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ABSTRACT

Spiking Neural Network (SNN) simulations
require internal variables – such as the
membrane voltages of individual neurons and
their synaptic inputs – to be updated on a
sub-millisecond resolution. As a result, a
single second of simulation time requires many
thousands of update calculations per neuron.
Furthermore, increases in the scale of SNN
models have, accordingly, led to manyfold
increases in the runtime of SNN simulations.
Existing solutions to this problem of scale
include high performance CPU based simulators
capable of multithreaded execution (“CPU
parallelism”). More recent GPU based
simulators have emerged, which aim to utilise
GPU parallelism for SNN execution. We have
identified several key speedups, which give
GPU based simulators up to an order of
magnitude performance increase over CPU
based simulators on several benchmarks.
We present the Spike simulator with three
key optimisations: timestep grouping, active
synapse grouping, and delay insensitivity.
Combined, these optimisations massively
increase the speed of executing a SNN
simulation and produce a simulator which is, on
a single machine, faster than currently available
simulators.

Keywords: Spiking Neural Networks, Point Neuron Models,

GPGPU, GPU, CUDA, Optimisation

1 INTRODUCTION

Point neuron based Spiking Neural Networks
(SNNs) have been the focus of scientific
investigation for several decades. These kinds of

models may be used to simulate the ‘spiking’
dynamics of real neurons in the brain, which
communicate with each other by emitting electrical
pulses called action potentials or ‘spikes’. In this
pursuit, a number of SNN simulators have emerged
(Vitay et al., 2015; Zenke and Gerstner, 2014;
Stimberg et al., 2014; Yavuz et al., 2016; Linssen
et al., 2018), which provide combinations of high
speed execution, hardware support, and simplicity
when defining models.

The simulation speed of SNNs is particularly
difficult to optimise. This is due to both the
neuron temporal dynamics and their interruption
by incoming synaptic events. Spiking neurons have
at minimum a single internal variable referencing
their membrane voltage. Commonly, the dynamics
of this membrane voltage are solved numerically
at a sub-millisecond timestep. Though there are
alternative, sometimes analytic, methods to solve
these dynamics, in a network of interacting
neurons any numerical integration method requires
interruption upon the arrival of spikes to a neuron.
This interruption is necessary due to both the
discontinuous nature of neuron membrane voltages
during an action potential, and the discontinuous
synaptic input changes upon the arrival of a
pre-synaptic spike. Upon each of these events,
the membrane dynamics are altered in a non-
integratable fashion and therefore even analytic or
higher-order numerical integration schemes must
halt at the discontinuity and be restarted. For this
reason, the forward-euler first order numerical
integration method is commonly used for SNN
simulations, which means that small timesteps are
required.
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Networks require many thousands of membrane
voltage updates for a single second of simulation
time. This is a large number of updates which we
must consider before even addressing the number
of calculations required to deal with synaptic inputs
or synaptic learning. Moreover, in many networks,
the number of synapses far exceeds the number of
neurons, and so these synaptic computations entail
even greater computational complexity.

Just as GPU hardware developments have brought
major performance boosts to fields such as image
processing, deep learning, and data processing at
scale, they have also been used for SNN simulation.
However, a number of GPU SNN bottlenecks
remain unresolved. This paper proposes effective
solutions to a set of GPU SNN bottlenecks and
presents these in a new GPU based SNN simulator,
Spike.

Finally, the significant benefits of GPU based
simulators over existing CPU based simulators are
yet to be compared in like-for-like benchmarks.
We therefore extend a set of benchmarks to GPU-
based simulators and make available a repository in
which all code used to produce these benchmarks
is open for continued access and evaluation by the
community.

2 METHODS

2.1 Background

Applications which leverage GPU devices make
use of a paradigm in which procedures to be
executed on data are defined as a “kernel”. Kernels,
when run, process each element of the data in
parallel over many processing threads on the GPU
device. In SNN simulations, these kernels are
defined to carry out actions such as updating the
neuron membrane voltage and converting neuron
spikes into the appropriate synaptic inputs.

This results in a simulation style in which the
neuron update kernels are traditionally run for every
timestep of the simulation, of which there may
be many tens of thousands for a simulation of
a few seconds. As the dynamics of the network

must be synchronised in time, the host must wait
until all kernels are complete before progressing
to the next timestep. This process of repeatedly
running the same kernel upon the same data is
different to other data processing algorithms run
on GPUs in which single kernels are often only
run once upon a single set of data. The action
of repeatedly executing kernels on each timestep
exacerbates an overhead commonly referred to as
a “kernel launch overhead”. Furthermore, each
kernel launch computes a minimal amount of work,
only processing spikes from a single timestep and
thereby reduces the efficiency of the kernels further.
In order to reduce the impact of the kernel launch
overhead and to maximise the amount of work per
kernel launch, we propose a novel technique we
refer to as Timestep Grouping (TG).

Significant computational time can also be lost
when a kernel is launched and not all threads are
required. The occupancy of a kernel is a term
used to refer to how many of the threads are
carrying out computations. A major issue in SNN
simulations is that on a given timestep, most (if
not all) synapses have no spikes arriving. This
results in the kernels dealing with synapses having
a very low occupancy. We describe and test several
methods for overcoming this issue of occupancy and
ultimately identify a technique hereafter referred to
as Active Synapse Grouping (ASG). This technique
is leveraged by many existing SNN simulators but
has yet to be formally published in comparison to
other approaches.

We wished to highlight ASG in order to also
compare it to recent suggestions for alternative
synaptic processing such as the use of Dynamic
Parallelism (Linssen et al., 2018) and to show the
combined efficacy of TG and ASG in a GPU based
SNN simulator. Though ASG is also implemented
by the GPU based SNN simulator GeNN (Yavuz
et al., 2016), the introduction of TG and the
combined use of ASG and TG on a GPU platform
is a novel feature of Spike.
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(A) Regular Timestep Based Network
Updates

N ← simulation run time (seconds)
timestep (seconds)

for n← 1 to N do
Launch Kernel

Update Network State
Return to Host

end for

(B) Timestep Grouping for Network Updates

N ← simulation run time (seconds)
timestep (seconds)

D ← smallest network delay (seconds)
timestep (seconds)

for n← 1 to N
D do

Launch Kernel
for d← 1 to D do

Update Network State
end for

Return to Host
end for

Figure 1. Network Update Optimisation (A)
Looping structured used for regular timestep based
network updates. (B) Looping structure used for
timestep grouping.

2.2 Timestep Grouping

On a GPU device, the execution of a kernel
causes a small delay, previously referred to as the
kernel launch overhead. This delay is compounded
over the course of a SNN simulation by the sheer
number of kernel launches, eventually leading to a
significant computational cost.

In order to mitigate this issue, we leverage a
feature of many SNN models; delayed propagation
of spikes from neuron to synapses. Many SNN
models define individual synapses as having some
delay in the arrival time of a spike from the pre-
synaptic neuron. This is often referred to as an
axonal delay. We leverage this feature to implement
timestep grouping.

Timestep grouping requires the determination
of the smallest axonal delay in the network.

Thereafter, the network’s smallest axonal delay is
used to update the network in grouped computations.
Kernels are launched, updating the network
dynamics at the numerical timestep by way of loops
as shown in Figure 1. Figure 1 A shows the regular
timestep based update in which each the network
state is updated via a kernel launch upon each
timestep. Timestep grouping allows a single kernel
to update the network multiple times (up to the
timestep grouping value) as described in Figure 1 B.
This timestep grouping is determined by calculating
the size of the smallest axonal delay in the network
as measured in the number of timesteps.

Any optimisations must ensure that the modelled
SNN dynamics are unaffected. For timestep
grouping we leverage the fact that for any time
period of the simulation which is smaller than the
minimum axonal delay, only spikes which were
emitted before that time period can affect neuron
dynamics during that time period (given the nature
of delays). Therefore, if timestep grouping is kept
smaller than (or equal to) the minimum axonal delay
it avoids affecting network dynamics by continuing
to integrate activity which was recorded before the
beginning of the timestep grouping. Furthermore,
any spiking activity within this period only affects
other neurons after the minimum axonal delay and
can therefore be collected at the end of the timestep
grouping for use in the next timestep grouping.

In GPU based computation, a given kernel is run
many times in parallel and there is no guarantee
on the order in which these parallel threads are
run. For example, if ten neurons are updated with
one kernel launch, we cannot be sure as to which
neuron will be updated first. However, since the
order of the update within a timestep grouping
period does not affect dynamics we can ignore
this lack of synchronised computation. Instead
computation is synchronised after each timestep
grouping and all network activity recorded. This
synchronisation of computations is what is referred
to in Figure 1 as “Return to Host” as all host-
side computations are executed in series. With an
appropriate timestep grouping (i.e. smaller than or
equal to the minimum delay) the neuron dynamics
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are thereby kept consistent while the number of
kernel launches are reduced by a factor equal to this
timestep grouping.

A further benefit of the timestep grouping
is the greater amount of work per kernel call.
Since kernels computing network updates require
synchronization after each update, the time required
for a single update to the network is bound by
the slowest thread. Taking neurons as an example,
the slowest threads would be those on which
the neuron fires an action potential and requires
its membrane voltage to be reset and an action
potential to be propagated. Spiking events for a
single neuron are sparse on the timescale of a
timestep meaning that for timestep based kernel
executions, the majority of neurons must await the
excess computations for the few neurons which
have spiked. In contrast, timestep grouping results
in the grouping of computations for a number
of timesteps. Thus, a greater number of action
potentials can simultaneously be processed in a
single kernel execution and more processing threads
leveraged.

The reduced kernel launch overhead and greater
work per kernel execution ultimately reduces
simulation time, as explored in the Results section
below.

2.3 Active Synapse Grouping

The number of synapses in SNN models often
exceed the number of neurons by orders of
magnitude. The synapses have a few parameters
specific to their function, including the synaptic
weight, and most often contribute to either
instantaneous current injections or to the excitatory/inhibitory
conductances of the post-synaptic neurons. However,
the synapses only require processing when a spike
from a pre-synaptic neuron reaches them (after an
axonal delay).

Checking all of the synaptic connections on every
timestep is the most algorithmically simple method
for determining when spikes due to recent firing of
pre-synaptic neurons should be propagated (shown
in Figure 2 (A)). This results, however, in a large

(A) Naive Synapse Updating

S ← Total Number of Synapses

Launch Kernel
for s← 1 to S do

if pre−synapticNeuron(s) spiked then
Update upcoming synaptic inputs

to Post− synapticNeuron[s]
end if

end for
Return to Host

(B) Active Synapse Grouping

N ← Total Number of Neurons
S ← Total Number of Synapses

ActiveSynapses← {}

Launch Kernel
for n← 1 to N do

if Neuron(n) spiked then
Add SynapsesFromNeuron(n)
to ActiveSynapses

end if
end for

Return to Host

Launch Kernel
for sactive ∈ ActiveSynapses do

Update upcoming synaptic inputs
to Post− synapticNeuron[sactive]

end for
Return to Host

Figure 2. Synaptic Update Optimisations (A)
The computationally most simple method for
detecting synaptic activations. (B) A description of
the two stage process required for Active Synapse
Grouping (ASG).

number of threads being launched which check
synapses that require no action due to the inactivity
of the pre-synaptic neuron. These threads contribute
to a significant inefficiency in computation.

Active Synapse Grouping (ASG) is an algorithmic
alternative to this approach. In this approach, a
neuron kernel is launched which loops through all
of the neurons to check if they have emitted a spike.
If a neuron has spiked, then its efferent synaptic
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connections are flagged as active. After the neuron
kernel is complete, a second kernel is launched
in order to update only the flagged synaptic
connections. Thus, only active synaptic connections
are considered for computation. This process is
outlined in Figure 2 (B). Axonal transmission delays
would correspond in this approach to an adjustment
during the updating of active synaptic connections.
We implement a buffer based approach which is
outlined in Section 2.4.1. Ultimately, synapses can
be dealt with efficiently and computation is kept to
a minimum.

The effect of ASG on simulation time is explored
in the results section below, where it is compared
to a basic synapse update algorithm and a recently
proposed GPU specific optimisation, referred to
here as Dynamic Synapse Parallelism (DSP) (Kasap
and van Opstal, 2018).

2.4 The Spike Simulator

The Spike simulator has been under development
since 2015 with the express aim of producing
a high speed GPU based SNN simulator. It
is written in C++ and CUDA with a flexible
hierarchical class structure for Neuron, Synapse,
and Plasticity Models. The past two sections
describe optimisations (TG and ASG), which have
been implemented in the Spike Simulator. Another
key goal of the Spike simulator development was
to be computationally efficient when dealing with
delayed synaptic transmission between neurons. In
particular, we aimed to ensure that no overhead was
brought to a simulation even if synaptic connections
have heterogeneous distributions of axonal delays.
This required some thought to ensure that synaptic
processing was not interrupted or made more
complex.

2.4.1 Delay Insensitive

A simulator whose performance is unaffected
by axonal delays is particularly desirable given
the range of research avenues which leverage
delays within spiking neural networks. SNN
models investigating a range of subjects including
sound localization, reservoir computing, auditory

processing and visual feature binding (Goodman
and Brette, 2010; Paugam-Moisy et al., 2008;
Erfanian Saeedi et al., 2016; Eguchi et al., 2018)
are but a few of the many studies which implement
multiple axonal delay values within a single study
for modelling purposes. Spike is a simulator
designed to optimise this process.

In order to meet the aim of a delay insensitive
simulator, every neuron in a simulation is assigned
a set of input buffers (one for each synapse type, e.g.
excitatory and inhibitory). The neurons iterate over
these buffers to collect incoming synaptic updates.
Upon each timestep, a single neurons shifts forward
on its buffers by one location and reads the synaptic
inputs for its current timestep. These buffers are
circular, meaning that upon reaching the end of a
buffer calculations return to the beginning again,
and therefore the buffer can be treated as a ring.

If we define the length of this buffer as equal
to the maximum possible synaptic delay, synaptic
inputs can be placed in this buffer at a distance
(corresponding to the delay of that synapse) from
where the neuron is currently querying for inputs.
This distance would correspond to the synaptic
delay in timesteps and would therefore ensure that
the neuron will only reach this input after the
corresponding delay. The circular nature of the
buffer ensures that memory is conserved and since
no incoming spike affects the neuron at any time
delay longer than the maximum delay, it is sized
efficiently.

Since no excess calculations are necessary, the
simulation speed is unaffected by the inclusion of
any delay structure in the synaptic transmission.
The only consideration to be made is that of memory
(these buffers introduce a memory overhead per
neuron) though the Spike simulator is focused upon
speed rather than memory efficiency.

2.5 Benchmarks

2.5.1 Network Models

Simulators are compared in this paper using two
previously published benchmarks hereafter referred
to as the Vogels-Abbott and Brunel benchmarks
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(Vitay et al., 2015; Zenke and Gerstner, 2014). The
Vogels-Abbott benchmark is based upon a reduced
scale version of the network presented in the
Vogels and Abbott (2005) publication. This network
consists of 3200 excitatory and 800 inhibitory
Leaky Integrate and Fire (LIF) neurons with a 2%
random synaptic connectivity. Synaptic connections
follow a conductance based current input model
and the network, driven by background stimulation,
maintains a firing rate close to 17Hz. The specifics
of the network dynamics and parameters are
detailed in Appendix A.

The second benchmark network is one designed
to test a larger network with a higher degree
of connectivity. The Brunel benchmark is based
upon a network adapted by Zenke and Gerstner
(2014), published in its original form by Brunel
(2000). It consists of 10,000 Poisson firing
input neurons exciting 8,000 excitatory and 2,000
inhibitory LIF neurons. These LIF neurons have
a 10% random connectivity with voltage injecting
synapses. Appendix B details the dynamics of this
network.

Furthermore, the Brunel benchmark network has
two modes; with and without plasticity. The plastic
mode consists of a weight-dependent STDP rule
operating on the excitatory to excitatory LIF Neuron
connections. This STDP rule is expected to lead
to a normal weight distribution with a mean of
0.1mV. The details of the STDP rule are explained
in Appendix B.1.

The benchmark network parameters are equivalent
to those implemented by Zenke and Gerstner (2014)
and Vitay et al. (2015). The code used to produce
the comparisons against other simulators (below)
have been collected in the following repository:

https://tinyurl.com/y7gltmsw

2.5.2 Simulator Versions

The simulators compared in this study include
four CPU based simulators – ANNarchy, Auryn,
Brian2, and NEST (Vitay et al., 2015; Zenke and
Gerstner, 2014; Stimberg et al., 2014; Linssen et al.,

2018) – and a single GPU based simulator – GeNN
(Yavuz et al., 2016).

Simulators were collected for comparison and
added to the repository (detailed below) prior to
September 2018 from each of their git repository
master branches. The specific versions of the
simulators compared can be viewed at the repository
listed above, or can be determined using the
following git commit IDs for each simulator:

ANNarchy @ 3f0e1d2
Auryn @ 6928b97
Brian2 @ 3ded00d
GeNN @ a4387e5
NEST @ d175510
Spike @ 9fd6235

2.5.3 Test System

All single thread benchmarks described in this
paper were produced in a system with the following
specifications;

• CPU: Intel i7-4770K
• GPU: NVIDIA GTX 1070 founders edition

The system used to test the multithreaded
performance has specification;

• CPU: 2x Intel Xeon E5-2600 v4 (16 cores, 32
Hyperthreads combined)

3 RESULTS

3.1 Vogels-Abbott Benchmark

This benchmark, as described in Section 2.5.1
and Appendix A , consists of 4000 Leaky-Integrate
and Fire (LIF) neurons (3200 excitatory and
800 inhibitory) with a 2% random connectivity
on conductance based synapses. This random
connectivity was produced once and thereafter
loaded for all results and simulators shown below.
The neurons in the network are excited by a
background 200pA input current (20mV per second)
and produce chaotic dynamics under the network
connectivity. This benchmark is used to describe
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the relative impacts of the various optimisations
described above and to place the speed of the
Spike simulator in the context of other available
simulators.

3.1.1 The Spike Simulator and Optimisations

The efficacies of the optimisations described in
the Methods sections 2.2 and 2.3 are hereafter tested
in the context of the Vogels-Abbott benchmark.

Figure 3. The effects of various optimisations
upon GPU SNN performance Comparing the
speed of simulations in the Spike simulator under
a range of optimisation conditions. NONE; No
optimisations, ASG; Active Synapse Grouping,
DSP; Dynamic Synapse Parallelism, and TG;
Timestep Grouping. These optimisations are also
shown in combinations. The optimisations are
presented fastest first (shorter is faster).

Figure 3 compares the simulation time required
for the Vogels-Abbott benchmark in the Spike
simulator across a range of conditions. It compares
no optimisation (NONE) in which the synaptic
updates are carried out individually in a naive
fashion to a range of optimised conditions. In
the NONE case, on each timestep every synapse
tests whether its pre-synaptic neuron has fired
and thereafter carries out any synaptic updates.
This condition is compared to two other synapse
relevant optimisations; Active Synapse Grouping
(ASG), as described in the methods section, and
Dynamic Synapse Parallelism (DSP). DSP refers to

an approach which makes use of a fairly recent
addition to the capability of NVIDIA GPUs in
which individual threads on the GPU device can,
themselves, launch more kernels (recruiting parallel
threads). This is called Dynamic Parallelism.
Dynamic Parallelism was identified by Kasap and
van Opstal (2018) as a potential speedup when
compared to a limited set of other synaptic update
methods.

Other than synaptic optimisations, we also
compare the simulator speed with and without the
inclusion of Timestep Grouping (TG). TG is further
combined with either ASG or DSP in order to show
the speedup of combining these optimisations.

Figure 3 shows a clear speedup under all
optimisation conditions compared to the non-
optimised case (NONE). The optimisation comparison
also shows that ASG provides a significantly greater
speedup than DSP. This is attributed to the fact that
even though DSP ensures that non-active synapses
are ignored, it nonetheless requires device-side
kernel launching proportional to the number of
spikes emitted during the simulation. Thus when
compared to ASG (which only requires a single
kernel launch per timestep and deals exclusively
with active synapses) DSP is markedly slower. This
furthermore indicates that the comparison carried
out by Kasap and van Opstal (2018) should be
revisited with ASG as another case for comparison.

TG shows a significant speed increase both in
the presence of synaptic optimisations and without.
Since the network computation is identical under
the NONE and TG cases, the TG benefit is attributed
to the reduction of the kernel launch overhead
and the increased work per kernel launch (see
Methods 2.2). In the Vogels-Abbott benchmark,
the minimum axonal network delay is eight times
larger than the network timestep and therefore the
number of kernel launches is reduced eightfold and
the number of spikes processed per kernel launch
eight times higher on average.
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3.1.2 Comparing Simulators (Single
Threaded)

Having established the best combination of
optimisations in the previous section, we now
compare the Spike simulator (with the TG and ASG
optimisations) to a set of competing GPU and CPU
simulators. Note that the CPU based simulators
can simulate networks with multiple CPU threads,
however we first consider all simulators with a
single CPU thread.

Figure 4. The Vogels-Abbott benchmark
comparison across simulators. All single
threaded or single GPU. Comparing the speed
of a range of available simulators on the Vogels-
Abbott benchmark. Shorter bars are faster. Note the
log scale on the y-axis. These are ordered in speed,
fastest first.

Figure 4 compares the normalized simulation
time required for the Vogels-Abbott benchmark by
a set of SNN simulators. Hereafter, normalized
simulation time indicates the average time taken
per second of a simulation, when averaged over
simulations of length 100 seconds. The simulators
are ordered by speed. Note that shorter bars here
indicate a faster speed (shorter is better) and that
the y-axis is logarithmically scaled.

Figure 4 shows the benefits of GPU based
simulators generally but also the particular
simulation efficiency of the Spike simulator. Both
GeNN and Spike (the only GPU based simulators

in this list) show a significant speedup compared to
competing simulators. These simulators are closely
followed by Auryn which has been reported as
the fastest simulator since its release (Zenke and
Gerstner, 2014; Vitay et al., 2015). This benchmark
shows a like-for-like comparison of these simulators
and their relative speeds. The NEST is an exception
on this list as it is the only simulator shown here
which does not update the neuron dynamics with
a forward-euler solver and instead makes use of a
higher-order Runge Kutta solver. Previous studies
(Zenke and Gerstner, 2014) have shown that when
the NEST is modified to simulate LIF neuron
dynamics with a forward euler solver, it gains
significant ground in simulation speed. However,
not only are the patches used for such a modification
to the NEST out of date, the same paper also showed
that nevertheless, the Auryn simulator remains the
fastest CPU based SNN simulator. Thus, we use
the performance of Auryn as a bound upon existing
CPU based simulator speed.

3.1.3 Multithreaded CPU Performance

Comparison of a single GPU versus a single
threaded CPU based simulation ignores the
performance of multithreaded CPU based simulators.
Given the multithreaded benchmark results presented
by Zenke and Gerstner (2014) and Vitay et al.
(2015), Auryn remains the leading CPU based
simulator both in the single and multithreaded use
case. We therefore use Auryn as a comparison
simulator.

Figure 5 compares the speed of Auryn in
multithreaded execution mode to the Spike
simulator on a single GPU. To date, no GPU based
simulators, including Spike, appear to support
multi-GPU computation and therefore the speed
referenced here for Spike is identical to that shown
in Figure 4.

As can be observed, only under multithreading
with eight threads does the Auryn simulation
approach the speed of Spike on a single GPU.
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Figure 5. Comparing multithreaded CPU
performance to Spike on a single GPU. This
plot shows Spike in a single GPU mode only
(therefore the dotted line is not a prediction of it’s
performance over more CPU cores but instead just
a baseline). Auryn was benchmarked with 1, 2, 4
and 8 CPU cores. An exponential decay curve was
then fit to these points to produce the plot above.

3.1.4 Simulating with multiple axonal delay
values

As described in the methods section, one focus
of the Spike simulator was to allow any delay
structure in the synaptic connectivity. This feature
of the Spike simulator is not shared by many other
simulators. The Auryn, ANNarchy, and GeNN
simulators do not, in their current states, allow
heterogeneous distributions of axonal delays on
synaptic connections. Instead, a user can create
multiple synaptic populations, each with a different
but homogeneous delay.

Figure 6 shows a comparison of the Spike
simulator to the closest competing GPU simulator,
GeNN (Yavuz et al., 2016) (see Figure 4). The
simulators are compared in cases where the
excitatory-to-excitatory connectivity has either a
homogeneous delay on all synapses or a set of
synaptic populations where each population has a
unique delay value. In the Spike simulator, this
is achieved without the need for multiple synaptic
populations. Instead, a single synaptic population
can have any delay structure. GeNN (alongside

Figure 6. Comparing the effect of adding a
range of delayed synapses upon simulation
speed in Spike versus GeNN. The simulation
speed is shown for a variant of the Vogels-
Abbott benchmark in which the synaptic delays in
the excitatory to excitatory connections is varied
between either homogeneous or multiple sets of
synapses each with a unique delay for their group.

Auryn and ANNarchy) requires the creation of
multiple synaptic groups.

As can be seen in Figure 6, Spike produces no
change in simulation speed with changing delay
structure. By comparison, the increasing number of
synaptic populations required by GeNN result in a
linear slow down of the simulation. The Vogels-
Abbott benchmark is particularly suited to this
comparison as the introduction of axonal delays to
the synaptic connectivity does not affect the firing
rate in a significant manner.

This comparison highlights how well the Spike
simulator reaches its goal of a delay accommodating
simulator. Synaptic connections which a neuron
makes to itself (autapses), multiple connections
between a pairs of neurons (multapses), and
synaptic connections with different delays are
treated no differently in the simulation framework
from any other synaptic connection and do not
contribute to any change in the simulation speed
(assuming the network average firing rate is
unaffected).
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3.2 Brunel Plasticity Benchmark

A second SNN benchmark used to compare
the simulators above is the Brunel benchmark
consisting of 10,000 Poisson firing input neurons,
and 10,000 LIF neurons (8,000 excitatory and
2,000 inhibitory) as detailed in Section 2.5.1 and
Appendix B. This network is more dense than the
Vogels-Abbott benchmark with a 10% connectivity
between the LIF neurons and a 10% connectivity
from the Poisson neurons to the LIF population.
This benchmark therefore represents a significantly
larger and more densely connected network than
the Vogels-Abbott network. Furthermore, a weight
dependent STDP rule is used to update the
excitatory to excitatory synapses as described in
Appendix B.1. This allows a second comparison
between the SNN simulators to test their efficiencies
when computing weight updates through synaptic
plasticity.

Figure 7. The Brunel benchmark comparison
across simulators. All single threaded or single
GPU. This benchmark was carried out with and
without plasticity as shown in black and red bars
respectively. Shorter bars are faster. Note the log
scale on the y-axis. These are ordered in speed,
fastest first.

Figure 7 shows (as above for the Vogels-Abbott
Benchmark) a comparison of the normalized
simulation time for the range of simulators with
the Brunel benchmark. The black and red bars show
normalized simulation time for the same network

with and without plasticity running respectively. As
with the Vogels-Abbott benchmark, these results are
based upon the simulators loading a network with
identical connections between the LIF neurons.

The results of simulating in a large network (with
and without plasticity) are not qualitatively different
to those seen in the prior section (compare Figure
7 to Figure 4). The order of the simulators in terms
of mean speed (mean with and without plasticity)
is the same. However, the gap between CPU and
GPU simulators begins to grow significantly for this
larger network. Both Spike and GeNN have a much
faster relative simulation time in both the plastic
and non-plastic cases and they lead the CPU based
simulators in speed. The gap in speed difference
between the fastest CPU simulator and the Spike
and GeNN simulators has grown in simulations of
this scale to an order of magnitude.

In the Vogels-Abbott benchmark, the Spike
simulator was approximately four times faster
than the Auryn simulator, however in the Brunel
benchmark, this rises to approximately seven times
faster in the plastic case and approximately 15
times faster in the non plastic case. The speed
of the GeNN simulator scales very similarly to
Spike and achieves similar performance in these
benchmarks (though the plasticity case shows Spike
as approximately double the speed of GeNN for this
particular setup).

3.2.1 Plasticity with Synaptic Dynamics

The plasticity comparison shown previously
(Figure 7) did not show more than a two fold
difference in speed between the Spike and GeNN
simulators. However, these simulators implement
very different approaches to plasticity. The GeNN
plasticity benchmark uses an event-based plasticity
update mechanism. The code-generation framework
employed by GeNN makes this possible through
the injection of code relevant to synaptic plasticity
into the existing kernels (though a new kernel is
also necessary to deal with the arrival of spikes
at a post-synaptic neuron). Ultimately, this means
that the same code which detects a neuron action
potential can immediately alter synaptic weights.
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Figure 8. The Brunel benchmark with
plasticity via synaptic dynamics. This benchmark
was carried out with plasticity active such that
every plastic synapse is updated on every timestep.
The default Spike simulator is compared to; a case
in which timestep grouping (TG) is off, and to the
default GeNN simulator. Shorter bars are faster.
These are ordered in speed, fastest first.

By comparison, plasticity in Spike is entirely
segregated. All neuron and synapse code for a
timestep (or a group of timesteps) is completed
before a separate kernel computes any synaptic
weight changes that are required. Nonetheless Spike
is able to perform competitively.

In order to speed up synaptic plasticity, the GeNN
and Spike simulators furthermore avoid computing
updates to decaying synaptic traces (see Appendix
B.1) on every timestep. Instead, only upon the
emission of a spike by the pre or post-synaptic
neuron of a plastic synaptic connection are the trace
variables updated after taking into account the decay
that should have taken place since the previous
pre/post-synaptic spike. However, this process of
avoiding synaptic updates on every timestep are not
possible for more complex synaptic plasticity rules.

To explore the performance benefits of Spike
(and in particular TG) in application to plasticity,
we consider a more detailed updating of plastic
synapses. More complex plasticity rules often
rely upon synapse specific dynamics which
require a per synapse update upon every timestep.

This can effectively make individual synaptic
dynamics almost as computationally detailed as
the individual neuron membrane voltage dynamics,
thereby significantly increasing the computational
complexity.

Figure 8 compares the Spike and GeNN
simulators with a plastic version of the Brunel
benchmark in which synaptic updates (i.e. synaptic
traces) are updated every timestep for every
synapse. This approximates the computational
complexity required for a plasticity rule which
requires more detailed synaptic updates. As shown,
the speed of the Spike simulator approaches an
order of magnitude speed increase over the GeNN
simulator when considering detailed synaptic
updates. Noteably, this difference in speed is almost
entirely accounted for by the timestep grouping
(TG) optimisation. Without the inclusion of the TG
optimisation, the speed of Spike would be close
to that of GeNN. This provides another example
of a case in which TG optimisation can provide
a significant speedup. It furthermore shows the
potential of the Spike simulator in application to
plasticity rules which require detailed synaptic
dynamics.

3.3 A Repository of Benchmarks and
Comparisons

The production of a set of benchmark comparisons
across the set of simulators presented above
required an understanding of model construction in
these simulators. Despite such comparisons being
made previously, code simulating these benchmarks
is not widely available. Furthermore, in order to
validate that the simulators are producing equivalent
network dynamics, a number of tests are also
necessary on the outputs of these simulations.

Addressing both of these concerns, we constructed
a public repository in which code used to produce
the figures throughout this paper is located. This
repository includes the compared simulators as
submodules and contains a set of iPython notebooks
plotting comparisons of network behaviour.
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Figure 9. Network properties in the Vogels-
Abbott and Brunel benchmarks Top, the Inter-
Spike Interval (ISI) distribution across simulators
for the Vogels-Abbott benchmark. Bottom, the
weight distribution of the plastic synapses in the
Brunel benchmark after 20s simulation time.

Figure 9 shows two such network behaviour
comparisons which are present in the repository.
Figure 9 top shows the distribution of Inter-Spike
Intervals in the Vogels-Abbott benchmark. This
expresses the network firing similarity across
simulators. Figure 9 bottom, shows the final weight
distribution in the plastic Brunel benchmark with a
very similar distribution across simulators. These
figures were produced in order to ensure that
the networks modelled by the simulators were
equivalent. Note that small differences in weight
structure in the plastic Brunel benchmark are to be
expected given the lack control over the specific
input neuron firing times. Specifically, the Brunel

network included a set of Poisson firing input
neurons and these were implemented separately
in each simulator and therefore have different
particular spike times.

4 DISCUSSION

The results shown above convincingly place GPU
based simulators in the lead for SNN simulation on
a single system. As the field moves forward, it is
important that such simulators are made easy to use
and flexible.

Spike has attempted to make its C++/CUDA form
as intuitive as possible to build models in C++.
User guides are available and the creation of new
models (for neurons, synapses or plasticity rules)
is fairly intuitive to someone with a background
in C++/CUDA. Nonetheless, writing models in
C++ brings with it some complexity given the low-
level nature of the code. Furthermore, extensive
documentation for Spike has not yet been produced.
Given all of this, Spike is placed to act as an
simulator with some significant speed benefits and
features (in areas such as delay accommodation)
over competing simulators, though undoubtedly
with some knowledge barriers and inflexiblity in
defining new model components.

Though GeNN in its pure C++/CUDA form
is a simulator which is fairly difficult to use,
the Brian2GeNN project is under development,
bringing GeNN as a backend to Brian2. The Brian2
frontend provides a much easier user experience and
model definition process. Beyond this, the ability
to define models in Python brings major benefits in
terms of usability (it being a higher level language).

GeNN’s use of ASG optimisation brings
significant benefits to its computational time but it
could also potentially integrate optimisations such
as TG in order to bridge the speed gap between its
performance and Spike’s.

GeNN’s use of code generation furthermore gives
it a significant advantage over simulators such as
Spike since it is capable of producing tailor-made
kernels for a specific simulation. This allows many

12

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 5, 2018. ; https://doi.org/10.1101/461160doi: bioRxiv preprint 

https://doi.org/10.1101/461160


Ahmad et al. Spike: A GPU Simulator

parameters to be set as constants within kernels and
thereby saves time on memory accesses and reduces
memory usage. In comparison, Spike’s kernels
incur a memory overhead while collecting the
specific parameters for individual simulations. On
balance, GeNN’s code generation requires a multi-
stage compilation process which is not required by
Spike. In the most recent version of Brian2GeNN
this results in a few seconds of waiting as models
are compiled before they are run (though this may
well change in the future).

As the field progresses, we expect GPU
based simulations to become a common tool for
computational neuroscientists. Just as a range
of simulators have and continue to exist in the
CPU space, we expect the same for GPU based
simulators. Code generation approaches, such
as those used by GeNN, could prove extremely
valuable in producing flexible simulators, whilst
more rigid simulations which require high speed
and delay insensitivity could turn to Spike. We
anticipate further optimisations in the future as GPU
based architectures are upgraded and as algorithmic
upgrades are proposed.

5 CONCLUSION

In order to execute SNN simulations, a range
of simulators have emerged with each offering a
unique combination of speed, hardware integration,
and ease of model definition. In this study we
compared the ANNarchy (Vitay et al., 2015), Auryn
(Zenke and Gerstner, 2014), Brian2 (Stimberg et al.,
2014), GeNN (Yavuz et al., 2016), and NEST
(Linssen et al., 2018) simulators against the Spike
simulator. These comparisons showed the efficacies
of GPU based SNN simulators of which GeNN and
Spike are examples.

We successfully showed a significant speed
benefit with the use of GPU based simulators.
These comparisons were carried out both on
single-threaded systems and in a multithreaded
case where CPU based simulators were shown
to have insufficient speed to outperform GPU
based simulators. In the case of larger networks,

the difference in GPU simulation time to CPU
simulation time exceeded an order of magnitude
and we therefore identify GPUs as a step forward
for point-neuron based SNN simulations.

Moving forward, more flexible simulators such as
GeNN are expected to be invaluable in allowing
both ease of model definition and speed of
simulation. Spike is an alternative simulator which
we show has a significant speedup over other
simulators and is ”delay insensitive” – allowing
heterogeneous synaptic delays without any change
in simulation speed. In order to ensure continued
comparison and benchmarking of SNN similators,
we publish a repository which contains all of the
code used to produce the graphs in this paper and
more.
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APPENDICES

A Vogels-Abbott Benchmark Model

The Vogels-Abbott benchmark is based upon a reduced scale version of the network presented in the
Vogels and Abbott (2005) publication. This reduced scale version is detailed in the paper by Zenke and
Gerstner (2014).

The network consists of 3200 excitatory and 800 inhibitory Leaky Integrate and Fire (LIF) neurons.
Synaptic connections influence a conductance based current input model and the network is driven by
constant background stimulation. Individual neuron dynamics can be described;

τmem ·
dV

dt
= (Vrest − V ) + gex(Eex − V ) + gin(Ein − V ) + Ibg

where V is the neuron membrane voltage, τmem is the membrane time constant (which can also be
computed by dividing the membrane capacitance by the cell leakage conductance) and Vrest is the cell
resting potential. Synaptic inputs are governed by the excitatory and inhibitory conductances, gex and
gin respectively, and the reversal potentials, Eex and Ein respectively. Finally, cells are stimulated by a
constant input Ibg.

If the membrane potential of a cell reaches a threshold Vthresh, it emits an action potential (or spike) and
is thereafter brought back to the reset potential Vreset for a period of time equal to the refractory period of
the cell τref . After this refractory period, the cell dynamics are allowed to continue.

Synaptic connections update the excitatory and inhibitory synaptic conductances. A pre-synaptic spike
on a synaptic connection causes a discontinous jump in the corresponding post-synaptic cell synaptic
conductance. For excitatory synaptic connections, a pre-synaptic spike causes a jump in the post-synaptic
neuron excitatory synaptic conductance, after a time dictated by the axonal delay, such that gex ← gex+wex

where wex is the weight of the excitatory synaptic connection. Similarly, inhibitory synaptic connections
cause a discontinous jump in the inhibitory synaptic conductances of post-synaptic cells such that gin ←
gin + win where win is the weight of the synaptic connection. Finally, the cell synaptic conductances
undergo dynamics;

τex
dgex
dt

= −gex and τin
dgin
dt

= −gin

The parameters used for this model are detailed in Table 1.
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Network -
Number of Excitatory (E) Neurons 3200
Number of Inhibitory (I) Neurons 800
Probability of Connection E->E 2%
Probability of Connection E->I 2%
Probability of Connection I->E 2%
Probability of Connection I->I 2%
Numerical Timestep δt 0.1ms
Neuron Parameters -
τmem 20ms
τref 5ms
Vrest -60mV
Vthresh -50mV
Vreset -60mV
Eex 0mV
Ein -80mV
Ibg 20mV
Synapse Parameters -
τex 5ms
τin 10ms
wex 0.4
win 5.1
Axonal Delay 0.8ms

Table 1. Network, Neuron, and Synaptic Parameters used for the Vogels-Abbott Benchmark

B Brunel Benchmark Model

The Brunel benchmark is based upon a network adapted by Zenke and Gerstner (2014), published in its
original form by Brunel (2000).

The network consists of 8000 excitatory and 2000 inhibitory Leaky Integrate and Fire (LIF) neurons.
Synaptic connections influence a voltage injection based input model and the network is driven by 10,000
excitatory input neurons with 20Hz random Poisson firing. Individual neuron dynamics can be described;

τmem ·
dV

dt
= (Vrest − V )

where V is the neuron membrane voltage, τmem is the membrane time constant (which can also be
computed by dividing the membrane capacitance by the cell leakage conductance) and Vrest is the cell
resting potential. Synaptic inputs are governed by the excitatory and inhibitory voltage injections. For
excitatory or inhibitory synaptic connections, following a pre-synaptic neuron spike (and after awaiting any
axonal delay), the voltage is directly modified in a discontinuous fashion such that V ← V +w where w is
the weight of the synaptic connection. All excitatory synaptic connections are initialised with a weight wex

and all inhibitory synaptic connections are initialised with a weight win.

If the membrane potential of a cell reaches a threshold Vthresh, it emits an action potential (or spike) and
is thereafter brought back to the reset potential Vreset for a period of time equal to the refractory period of
the cell τref . After this refractory period, the cell dynamics are allowed to continue.

The parameters used for this model are detailed in the Table 2.

16

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 5, 2018. ; https://doi.org/10.1101/461160doi: bioRxiv preprint 

https://doi.org/10.1101/461160


Ahmad et al. Spike: A GPU Simulator

Network -
Number of Excitatory (E) Neurons 8000
Number of Inhibitory (I) Neurons 2000
Number of Excitatory Poisson Input Neurons (P) 10000
Probability of Connection E->E 10%
Probability of Connection E->I 10%
Probability of Connection I->E 10%
Probability of Connection I->I 10%
Probability of Connection P->E 10%
Probability of Connection P->I 10%
Numerical Timestep δt 0.1ms
Neuron Parameters -
τmem 20ms
τref 2ms
Vrest 0mV
Vthresh 20mV
Vreset 0mV
Poisson Neuron Firing Rate 20Hz
Synapse Parameters -
wex 0.1mV
win -0.5mV
Axonal Delay 1.5ms

Table 2. Network, Neuron, and Synaptic Parameters used for the Brunel Benchmarks

B.1 Plasticity

The Brunel benchmark can be run with or without a plasticity rule active. When active, the plasticity rule
is a Spike-Timing Dependent Plasticity (STDP) rule which updates synaptic connections upon pre and
post-synaptic neuron action potentials.

The STDP rule applied in this model is a weight dependent STDP rule such that for each synapse, we
have two traces – one for its pre-synaptic neuron and one for its post-synaptic neuron, zpre and zpost.
Upon a pre-synaptic spike, we wait for a duration equal to the axonal delay, following which we update
the pre-synaptic trace such that; zpre ← zpre + 1.0. Upon post-synaptic spikes, the post-synaptic trace is
updated such that; zpost ← zpost + 1.0. These traces both decay with the dynamics that follow.

τstdp
dzpre
dt

= −zpre and τstdp
dzpost
dt

= −zpost

Long Term Depression (LTD) is implemented as follows. Upon a pre-synaptic spike (after awaiting the
axonal delay), the weight w of the synaptic connection is also updated;

w ← w − αλw · exp−
zpost
δt

where λ is the learning rate, and α is a scaling factor which is only applied to LTD (thus dictating the
relative strength of LTD).
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Plasticity Parameters -
τstdp 20ms
α 2.02
λ 0.01
wmax 0.3mV

Table 3. Network, Neuron, and Synaptic Parameters used for the Brunel Benchmarks

Long Term Potentiation (LTP) is implemented as follows. Upon a post-synaptic spike, the weight w of
the synaptic connection is also updated;

w ← w + λ(1.0− w) · exp−
zpre
δt

The plastic synaptic connections also have a hard bound upon their weight such that if the weight w
increases above a maximum weight value wmax, it is bounded and w ← wmax. Similarly, if the weight w
reduces below zero, it is bound and set to zero; w ← 0.0.

This STDP rule is only applied to the excitatory to excitatory (E− > E) synaptic connections in this
model. All parameter values are presented in Table 3.
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