalizations — the “minimal overlap” — for each combination of
groups (i1,12) € (Vi*, V). Supplemental Figure 4e colors each partition in V;* with the partition in
V5' with which it has the largest minimal overlap.

Comparing paths in abstracted graphs.

For each shortest path between two leaf nodes in G5, there is a shortest path between the associated
nodes in G]. This enables to compare the two paths and to count the fraction of steps that are consis-
tent among two paths. To measure the agreement of the topologies between two abstracted graphs,
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Supplemental Figure 5 | Robustness of PAGA. Sampling a wide variety of the input parameters
(numbers of neighbors in the kNN graph and resolution of the Louvain partitioning) results in vastly varying
numbers of partitions, hence vastly different clusterings of the data; note the large spread of the number of
Louvain partitions. Nonetheless, the topology is robustly inferred. a, Simulated data as in Figure 2. b, Data
of Reference [24] as in Figure 2.

we compute the fraction of agreeing steps and the fraction of agreeing paths over all combinations
of leaf nodes in two given abstracted graphs.

For instance, consider the shortest path between leafs (21, 2) in the reference graph G and the
shortest path between leafs (7, 11) in the new graph G in Supplemental Figure 4a and b, respectively:

p1 = (21,8,18,7,9,2), p; €G]
b2 = (77 27 97 10, 11)7 P2 € G; (33)

By computing the overlap of reference partitions with new partitions, we can map p; to the label
space of G35
prerPed — ((7.2)(6,7,2),(2,7),(2,9), (9,10, 3), (11, 10)), (34)

that is, partition 21 in (1 has finite minimal overlap with partitions 7 and 2 in Gg, partition 8 in
(1 has overlap with partitions 6, 7 and 2 in G, and so on.

Transitioning through path ps and counting for each transition whether it’s present or not in pllnapped

allows to count the number of agreeing steps. If all steps agree with each other, the paths p; and po

agree with each other. In the example of equation (33), ps involves 4 steps, 4 of which agree with
d

pinavped

Benchmark.

In Supplemental Figure 5, we use the just-described measure to demonstrate robustness of PAGA.
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A related measure from the literature.

Previously, it has been suggested to correlate the distribution of path lengths of all paths through
trees as a measure for topological similarity of trees [12]. Specifically, for a tree whose nodes label
sets of data points, the lengths of all paths between all pairs of data points are computed. The
correlation of such path-length sets obtained for two trees is suggested as a measure for topological
similarity of the two trees. Besides being highly redundant and costly to compute, the resulting
measure is very rough as it does not map paths onto each other; that is, it does not account for
inconsistencies of paths with the same length.

Supplemental Note 1.5: Remarks on generating and partitioning single-cell graphs

At the heart of PAGA lies the assumption that the single-cell graph G — the kNN graph of obser-
vations x, in some feature space — provides a meaningful representation of data. This assumption
is on one hand based on the community’s success with graph-based clustering [18-20], pseudotime
inference [8], visualization [39, 40| and tSNE [16, 41|. On the other hand, it is based on the observa-
tion that neighborhood graphs robustly generalize any local distance measure to a global scale. As
any fixed distance measure can at best encode a very rough notion of biological similarity with an
exploding error for large distances, it is more robust to only evaluate it locally, and construct the
global distances from the graph of neighborhood relations. See how some of us discuss this in more
detail in Supplemntal Note 3 of Reference [15].

In this paper, we only consider established preprocessing steps [40, 42, 43| for single-cell transcrip-
tomic data, each of which give rise to a different fixed distance measure. For single-cell imaging
data. we consider a learned distance measure as induced by the feature space of a deep learning
model [33]. Any other distance measure, for example, the kernel-based measure of Reference [44],
or autoencoder representations [45, 46] would also be a viable option. Finally, we remark that de-
noising the kNN graph is another step, which should be considered. This can for instance be done
by “pruning” [18] of by computing neighborhood relations in the truncated spectral approximation
of the graph’s adjacency matrix (“diffusion map” representation).

A partitioning of G that maximizes the ratio of intra- to inter-partition edges is natural in the
sense that it reveals regions of the graph with different connectivity and hence, different topology.
Optimizing this ratio is known as optimizing modularity [35]. An efficient algorithm for this [19]
has been suggested for single-cell biology by Levine et al. [18]. Loosely speaking, one expects
to obtain the clearest coarse-grained group structure of data at a fixed resolution if choosing the
partitioning that maximizes modularity. The original implementation of the Louvain algorithm could
lead to disconnected communities when nodes were assigned to a common community with a single
node connecting two or more parts of this community. When the central node was reconsidered
by the algorithm and moved to a different community, a disconnected community remained. This
unexpected behaviour could be fixed by splitting disconnected communities before each community
aggregation step in the implementation of [47]. Note that the Louvain algorithm has also been
adopted by popular single-cell analysis toolkits such as Seurat [42] and Cell Ranger [43]. Many
other possibilities for partitioning G — or clustering the data — exist: we mention spectral clustering
and the graph-based hierarchical clustering [48], which is based on a random-walk based distance
measure.

Supplemental Note 1.6: Remarks on the reconciliation of clustering with trajectory in-
ference algorithms

Here, we provide a more formal explanation of the discussion of Figure 1 in the main text. The

aim of any pseudotime of given data is to provide a continuous latent variable that associates with
continuous variation in the data; presumably the process that generated the data. Furthermore,
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pseudotemporal ordering of cells enables the identification of the relative timing of different events
during the process — it tries to represent the internal “clock” of cells as encoded in its molecular
configuration. A clustering analysis, by contrast, relates neither cells nor clusters to each other.
With the PAGA graph G*, which describes the connectivity and “continuity” relations ¢;; of clusters
i and j of G, and the pseudotime measure d(¢1,t2), which measures the continuous progression of
a cell 1 to a cell 1o, one reconciles the result of a clustering analysis with the aim of a pseudotime
analysis: Each cluster is related to any other cluster as either being disconnected or connected
with one or several paths of high confidence in G*. Moreover, within each cluster, each cell is
ordered according to pseudotime. One can hence trace a continuous process from a root cell ¢yt
in a root cluster i.,0t to any terminal cell teng in its terminal cluster ieng by following a path of
high confidence (iyoot, 1,12, .. -,%nd) in G*. In each step of this path, the pseudotemporal ordering
provides an ordering with single-cell resolution and, hence, one traces the progression of single cells
along an ensemble of paths of high-confidence in G. Thereyby, PAGA provides a topology preserving
map of cells as (G*,d). Without the PAGA graph G*, computing the ensemble of highly confident
paths from from 4,00t t0 teng in G is a computationally much harder and an unsolved problem —
only recently, during the revision of this paper, a simulation-based approximative approach has been
proposed, but not validated on many datasets [49]. Presumably, the heuristics for their inference
are less transparent and easy to control than the heuristics involved in partitioning a graph G and
generating a PAGA G*.

Supplemental Note 2: Random walks on graphs

On the single-cell level, the continuity of connections are believed to be well parametrized by a
“pseudotime” |2, 3| that measures the distance covered in a continuous progression along a manifold.
A robust kernel-based measure that can be easily extended to a graph, diffusion pseudotime, has
recently been proposed by Haghverdi et al. [8]. This measure and similar scale-free random-walk
based measures though do not account for clustering structure in the data; they are undefined for
disconnected graphs. Below, we show how to overcome this limitation by extending these measures.

Interpreting random walks and their path distributions.

It is important to note that in the whole paper, when we say ‘random walk on a graph”, we mean
a discrete-space Markov process on the state space given by the nodes of the graph and non-zero
transition probabilities between any two connected nodes.

Such random walks can be used to probe the global topology of the single-cell graph G but do not
provide a good model for the biological processes that one might hypothesize to have generated the
data in the first place. The primary deficiencies of the Markov random walk when seen as a model
for a biological process are the following.

e Undirectedness. When progressing along a differentiation trajectory, at some point, one expects
commitment of a cell to a specific fate and a directed motion to that fate with some fluctuations.
By contrast, the diffusive motion induced by the Markov random walk is highly non-directed,
which leads to unrealistic paths that go back and forth and pass through remote regions of the
graph.

e Independence of the expression of specific genes. The random walk is independent of the
expression of specific genes, which may be quite relevant for the commitment to specific fates;
it only depends on global differences in the transcriptome.

These deficiencies of the random walk become apparent already when modeling a biological process
using the simple stochastic differential equation based model discussed in Supplemental Note 5.3.

The distribution of single-cell paths that correspond to a path through the abstracted graph, by
contrast, resolves the problem of undirectedness by bounding the distribution to the ribbon of the

connected sequence of groups.
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Ezisting random-walk based distance measures.

For a single-cell graph G with n,04es nodes and negges €dges, consider the normalized graph laplacian
[50, 51]

L=I1-T, T=DA, (35)

where [ is the Npodes X Mnodes identity matrix and T is the transition matrix of the same shape. T
is obtained from the weighted adjacency matrix A of G by normalizing with row sums of A, that
is, D is the diagonal matrix that stores the degree of each node in G. In practice, we compute the
weights of the adjacency using a Gaussian decay with euclidian distance between two data points
in gene expression space, see e.g. Reference [8]; after that, we density-normalize obtained weights
[52, 53] as in Reference [8].

For a study of random walks generated by T', a spectral analysis of L and T is convement and one
hence considers the matrices L and 7', which are obtained by multiplying (35) with D~ 3 from the
left and with D3 from the right

L=I-T, T=D:TD 2. (36)

Hence, L and L have the same spectrum {1 — A1, 1 — Ag,...} and the spectrum of T" and T is given
as {1, \a,...} with Ay =1, Ay < Aq,... for a connected graph G |50, 51]. For a disconnected graph
with Ncomps disconnected components, the adjacency matrix A has block-diagonal form with ncomps
blocks and there are ncomps eigenvalues A, with value 1 and corresponding eigenvectors that are the
indicator vectors of the connected components. The eigenvectors v of T are related to the right
eigenvectors v of T as [50-52]

’67%
Vv D,

The right eigenvectors v of T" are known as “diffusion map” coordinates [52], whereas the left eigen-
vectors span the space of probability distributions of configurations of the Markov process. The first
right eigenvector, corresponding to A = 1, is the all-one vector — with only 1 as entry — and the
first left eigenvector is the stationary state of the Markov process.

Vr, L. (37)

Up, =

Using this notation, one obtains the mean commute time — the average number of steps one needs
to arrive from node ¢1 to another node 12 — in equation (38a) [50]. One obtains “diffusion distance”
[48, 52| in equation (38b) and “diffusion pseudotime” [8] in equation (38c).

. Mnodes 1 2 )
mean commute time(tq, t2) = 2Nedges g T (Vpy; — Upiy)%s (38a)
r=2 r
Mnodes 9
. . . n,
diffusion distance(™sters) (11, 15) E AP (U — gy )2, (38b)
Tnodes
A

— 2
dpt(bla L2) = Z (1 Y ) (aml - 6712)2 + (51“ - 51L2)27 (38C)

Mnodes )\T 2
dpt(1,2) = Y (1 — ) (Vrey — Vrey )2, (38d)
r=2 T
algebraic distance® (11, 19) = Z(ngl) — N2 B = R (0), (38e)

rLo
r=1

With equation (38d), we give a slightly altered definition of diffusion pseudotime, which is consistent
with the other measures and was found to be equally-well performing for applications in single-cell
biology by the authors of Reference [8] — note that using the v, basis instead of ¥, the last term
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in equation (38c) becomes zero. Highly related is algebraic distance on the graph as given in (38e)
[see e.g. 53].

Interpretation of random-walk based distance measures.

Random-walk based distances on graphs have first been used to cluster graphs in Reference [48] (38b)
and Reference [54] (38a), albeit without considering neighborhood graphs of data points. Reference
[52] proposed “diffusion distance” for measuring the similarity between data points, albeit not on a
graph, but for a Gaussian kernel matrix. Then, a random-walk based distance measure for single-
cell data has first been proposed to measure the similarity between cells by Reference [8]; again not
formulated for graphs. These authors introduced the measure of equation (38¢c), which integrates
out the number of steps ngteps in (38b) to arrive at a scale-free measure.

The dpt measure is highly similar to (38a), which is easier to interpret and scale-free, too: it
measures the average number of steps it takes to walk from ¢; to to. While equation (38b) arises as
the summed difference of transition probabilities to all other nodes for two random-walks of length
Nsteps that start at nodes ¢; and to, respectively [48, 52|, (38d) considers the sum over all numbers
of ngteps, hence a difference of “accumulated transition probabilities”, which are difficult to interpret;
the interpretation of equation (38c¢) is not easier.

Algebraic distance, which has been used for graph partitioning in recent years [53|, approximates
(38a) and diffusion pseudotime and provides the computationally most efficient way of computing a
random-walk based distance measure.

Random-walk based distance measures for disconnected graphs.

Evidently, both scale-free distance measures, mean commute time (38a) and diffusion pseudotime
(38¢), are not defined for a disconnected graph G for which ncomps > 1 eigenvalues are 1: they yield
an infinite distance even for two nodes ¢; and 1o that are in the same connected component of G.
It is important to realize that each connected component of G automatically leads to a block Tj in
the transition matrix 7" that is itself a valid transition matrix and the spectrum of 7" is the union of
the spectra of the blocks Tj. The eigenvectors of T" are the eigenvectors of the blocks Tj filled with
zeros at the positions of the other blocks [see e.g. 51|. Hence, we propose to extend mean commute
time and diffusion pseudotime for disconnected graphs as

Mmodes
1 2
mean commute time(tq,t2) = 2nNedges Z (1 — ) (Vroy — Vrey)?, (39a)
T:ncomps+1 r
Mnodes N comps
— A 2 ~ ~ ~
dpt(e1,e2) = Z (1 :")\ ) (Vpoy — Tpuy)* + Z (Vpuy — Vpiy)> (39Db)
T:ncomps+1 T r=1

Mnodes
A

dpt(L1, L2) = Z (1 — )\T>2(UN1 - UH2)2a <39C)

T=Ncomps +1

The distribution of zeros in the eigenvectors v, and 7, guarantees that for two nodes ¢1 and o in the
same connected component b, only the spectrum of the block transition matrix 73 contributes. For
two nodes ¢1 and ¢9 in two disconnected components, the measures take the sum of their maximum
values in both components, which should be interpreted as infinite. Without problem, one can make
this explicit in the equations by distinguishing cases in which ¢; and ¢ belong to the same component
from cases in which they belong to different components.

We note that, in practice, instead of summing over all eigenvectors nydes, We sum over a low number
of eigenvectors — “diffusion components” in the language of Coifman et al. [52] — as others [8, 54].

While in the present publication, we use equation (39b) throughout, we expect that equation (39a)
could be useful in the future due to its easier interpretation.

24


https://doi.org/10.1101/208819
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/208819; this version posted November 4, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplemental Note 3: Comparisons with previous approaches

Establishing fair comparisons with other algorithms is difficult mainly for two reasons. (i) Compar-
isons on real data are problematic as a quantitative undebatable ground truth is hard to obtain.
(ii) It is very easy to “make algorithms fail”, for example, by choosing an unsuitable preprocess-
ing or pathologic parameters. Hence, after a comparison of concepts (Supplemental Note 3.1), we
restrict ourselves to addressing fundamental problems and qualitatively wrong predictions of other
algorithms for simple, simulated minimal examples with known ground truth (Supplemental Note
3.2), well-known real data, where we were able to reproduce published testing conditions [6] (Sup-
plemental Note 3.3) and a comparison of runtimes (Supplemental Note 3.4). We note that a recent
comprehensive trajectory inference review [4] positively mentions PAGA.

Supplemental Note 3.1: Conceptual comparisons

Monocle 2 [6] uses “reversed graph embedding” [55], which aims to fit a geometrical model for a
graph to projections of the data to a low-dimensional latent space. Even though, in principle, any
model could be used for that, in practice, only tree-like models are computationally tractable. Hence,
Monocle 2 tries to force data into a tree-like topology without providing a statistical measure for
how reliable the resulting fit is.

Spade [11], StemID 2 [13], Eclair [12], TSCAN [56] and Mpath [57] use different clustering algorithms
such as k-means, k-medoids, hierarchical clustering or DBSCAN in a dimensionality-reduced space.
In a second step, they fit a minimum spanning tree to either the centroid or medoid distances
or to projections of cells on linear connections between centroids or medoids. In this, distances
are computed using simple, fixed distance measures such as the euclidean or the correlation-based
distance. Neither do these distances between clusters measure how well and if clusters are connected
with each other, nor do these methods try to invoke a statistical model to address this question.
The computationally expensive sampling procedures in StemID 2 and Eclair only partially alleviate
the principle problem of high non-robustness that is caused by these deficiencies. Projections on
linear connections between clusters assume a linear geometry of differentiation trajectories, which
is certainly violated in practice. Hence, Mpath, for example, has only been shown to reconstruct
processes with a single branching [57]. Moreover, it is important to note that none of the used
clustering algorithms in these methods guarantees a topology preserving coarse-graining of the data:
disconnected regions of data might cluster together and connected regions might be torn apart.

DPT [8] computes a random-walk based pseudotime for all cells. It cannot handle data with discon-
nected structure and is only able to detect single branchings which, in addition, is prone to violating
the topological structure in the data (see, e.g., Figure 2c of Reference [10]). This problem becomes
particularly pronounced in the extension of DPT to multiple branchings [34].

Rizvi et al. [10] suggest topological data analysis (TDA), in particular, the MAPPER algorithm [21]
for analyzing single-cell data. MAPPER constructs a partial coordinatization of the data in the form
of a simplicial complex, which has some similarity with the PAGA graph introduced in the present
work. Both MAPPER’s simplicial complex and the PAGA graph represent connectivity of clusters
in the data. However, the construction of MAPPER’s simplicial complex differs fundamentally
from the PAGA graph. In particular, the clusters do not correspond to regions with controlled
resolution and high intra-connectivity in the kNN graph, which are typically used in the field as
proxies for cell types or cell states. Hence, in contrast to PAGA, MAPPER does not use an easily
interpretable partitioning of the data into connected and disconnected regions, but a highly fine-
grained, overlapping clustering, where clusters merely serve a technical purpose and are computed
on a very low-dimensional map of data. Moreoever, MAPPER’s connectivity measure directly
reflects the amount of overlap between these clusters. Hence, the measure does not induce a natural
simplification by discarding statistically insignificant connections - it retains the full connectivity
information of the overlapping clustering. Very generally, MAPPER is not based on simplifying a
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Supplemental Figure 6 | Comparison with Monocle 2 and stemID 2 for simulated myeloid
differentiation and clusters. a, Prediction of graph abstraction, analogous to Figure 2. b, Prediction of
Monocle 2 [6], the best result after testing several parameters for the latent-space dimension. The clusters
(groups 7, 8 and 11, 12 in panel a) dictate the shape of the inferred tree, being responsible for three of the
four observed branches. The continuous manifold is not resolved at all. The same coloring as in panel a is
used. c, Prediction of the lineage tree of stemID 2, the successor of stemID [13]. The author of stemID,

D. Griin, ran the simulation himself. The coloring and numbering of groups is chosen internally by stemID
2.

kNN graph of data points but uses the mentioned low-dimensional representation of data. Hence,
MAPPER does not allow for a robust, random-walk-on-the-kNN-graph based distance measure for
pseudotime estimation. Even though TDA allows the definition of continuous coordinates on the
simplicial complex, their robustness and interpretability has not been shown. We interpret PAGA as
a pragmatic, easily-interpretable, scalable and robust way of performing topological data analysis.

The graph coarsening approach of Wagner et al. [30] — developed at the same time and indepen-
dently of PAGA — is also based on computing a connectivity measure based on the number of
inter-edges between clusters in the single-cell graph. However, the approach has only been validated
on a single dataset and does not provide a ready-to-use computational method for users. In addi-
tion, their metric computes for each pair of partitions the ratio of the number of inter-edges versus
the number of the union of their out-going edges, which systematically overestimates connectivity.
Assume two partitions share, relative to their size, a very small number of edges with each other and
none with any other cluster - likely, these edges are a result of noise and the clusters are actually
disconnected. However, in the approach of Wagner et al., such clusters appear as strongly connected.

The hierarchical tSNE approach of Unen et al. [58] — published during the revision of the present
paper — presents an idea for measuring “overlap between influence regions” of clusters obtained from
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Supplemental Figure 7 | Comparisons for simulated myeloid differentiation giving rise to a
simple tree-like manifold. Results using, a, graph abstraction, b, Monocle 2 [6], ¢, d, ECLAIR [12] and
e, f, DPT [8] in its hierarchical implementation [34].

density-based clustering. However, the measure is not related to the measure developed for PAGA.

The authors proceed in using this overlap as a similarity measure to implement a hierarchical version
of tSNE.

The graph-based approach p-Creode of Herring et al. [59] — published during the revision of the
present paper — uses a density-adjusted kNN graph to produce an ensemble of potential trajectories.
A consensus graph is then selected from the ensemble using a graph similarity metric.

We do not compare our method to Wishbone [7], which can only detect a single branching, nor to
the fundamentally different, fully supervised approach STEMNET [60].

Supplemental Note 3.2: Simulated minimal examples with known ground truth

We consider a minimal example with known ground truth to show that graph abstraction overcomes
qualitative conceptual problems in the design of algorithms for the inference of lineage trees. The
dataset consists in a connected tree-like manifold and two disconnected clusters and has a clearly
defined ground truth — a computational model for hematopoiesis (Supplemental Figure 11, Sup-
plemental Note 5.3) — and very little noise. Nonetheless, none of Monocle 2, StemID 2, Eclair and
DPT produce sensible results. Only when we removed the clusters from the data, these algorithms

made sensible predictions. To reproduce the following comparisons and to get more information
follow this link.

Graph abstraction recovers the ground truth (Supplemental Figure 6a). Monocle 2 [6] — even after
testing several values for the latent-space dimension in Monocle 2 [6] — fits a tree to the clusters
and misses to recognize the continuous manifold in the data (Supplemental Figure 6b). D. Griin
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Supplemental Figure 8 | Monocle 2 for data of Paul et al. [24]. a, Monocle 2’s multiple branching
example of Supplemental Figure 16 of Reference [6] using the same color coding as in the original publication.
b, Rerunning Monocle 2 with the exact same parameters as for panel b, but keeping the lymphoids as in
Figure 2a. The resulting tree changed dramatically and is no longer biologically meaningful. For example,
the lymphoid cells are placed in the myeloid differentiation and myeloid progenitors (GMP) and monocytes
(Mo) are distributed over all terminal states. As Monocle 2 does not provide confidence measures, the user
erroneously expects all results to predicted with high confidence.

ran stemID 2 — the unpublished successor of stemID [13] — on the minimal example. However, the
produced graph-like object erroneously connects one of the clusters with the manifold (Supplemental
Figure 6¢). For the minimal example, we could not produce any sensible result neither with Eclair
[12] — even after optimizing parameters in correspondence with the author G. Giecold — nor DPT
8]

As a control, we aimed to obtain sensible results with the competing algorithms and considered a
simpler dataset that only contains the continuous tree-like manifold of the previous example. Graph
abstraction recovers the ground truth (Supplemental Figure 7a). Monocle 2 can be tuned — by
adjusting the latent space dimension — to yield the correct result (Supplemental Figure 7b). Eclair
[12] obtains a wrong result even for this simple tree (Supplemental Figure 7c, d). DPT [8] does,
by construction, not infer a lineage tree but merely detects two branching subgroups; similar to a
clustering algorithm. In a hierarchical implementation [34], it detects an arbitrary number of groups.
Using the latter to detect four branchings we can detect two branchings (Supplemental Figure 7e)
but fail to detect a third. Note that only when using diffusion maps for visualization, the clustering
of groups appears natural (Supplemental Figure 7f).

Supplemental Note 3.3: Hematopoiesis

Comparisons for data of Paul et al. [2/].

In the recent Monocle 2 paper of Qiu et al. [6] the data of Paul et al. [24] served as an example for the
reconstruction of a complicated differentiation tree in Supplemental Figure 16. In the preprocessing
step for the analysis of this data, Qiu et al. removed a cluster of lymphoid cells. In many situations,
clusters of cells might not be annotated or not be clearly disconnected and it might not be clear
whether one should remove them from the data. We therefore wondered what would happen when
rerunning Monocle 2 with the exact same settings on the same data but keeping the cluster of
lymphoids. While PAGA produces the same result irrespective of the presence of this cluster —
it is simply disconnected in Figure 2, Monocle 2’s inferred tree changes dramatically and displays
qualitatively wrong biology, for instance, by placing the lymphoid cluster in the center of the myeloid
differentiation.

Comparison for data of Nestorowa et al. [25].

Supplemental Figure 9 shows a comparison for data of Reference [25].
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Supplemental Figure 9 | Comparison with Monocle 2 for data of Nestorowa et al. [25]. a, FR
embedding colored by cell type annotation. This is an alternative embedding to the one shown in Figure
2 based on the graph that was not denoised. b, Running Monocle 2 for a latent space dimension of 4
underestimates the complexity of the differentiation manifold. ¢, Running Monocle 2 for a latent space
dimension of 10 recovers the expected biology that late erythrocytes (3/Ery) and megakaryoctes (6/Mk)
appear in the same region of the tree. Nonetheless, there are qualitative inconsistencies: neutrophils (4/Neu)
and monocytes (1/Mo) appear in the same terminal branch. Megakaryocytes (6/Mk) appear in two branches.

Basophils (9/Baso) appear as progenitors of erythrocytes and megakaryoctes and the disconnected B cells
appear within the tree.

Supplemental Note 3.4: Runtimes

The authors of Monocle 2 report a runtime of 9min for 8 000 cells [61] and a linear scaling. Ex-
trapolation yields 76.5 min for 68 000 cells for which PAGA takes a few seconds — constructing the

neighborhood graph and running clustering take an additional 3 min; hence PAGA is about 25 times
faster.

PAGA for 1.3 million cells runs 90 s — constructing the neighborhood graph and running clustering
takes about 45 min each. No other trajectory inference algorithm scales to such high cell numbers.

Supplemental Note 4: Faithfulness of embeddings to global topology

Consider the cost function of the widely used tSNE algorithm [16],

Dy = 2 +pL|L’ Dy, = eXp(_d(ww wL’)2/201,2) P, =0
" oN Pk Zn;ﬁb exp(—d(x,, ®:)?/202)" 7
L+l —yol®) !
q{/L/ - ( || - - H ) 17 QLL = 07

Do+ lye — y)l?)~
L(P||Q) = Zpu Pu”.

(40)

The double sum over ¢ and ¢/ is implemented as a sum over edges e = (1,¢/) in the kNN graph
of high-dimensional observations x, € X. In the language of this paper, we say that p. = p,»
quantifies the connectivity of node ¢ with ¢/ in the high-dimensional space X and ¢. = ¢, quantifies
the connectivity in the embedding space ). The optimized cost function hence is

L(PIIQ) = Y pe logf (41)
ecEy

where we use the notation EFy to indicate that the edge set entering the optimization has been
obtained as a kNN graph in X.
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Embedding cost functions as a binary classification problem.

Let us take a different view on the quantification of how faithful the low-dimensional representation
{yi} in Y is to the topology of the high-dimensional representation {x;} in X. Let us define the
ground-truth of this classification problem to be the kNN graph Gy = (V, Ey) fitted in X. The
state space of the classification problem is given by the edge set Ef. of the fully-connected graph
Gt = (V, Et.). We note that this is similar to the procedure introduced by [62].

In this classification setting, we require an embedding algorithm to predict for each edge e in Eg.
whether it is an element of Ey. If it is an element, we assign the label [ = 1 to it, otherwise [, = 0.
For each edge, the embedding algorithm makes prediction [, = 1 with probability ¢, and [, = 0 with
1 — ge. The standard cost function used to train such a classifier is the cross-entropy H(P, Q) or
logloss, which is equivalent to the negative log-likelihood of the labels under the model

H(Pv Q) = Z Z De log(Qe)a

e€FE l.€{0,1}
1 1
= > pelog (—) + (1 —pe)log ( ) (42)
de 1—qe
GEEfC

By virtue of KL(P,Q) = H(P,Q) — H(P) and H(P) = —}_ . p._Pe, the KL divergence of predicted
distribution ) and reference distribution P is

KL(PIQ) = > 3 pelog (1Y)

e€Ere 1.€{0,1}

= Zpelog@:)+(1—pe)log<1_pe)- (43)

1—
BEEfC qe

As in the optimization of the cost-function, the reference distribution P is fixed, it does not matter
whether cross entropy or KL divergence is optimized.

Let us continue with interpreting the KL divergence, which both appears in UMAP and tSNE —
however, in the case of tSNE the second term in (43) is absent. We can interpret the two terms in
the KL divergence as follows

pe log (pe> and (1 —pe)log (1 —pe) . (44)

e 1 —qe
cost of “false negatives”, cost of “false positives”
i.e., disconnected regions i.e., overlapping regions

The first term generates cost that can be attributed to false negatives: edges in Ey that are not
“detected” by the embedding algorithm and hence miss in the predicted edge set Ey. This occurs
when a pair of points (¢,¢') is far apart in the embedding space and hence has low or zero predicted
connectivity ¢, but has high connectivity p, in the reference space X. As the cost function
diverges if any ¢, = 0 if the corresponding p, # 0, such disconnected structure should in theory not
occur. However, it is well-known that tSNE produces many spurious disconnected structures in the
embedding — this can be attributed to the fact that values for ¢. have to be clipped to finite values
so that the cost function itself remains finite and can be numerically stably optimized. Also UMAP
[22] suffers from this problem.

The second term in (43) can be attributed to false positives: edges predicted by the embedding
algorithm even though they miss in Ey. This occurs in “overlapping regions” of the embedding,
where g, is close to 1 even though p. is close to 0. This phenomenon is frequently encountered in
graph drawing algorithms such as ForceAtlas2 [23].

A novel cost function that accounts for global topology.

Both disconnected and overlapping structure in the embedding present strong violations of the global
topology represented by Gy that hinder interpretability by humans. However, in the cost function

30


https://doi.org/10.1101/208819
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/208819; this version posted November 4, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

tSNE UMAP FA PAGA + FA
KL=0.016, KLZZ5=1.241, KL3¢8"=0.023 KL=0.015, KLI5¢=0.169, KL3/"'=0.017 KL=0.019, KLI5¢=0.039, KLS%""=0.088 KL=0.016, KLZ5¢=0.043, KL24e"=0.011
‘“ eu
L 4
N & V)
il
1]
it ’ o ! .
T o~ ry 8
. o : 2 g P
© 7] = w w
-_ =] ry
=)
E
() ° ik
tem lo
tem
tSNE1 UMAP1 FA1 FA1
KL=0.065, KLgis¢=0.579, KLg£er'=0.111 KL=0.017, KLd¢=0.093, KLg4e"=0.035 KL=0.026, KLdi5¢=0.447, KLS4e"=0.047 KL=0.023, KLdi5¢=0.490, KLS%e"=0.042
o
—_—
n [N
-
o
N
N
- o~ N
T = £ g g
7] = w w
s ° 5
S
(] .
o
13 -
tSNE1 FA1 FA1
early stopping different KL measures
KL after early stopping KL Kngg KLZZ@'/
il 0] T
0.06 1
0.0250 0.20
o mm . om
5 = 0.0225 1 . 0151
S = . -
S 0044 0.0200 1 .
© ! 0.4 0.104
S 0031 001751
£ = ' =L ==t 0.2 0.05 ==
" 0021 —=| 0.0150 ] .
= == 00l — (==
T T T T T T T T T . T T T T T 0 T T T y T
UMAP PAGA FA  PAGA UMAP PAGA FA PAGA tSNE UMAP PAGA FA PAGA tSNE UMAP PAGA FA PAGA tSNE
+UMAP +FA +UMAP +FA + UMAP +FA + UMAP +FA
0.040 KL after early stopping KL 05 KLgiss KLgeer!

— -61 ’ [—
™y 0,06 === "
s ' 051 0.10
© 0.0359 : 10+
N =
S 005/ |

. 0.44
— —_— 4
@ 0.030{ 4 T 0.08
0.04+ |
- 0.3
o ‘
- 0.06 1 ¢
g 0.025 { . 0.031 0.2
—
o - 0.021 =t 0.1 e —4— 0.04 ;__E — T
A .14 .04 e
0.0201 : : : I — —
UMAP PAGA FA  PAGA UMAP PAGA FA PAGA tSNE UMAP PAGA FA PAGA tSNE UMAP PAGA FA PAGA tSNE
+ UMAP +FA + UMAP +FA + UMAP +FA + UMAP +FA

Supplemental Figure 10 | Performance of different embedding algorithms in representing of
local and global topology of high-dimensional data. Using PAGA as an initialization for established
manifold learning algorithms both leads to the best quality embeddings and enables early stopping. See (43)
for the definition of the conventional KL divergence, which quantifies the preservation of local topology, and
(46) for geodesic KL divergence KLgeo, which also accounts for preservation of global topology. Highlighted are
points in the embedding that lead to strong violations of global topology (overlapping “O” and disconnected
“D” points).

(43), these violations only contribute as strongly as violations of local topology with a weight of
order

1
|EX @] Ey’ ~ kn
where the right-hand-side estimate holds for kNN graphs. Hence, for high numbers of observations

(45)
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n, the cost of violating global topology approaches zero, even though this is in stark contrast to
what is desirable to the human interpreter.

In order to remedy this discrepancy, we suggest a weighted KL (or cross-entropy), which reflects the
desire that edges that violate the global topology carry a higher weight than edges that violate local
topology. Specifically, we suggest

KLgeo (P[|Q) = KL (PlQ) + KLEE (PI|Q)

geo geo
dd d? 1—
=Y Sopelog (29) + %5 (1 - pe)log Pel, (46)
de ge de 1- Ge
EEEfC ~~
disconnected cost overlapping cost

where d? and d denote random-walk based distances in the kNN graphs G and Gy and are hence
estimators of geodesic distances of the manifolds in X and ). See an extensive review of such
distances in Supplemental Section 2.

Clearly, geodesic distance Cagtures i}r?nportant aspects of the global topology of a manifold. The
interpretation of the factors g—;’, and ‘jl—g is hence as follows. If there is a globally disconnected region

in the embedding, this causes d¢ to diverge to infinity. If the region is also disconnected in the
q

high-dimensional reference space, the effect cancels out in Z—g, otherwise, the violation receives a

high weight in (43). The argument is analogous for overlapping regions.

PAGA provides faster convergence and more interpretable single-cell embeddings.

Throughout this paper, established manifold learning algorithms only provided embeddings that
would violate the topology of data found in the high-dimensional feature space, see for instance
Figure 3. Using (46), we can now quantify these violations and show that PAGA-initialized manifold
learning both provides embeddings that are more faithful to the global topology and allows faster
convergence also with respect to the conventional cost function (43). The results are summarized in
Supplemental Figure 10) for the first two examples shown in Figure 2.

1. The two rows showing different embeddings highlight globally disconnected points (marked as

DO, D1, ...) and globally overlapping points (marked as O0, O1, ...) identified by maximizing
P
KL divergence and the reweighted geodesic KLge, introduced in (46). Quantitative values
agree with the visual impression except for the FA embedding of Paul et al., which we would

expect to have a higher KLove'!

geo *

the weight factors Z—% and respectively. The title of the embeddings show the conventional

2. The two rows showing statistics of KL measures for different embeddings and with or without
initialization with PAGA have been produced by rerunning embedding algorithms 10 times.
They show that either PAGA+FA or PAGA+UMAP achieve the best values throughout.
The right-most panel shows KL values after early stopping, illustrate that already after 50
optimization epochs, KL values comparable to the converged result (>200 epochs) are obtained.

Supplemental Note 5: Datasets

Supplemental Note 5.1: Simulated dataset for hematopoiesis

We use a literature-curated qualitative — boolean — gene regulatory network of 11 genes that aims
to describe myeloid differentiation [64] and has been used for benchmarking the reconstruction of
gene regulatory network from a single-cell graph of state transitions in Reference |65]. The boolean
network evolves according to
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Supplemental Figure 11 | Simulated data for myeloid differentiation. Four representative realiza-
tions of time series representing differentiation to four different fates. These time series have been sampled
from (47) after transformation to a system of stochastic differential equations Reference [34, 63].

Gata2 = Gata2 N —(Gatal N Fogl) A —Pu.l,
Gatal = (Gatal vV Gata2 V Flil) N =Pu.l,
Fogl = Gatal,

EKLF = Gatal N —Flil,
Flil = Gatal A ~EKLF,
SCL = Gatal N —Pu.l, (47)
Cebpa = Cebpa N —(Gatal N Fogl N SCL),
Pu.l = (Cebpa V Pu.l) N =(Gatal vV Gata2),
cJun = Pu.l N =G fil,

EgrNab= (Pu.l A c¢Jun) N =Gfil,
Gfil = Cebpa N —EgrNab.

These boolean equations are translated into ordinary differential equations following Reference [63].
Within Scanpy [34], they are simulated as stochastic differential equations by adding Gaussian noise.

Simulations result in four classes of realizations of gene expression time series, each of which corre-
sponds to the convergence to an attractor that represents a certain cell fate of myeloid progenitors:
erythrocyte, neutrophil, monocyte and megakaryocyte (Supplemtal Figure 11). We concatenate four
typical realizations (Supplemtal Figure 11c, d) with 160 time steps, which yields 640 data points in
total.

To model clustering, we sample 640 data points from a Gaussian mixture model with two Gaussians
and random centers in an 11-dimensional space. The minimal dataset of Figure 2 and Supplemental
Figure 11 consists of the concatenated data matrices of the simulated myeloid progenitor development
data and the Gaussian mixture model, corresponding to 1280 cells.

Supplemental Note 5.2: One million neurons
As an input for the PAGA analysis, we used the kNN graph obtained by running the pp.recipe_ zheng17

[43] preprocessing function within Scanpy [34] and computing neighbors on 50 principal components.
See Supplemental Figure 12 for visualizations of these data using PAGA and UMAP.

Supplemental Note 5.3: Experimental datasets for hematopoiesis

For preprocessing the data of Paul et al. [24], we used Scanpy’s preprocessing function pp.recipe_ zheng17,
for the data of Nestorowa et al. [25], we used pp.recipe weinreb17. For the data of Dahlin et al. [26],
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Supplemental Figure 12 | PAGA and UMAP on 1.3 million neurons dataset from 10x Genomics
[31]. While PAGA takes about 90s of computation time, UMAP takes about 3h. Due to overlaying groups,
UMAP blurs the topological structure and visually suggests too much connectivity — it suggests connections
where there actually are none, as shown by PAGA. Consider the example of cluster 19, which UMAP suggests
to connect to cluster 21 whereas it actually connects to clusters 17, 30 and 8. Note that this figure is the only
instance of the main text in which we used the default initialization of UMAP and not the PAGA coordinates.
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Supplemental Figure 13 | Annotation of Louvain clusters for hematopoietic data of Paul et al.
using PAGA and ForceAtlas2. PAGA and the ForceAtlas2 (FA) embedding were computed with default
parameters. In contrast to the PAGA-initialized embedding of Figure 2, the single-cell layout shows overlap-
ping structure. While this is a relatively small and simple dataset an interpretable single-cell embedding, it
exemplifies that the PAGA graph can be used as an even easier accessible visualization of the data. Both
PAGA and single-cell graph show the Louvain clusters, an erythroid branch marked by Hba-a2, a neutrophil
branch marked by Elane and a monocyte branch marked by Irf8.

we used the preprocessing of the original publication. We then computed kNN graphs on 20 principal
components with k = 4 for Paul et al. and Nestorowa et al. and for kK = 7 for Dahlin et al.; as in
the original publication. PAGA can be applied on the resulting kNN graphs and yields meaningful
results. However, for Figure 2, we further denoised the graph by approximating its adjacency matrix
with the first 15 spectral components. We performed this approximation by recomputing a kNN
graph using the first 15 diffusion components of the PCA-based graph. For this recomputation of
the KNN graph, we used & = 10 for Paul et al. and Nestorowa et al. and for kK = 15 for Dahlin et
al.. We note that denoising the kNN graph by a different technique has already been suggested in
Reference [18].
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Supplemental Figure 14 | Abstracted graph for deep learning based feature space. Analyzing
single-cell images via a deep learning based distance metric. Graph abstraction correctly recognizes the cluster
of damaged cells as not belonging to the biological path that corresponds to cell cycle evolution through the
interphases G1, S and G2. a, Abstracted graph with Louvain partitions. b, Associated cell cycle phases. c,
DNA content along a valid path in the abstracted graph. d, The DNA content along an invalid path that
involves the damaged cells shows a clear non-biological kink.

See Supplemental Figure 13 for an example of annotating clusters using PAGA for Paul et al. [24].

Supplemental Note 5.4: Planaria

For the analysis of the Planaria data of [15], we used the preprocessing of these authors. We
computed a kNN graph on 30 principle components with 30 neighbors.

Supplemental Note 5.5: Zebrafish embryo

As an input for the PAGA analysis, we used the kNN graph and clustering of Wagner et al. [30] as
provided by the authors.

Supplemental Note 5.6: Deep-learning-processed image data

Without extensive preprocessing, the graph of neighborhood relations of data points in gene expres-
sion space is useless if computed with a simple fixed distance metric (euclidian, cosine, correlation-
based, etc.). If one considers the pixel space of images the problem is even worse and it is impossible
to come up with preprocessing methods that lead to a meaningful distance metric. It has recently
been shown that a deep learning model can generate a feature space in which distances reflect the
continuous progression of cell cycle and a disease [33], that is, deep learning can generate a feature
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space in which data points are positioned according to biological similarity and by that generates a
distance metric that is much more valuable than a simple fixed distance metric. We demonstrate that
graph abstraction is useful for reconstructing the cell cycle from image data while and identifying a
cluster of damaged cells (Supplementary Figure 14).
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