
Real-time projections of epidemic transmission and estimation of

vaccination impact during an Ebola virus disease outbreak in the

Eastern region of the Democratic Republic of Congo

Lee Worden1, Rae Wannier1,2, Nicole A. Hoff3, Kamy Musene3, Bernice Selo4,
Mathias Mossoko4, Emile Okitolonda-Wemakoy5, Jean Jacques Muyembe-Tamfum6,

George W. Rutherford2, Thomas M. Lietman1,2, Anne W. Rimoin3, Travis C. Porco1,2, and
J. Daniel Kelly∗1,2

1F. I. Proctor Foundation, University of California, San Francisco (UCSF),
San Francisco, CA, USA

2School of Medicine, UCSF, San Francisco, CA, USA
3School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA

4Ministry of Health, Kinshasa, Democratic Republic of Congo
5School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of Congo

6National Institute of Biomedical Research, Kinshasa, Democratic Republic of Congo

November 3, 2018

∗Corresponding author

1

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 5, 2018. ; https://doi.org/10.1101/461285doi: bioRxiv preprint 

https://doi.org/10.1101/461285


Abstract

Background: As of October 12, 2018, 211 cases of Ebola virus disease (EVD) were reported

in North Kivu Province, Democratic Republic of Congo. Since the beginning of October the

outbreak has largely shifted into regions in which active armed conflict is occurring, and in

which EVD cases and their contacts are difficult for health workers to reach. We used available

data on the current outbreak with case-count time series from prior outbreaks to project the

short-term and long-term course of the outbreak.

Methods: For short and long term projections we modeled Ebola virus transmission using

a stochastic branching process that assumes gradually quenching transmission estimated from

past EVD outbreaks, with outbreak trajectories conditioned on agreement with the course of the

current outbreak, and with multiple levels of vaccination coverage. We used a negative binomial

autoregression for short-term projections, a Theil-Sen regression model for final sizes, and a

baseline minimum-information projection using Gott’s law to construct an ensemble of forecasts

to be compared and recorded for future evaluation against final outcomes. From August 20 to

October 13, short-term model projections were validated against actual case counts.

Results: During validation of short-term projections, from one week to four weeks, we found

models consistently scored higher on shorter-term forecasts. Based on case counts as of October

13, the stochastic model projected a median case count of 226 cases by October 27 (95% predic-

tion interval: 205–268) and 245 cases by November 10 (95% prediction interval: 208–315), while

the auto-regression model projects median case counts of 240 (95% prediction interval: 215–

307) and 259 (95% prediction interval: 216–395) cases for those dates, respectively. Projected

median final counts range from 274 to 421. Except for Gott’s law, the projected probability

of an outbreak comparable to 2013–2016 is exceedingly small. The stochastic model estimates

that vaccine coverage in this outbreak is lower than reported in its trial setting in Sierra Leone.

Conclusions: Based on our projections we believe that the epidemic had not yet peaked at the

time of these estimates, though a trajectory on the scale of the West African outbreak is ex-

ceedingly improbable. Validating our models in real time allowed us to generate more accurate

short-term forecasts, and this process may provide a useful roadmap for real-time short-term

forecasting. We estimate that transmission rates are higher than would be seen under target

levels of 62% coverage due to contact tracing and vaccination, and this model estimate may

offer a surrogate indicator for the outbreak response challenges.
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Introduction

On August 1, 2018, the World Health Organization (WHO) announced a new outbreak of Ebola

virus disease (EVD) in North Kivu Province in Eastern Democratic Republic of Congo (DRC).

Epidemiological investigations traced EVD cases back to the week of April 30 and identified the

initial epicenter to be Mabalako. North Kivu has over eight million inhabitants, some of whom

suffer from armed conflict, humanitarian crisis, and displacement from their bordering countries

of Uganda and Rwanda. Since the outbreak began, EVD cases have spread across ten health

zones in two provinces at a rate outpacing the case counts of the other 2018 DRC Ebola outbreak

in Equateur Province. As of October 13, 211 EVD cases were reported (31 probable and 180

confirmed); Ministry of Health of DRC, World Health Organization, and other organizations were

responding to the Ebola outbreak.

As new interventions such as vaccines or rapid diagnostics are being implemented during out-

breaks, their impact on epidemic transmission is poorly understood, requiring assumptions to be

made that may lead to inaccurate forecasting results. Unknown social or environmental differences

affecting transmission can also affect forecasts in unknown ways. For example, the overlap of the

outbreak with regions where armed conflict is occurring in North Kivu, DRC, might result in higher

under-reporting rates and lower vaccine coverage than in other outbreaks, causing increased trans-

mission and decreased accuracy of reporting, or might result in reduced transmission due to reduced

mobility or other considerations. Since the beginning of October, an increased rate of detection of

new cases has been observed in the conflict zone, perhaps due to reduced disease control.

During an Ebola outbreak, real-time forecasting has the potential to support decision-making

and allocation of resources, but highly accurate forecasts have proven difficult for Ebola1,2 as well

as other diseases.3–6 Moreover, there are mathematical reasons to believe that highly accurate

forecasts of small, noisy outbreaks may never be possible.7 Nevertheless, while predicting the exact

number of cases is unlikely to ever be possible, forecasts which are accurate enough to be useful may

be possible. Previous work has found that probabilistic forecasts can have relatively high accuracy

within a few weeks, though they become less useful as time horizons grow longer8, and short-term

forecasts may provide useful information for response organizations.
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In this paper we apply a suite of independent methods of real-time forecasting to the Eastern

DRC outbreak, to generate both short-term and long-term projections of future case counts as of

the time of writing. We validate short-term projections by scoring projections derived from case

count reports obtained earlier in the outbreak against subsequent known counts. We include past

and present projections (in supplemental material) for future evaluation. We summarize model

results in terms of projections of the future course of the outbreak, and interpret their implications

relevant to current rates of transmission and vaccine coverage in conflict zones and overall.

Methods

We used four techniques to derive real-time projections of future case counts: a stochastic simulation

model calibrated to time-dependent transmission rates measured from past outbreaks of EVD and

constrained to the observed partial trajectory of the current outbeak, extending the model used in

our previous work on the Spring outbreak; a negative binomial auto-regression model predicting

the course of the outbreak from its course to date together with the course of previous outbreaks;

a regression model for final size based on past outbreaks; and a simple final size projection using

Gott’s law, which assumes only that the proportion of the outbreak observed so far is entirely

unknown.

Data sources

Data on the current outbreak was collected from the WHO website in real time as updated infor-

mation was published.9 A cumulative case count of probable and confirmed cases was generated

to be consistent with the best knowledge at the time. Copies of the list of case counts were kept

as of multiple dates (Figure 8), to be used in retrospective scoring of model projections against

subsequently known counts. Though the epidemic was officially reported in late July as a cluster

of cases occurring in June and July, seven sporadic early cases from April and May were later

linked to the current outbreak and added to later case totals. This additional knowledge was added

retrospectively to the time series of cumulative case counts only for predictions made for days on

or after September 15th, when these cases were officially linked to the current outbreak.
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Stochastic model

We modeled Ebola virus transmission using a stochastic branching process model, parameterized

by transmission rates estimated from the dynamics of prior EVD outbreaks, and conditioned on

agreement with reported case counts from the 2018 EVD outbreak to date. We incorporated high

and low estimates of vaccination coverage into this model. We used this model to generate a set

of probabilistic projections of the size and duration of simulated outbreaks in the current setting.

This model is similar to one described in previous work10, with the addition of a smoothing step

allowing transmission rates intermediate between those estimated from previous outbreaks.

To estimate the reproduction number R as a function of the number of days from the beginning

of the outbreak, we included reported cases by date from fourteen prior outbreaks (Table 1).11–24

The first historical outbreak reported in each country was excluded (e.g., 1976 outbreak in Yambuko,

DRC). As there is a difference in the Ebola response system as well as community sensitization to

EVD following a countrys first outbreak, we employed this inclusion criterion to reflect the Ebola

response system in DRC during what is now its tenth outbreak. We used the Wallinga-Teunis

technique to estimate R for each case and therefore for each reporting date in these outbreaks.25

The serial interval distribution used for this estimation was a gamma distribution with a mean of

14.5 days and a standard deviation of 5 days, with intervals rounded to the nearest whole number

of days, consistent with the understanding that the serial interval of EVD cases ranges from 3 to 36

days with mean 14 to 15 days. We estimated an initial reproduction number Rinitial and quenching

rate τ for each outbreak by fitting an exponentially quenched curve to the outbreak’s estimates of

R by day d (Figure 9).

We modeled transmission using a stochastic branching process model in which the number of

secondary cases caused by any given primary case is drawn from a negative binomial distribution

whose mean is the reproduction number R as a function of day of the outbreak, and variance is

controlled by a dispersion parameter k.26,27All transmission events were assumed to be independent.

The interval between date of detection of each primary case and that of each of its secondary cases

is assumed gamma distributed with mean 14.5 days and standard deviation 5 days, rounded to the

nearest whole number of days, as above.
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We used the (Rinitial, τ) pairs estimated from past outbreaks to provide R values for simulation.

Rinitial values were sampled uniformly from the range of values estimated from past outbreaks. We

fit a linear regression line through the values of Rinitial and log(τ) estimated for past outbreaks,

above, and used the resulting regression line to assign a mean τ to each R, used with the residual

variance of log(τ) as a distribution from which to sample τ values for simulation given Rinitial. The

pair of parameters Rinitial and τ sampled in this way, together with each of three values of the

dispersion parameter k, 0.3, 0.5, and 0.7, consistent with transmission heterogeneity observed in

past Ebola outbreaks, were used to generate simulated outbreaks.

This model generated randomly varying simulated outbreaks with a range of case counts per

day. The outbreak was assumed to begin with a single case. The simulation was run multiple times,

each instance producing a proposed epidemic trajectory, generated by the above branching process

with the given parameters Rinitial, τ , and k, and these were then filtered by discarding all proposed

outcomes but those whose cumulative case counts matched known counts of the current 2018 EVD

outbreak on known dates. In earlier, smaller, data sets we filtered against all reported case counts,

while in later, more complete data sets we thinned the case counts, for computational tractability,

by selecting five case counts evenly spaced in the data set plus the final case count (Figure 8). The

filtration required an exact match of the first target value, and at subsequent target dates accepted

epidemics within a number of cases more or less than each recorded value. On the earlier data sets

in which the beginning dates of the epidemic were unknown, the first target value was allowed to

match on any day, and subsequent target dates were assigned relative to that day.

Thus this model embodies a set of assumptions that transmission rates are overall gradually

declining from the start of the outbreak to its end, though possibly in noisy ways. When the

tolerance of the filter on case counts is small, quenching of transmission through time must closely

track case counts, while when tolerance is high, fluctuations in the rate of generation of new cases

can reflect a pattern of ongoing quenching of transmission more loosely and on the long term, while

being more insensitive to short-term up and down fluctuations in transmission rates reflected by

the true case counts.

We varied the tolerance as the data set became more complete to maintain a roughly fixed rate

of generation of filtered trajectories: on the August 20 data set we allowed a tolerance of 4 cases
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more or less than each target count, on August 27 and September 5, 6 cases, on September 15, 10

cases, on October 7, 12 cases, and on October 13, 17 cases. This one-step particle filtering technique

produced an ensemble of model outbreaks, filtered on agreement with the recorded trajectory of

the outbreak to date. This filtered ensemble was then used to generate projections of the eventual

outcome of the outbreak.28

To model vaccination coverage with respect to total transmission (unreported and reported),

we multiplied the estimate of vaccine effectiveness by low and high estimates of reported cases. In a

ring vaccination study at the end of the West Africa outbreak, the overall estimated rVSV-vectored

vaccine efficacy was 100% and vaccine effectiveness was 64.6% in protecting all contacts and contacts

of contacts from EVD in the randomized clusters, including unvaccinated cluster members.29 We

used estimates of vaccine effectiveness in our stochastic model. The ring vaccination study found

the vaccine to be effective against cases with onset dates 10 days or more from the date of vaccine

administration, so we modeled the vaccination program as a proportionate reduction in the number

of new cases with onsets 10 days or more after the program start date.

We used past estimates of the proportion of unreported cases to estimate the proportion of

exposed individuals not covered by the vaccination process. Based on a Sierra Leonean study from

the 2013–2016 outbreak,30 we estimated that the proportion of reported cases in DRC would rise

over time from a low of 68% to a high of 96%. Given these low and high estimates of reported cases

and the estimate of vaccine effectiveness, a low estimate of vaccination program coverage was 44%

(68% × 64.6%) and a high estimate of vaccination program coverage was 62% (96% × 64.6%). We

modeled the course of the outbreak with and without the vaccination program based on approximate

dates available from situation reports.9

For simulation based on cases as of October 13, 320 outbreaks were retained from 34,663,104

simulated outbreaks after filtering on approximate agreement with DRC case counts. (Numbers

of simulations from earlier data sets are reported in Supplemental Materials.) The simulated

outbreaks that were retained after filtering were continued until they generated no further cases.

Rare simulated outbreaks that exceeded 300,000 cases were capped at the first value reached above

that number, to avoid wasted computation. We used this ensemble to derive a distribution of final

outbreak sizes, and of cumulative counts at specific forecasting dates. Projection distributions were
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derived using kernel density estimation with leave-one-out cross-validation to determine bandwidth,

using a log-normal kernel for final sizes, due to the extended tail of the values, and a normal kernel

for all other estimates. We calculated median values and 95% prediction intervals using the 2.5

and 97.5 percentiles of simulated outbreak size and duration. We conducted the analyses using R

3.4.2 (R Foundation for Statistical Computing, Vienna, Austria).

Auto-Regression model

A negative binomial autoregressive model was chosen through a validation process to forecast

additional new case counts at time points one week, two week, four weeks, and two months from

the current date. To adjust for disparities in the frequency of case reporting in historic outbreaks,

the data were weighted by the inverse square root of the number of observations contributed to the

model. Models considered included parameters for historic raw case counts at different time points,

logs of raw case counts, ratio of historic case counts to try and capture the trend of the epidemic

curve, log(time), and an offset for current case total. When historic case counts for specific dates

were missing, each missing case count was linearly interpolated from the two nearest case counts,

allowing the model to remain agnostic about the current trend of the epidemic. After model fitting

and validation, the final model chosen was a log-link regression for additional cases on the number

of new cases identified in the previous two weeks, the previous four weeks and the ratio of these

two case counts.

Regression model

We conducted a simple regression forecast based solely on outbreaks of size 10 or greater, based

on prior outbreaks.11–24 Nonparametric Theil-Sen regression (R package mblm) was used to project

the final outbreak size based on values of the outbreak size at a specific earlier time. All time

series were aligned on the day they reached 10 cases. Finally, we reported the median and 95%

central coverage intervals for the prediction distribution, conditional on the predicted value being

no smaller than the observed value for each day. Full details are given in10. All analyses were

conducted using R 3.4.2 (R Foundation for Statistical Computing, Vienna, Austria).
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Gott’s law model

With Gott’s Law, we assume we have no special knowledge of our position on the epidemic curve.31

If we assume a non-informative uniform prior for the portion α of the epidemic included in the last

available report, the corresponding probability density function for the final size Y = Y0/α is Y0/y
2,

Y0 ≤ y. We constructed a probability mass function by assigning all probability density to the whole

number of days given by the integer part of each value. We used this probability mass function as

a projection of the final outbreak size.

Scoring

Each of the above models was used to generate an assignment of probability to possible values of

multiple quantities:

• Case count 1 week after the last available case count

• Case count 2 week after the last available case count

• Case count 4 weeks after the last available case count

• Case count 2 months after the last available case count

• Final outbreak size

Each model’s performance on each of these projections was scored by recording the natural

logarithm of the probability it assigned to the subsequently known true value of the quantity in

question.

The short-term projections based on real-time reporting were used to evaluate and calibrate

the models during the epidemic, based on the data available at multiple time points during the

outbreak. Final outbreak size projections were recorded for future evaluation of their performance.

Results

When we started performing our short-term forecasts on August 20, 2018, there were 102 reported

EVD cases in North Kivu and Ituri provinces, DRC. We used our stochastic and auto-regression
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Data as of 8-20-2018 Data as of 8-27-2018

Data as of 9-5-2018 Data as of 9-15-2018

Figure 1: Comparison of retrospective model projections to known case counts when
projecting from past snapshots of available data.

Figure 2: Log-likelihood scores of retrospective model projections on known case counts.
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Figure 3: Short-term projections of case counts based on reported counts as of Oct. 13.

Figure 4: Medians and prediction intervals from short-term projections of case counts
based on reported counts as of Oct. 13.

Figure 5: Projections of final case counts based on reported counts as of Oct. 13.
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Figure 6: Medians and prediction intervals from projections of final case counts based
on reported counts as of Oct. 13.

models to project one-week, two-week, four-week, and two-month forecasts of outbreak size. As

time lapsed, we compared predicted and actual outbreak sizes and found a higher probability of

accurate forecasts at one week than two months (Figures 1, 2). Log-likelihood scores typically

declined as the model extended its projection time into the future. However, the largest decline in

log-likelihood score occurred between the four-week and two-month forecasts. Concurrently, there

were larger prediction intervals associated with these longer-term forecasts. As the epidemic curve

accelerated in early October, we observed that model projections were less likely to predict actual

case counts. These findings were consistent for both models.

After our model validation process was completed, we used the stochastic and auto-regression

models to project one-week, two-week, four-week, and two-month outcomes (Figures 3, 4). We used

the Gott’s law and Theil-Sen regression models together with the stochastic model to project final

outbreak sizes (Figures 5, 6). As of October 13, there were 216 reported EVD cases. With the

stochastic model, the four-week projection of median outbreak size was 245 cases (95% prediction

interval: 208–315). Median final outbreak size was 274 cases (95% prediction interval: 210–632).

With the auto-regression model, the four-week projection of median outbreak size was 259 cases
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(95% prediction interval: 216–395). With Gott’s law, median final outbreak size was 421 cases

(95% prediction interval: 222–4219). Median final outbreak size projected by the regression model

was 277 cases (95% prediction interval: 216–485).

Because the question has been raised of whether the current outbreak might exceed the catas-

trophic West Africa outbreak in size, we evaluated the model’s projected probability of a final size

of at least the 28,616 cases reported in that outbreak.24 A final outbreak size of 28,616 or more

cases was projected to have an exceedingly low probability of less than 1 in 10,000 in all cases

except the Gott’s law model, whose projected probability distribution is very long-tailed, which

projects a probability of about 0.005 (roughly 1 in 190) for that event. However, as with all of the

above projections, it should be understood that they are conditional on model assumptions being

met. If unpredictable events should change patterns of transmission, for example escape of the

outbreak into a region where sustained high transmission rates violate the assumption of gradual

quenching of transmission, model projections will no longer be applicable.

Stochastic model

In order to produce model outbreak trajectories consistent with the reported overall case counts

since the beginning of October, it was necessary to make the filtering step of the model more

tolerant to variation in counts in order to accommodate the rapidly rising count. This is because

higher transmission rates in late September and early October were necessary to generate case

counts of that size than are consistent with the earlier counts.

If this model’s assumptions of continually quenching overall rate of transmission is accepted,

this result could be taken as evidence in favor of increased transmission in the conflict zone, since

the increase in cases reported in October reflects cases recorded there.

The likelihoods of the three scenarios of zero, low, and high vaccine coverage estimated by the

stochastic model, on the basis of which scenarios are selected by the filtering step, indicate that the

lower vaccine coverage scenario was consistently found more likely than the higher vaccine coverage

scenario (Figure 7). However, no vaccine coverage was the most likely scenario in all forecasts.

This could be read as evidence for decreased vaccine coverage in the conflict zone. It should

be said clearly, however, that the model’s quenching assumption could be violated by the presence
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Figure 7: Likelihoods of vaccine coverage scenarios estimated by number of simulated out-
breaks accepted by the stochastic model’s filtering step in which simulated outbreaks must match
reported case counts.

of other causes of increased transmission relative to past outbreaks that it can not distinguish and

would misidentify as decreased vaccine coverage.

Stochastic model parameters conditioned on filtering by true case counts, stochastic model out-

comes for multiple snapshots of reported data, and short-term and long-term projections generated

by all models from past snapshots are reported in Supplemental Material.

Discussion

Political instability, mobility and community impenetrability to health workers in Eastern DRC

present new challenges to efforts to respond to the ongoing EVD outbreak. Public health responders

have not been able to trace up to 80% of contacts of EVD cases, and new chains of transmission are

being identified on a routine basis. At present, the most reliable source of data is the weekly case

counts that can be found in the WHO situation reports; those have indicated that the number of

additional cases is increasing rather than decreasing. In such situations of data scarcity, modeling

in real time can be useful, particularly in the short term.

Our projection with multiple models, as of October 13, 2018, predicts growth in the short term

consistent with rates recorded in the recent past. In the long term our models do not project
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large-scale growth of the outbreak into a public health emergency of international concern, even

considering worst case scenarios. However, these outcomes are likely dependent on highly contingent

events such as escape of the outbreak into additional regions or nations which can not be predicted

by mechanistic models.

This is the first EVD outbreak in a conflict zone, and the first with deployment of the vaccine

since the beginning of the outbreak, so the suitability of prior mathematical models to predict the

course of this particular outbreak is unknown. We validated the short-term forecasting performance

of two mathematical models during the early part of the ongoing outbreak.

Our short-term projections of the future course of the outbreak at the time of writing are in

rough agreement with expert consensus that the outbreak has gained speed as cases appear in

the conflict zone, and will likely continue at roughly the same rate of growth in the short term.

Our models do not indicate that the epidemic has yet peaked. Longer term forecasts are less

certain and depend on whether intervention, conflict and mass behavior are able to stem continued

transmission.

There are limitations to our projections. Projection distributions are right-skewed, with long

tails (and we therefore report the median instead of the mean). We were unable to include all

the 23 observed EVD outbreaks with a case count greater than ten cases in our estimates due to

data availability.The simple regression projection is based entirely on past outbreaks of Ebola virus

disease (measured and reported in different ways), and cannot account for the improved control

measures and vaccination in the way that a mechanistic model does. We included as much real-time

information into our estimates as possible, but situations such as the introduction of EVD into a

zone of armed conflict and the recent introduction of vaccination are not reflected by the suite

of past outbreaks. The stochastic model did not include vaccination of healthcare workers. We

estimated vaccination effectiveness, reported cases, and time from symptom onset to reporting using

studies from West Africa, not DRC. A strength of our approach was the use of multiple methods to

estimate the outbreak size, even though Gott’s Law has not been validated for outbreak projections.

Our models confirm that the speedup in the conflict area appears to reflect increased transmis-

sion, possibly due to decreased vaccination coverage. Before October, there was no data to suggest

whether the conflict zone would manifest more transmission and less detection due to inaccessibility
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of health services, or less transmission because of reduced mobility, or other outcomes. The Octo-

ber data suggests that transmission is increased there. It is of course not clear whether reported

counts underrepresent true numbers of cases in these areas. It may be that a model that explicitly

distinguishes transmission rates in these zones from those in other areas would model the dynamics

underlying these cases more faithfully and produce more accurate projections. Most of the EVD

cases reported in late September and early October occurred in active conflict zones, and chal-

lenges impeding an effective outbreak response have increased. Strong international partners such

as the U.S. Centers for Disease Control and Prevention withdrew their support due to the security

concerns. Although there was rapid deployment of vaccines during this outbreak, we found that

the impact of vaccines on transmission reduction has been limited at best. Our stochastic model,

which included high, low, and no vaccine coverage scenarios, was much less likely to fit high cover-

age scenarios than those with low or no coverage, especially with more recent data included. Thus,

as contact tracing efforts faltered and estimates of vaccine coverage became increasingly unreliable,

our stochastic model produced estimates of transmission rates more consistent with levels of vaccine

coverage lower than target levels of 62% coverage associated with past programs of contact tracing

and vaccination.

As of October 2018, the current outbreak is ongoing and does not yet appear to be concluding.

We believe current rates of accumulation of cases will continue at least in the short term. We

do not see evidence to indicate it will expand to the scale of the 2013–16 outbreak, although the

possibility can not be dismissed. We believe the increased rate of case detection corresponding to

the shift of transmission into conflict zones is due to increased transmission, probably driven by

reduced ability to detect and vaccinate contacts in those locations. Even as control efforts falter,

case fatality rates have been decreasing during the outbreak.9 With aggressive supportive care,

experimental therapeutics and high-quality facilities (e.g. air-conditioned, individualized), health-

seeking behaviors may reduce transmission potential in communities that are resistant to control

efforts.8
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Supplemental Information

Results

Data Sources

Time Period Country Reported
Count

Time
Series
Count

Regression? Stochastic? Auto-
Regression?

Aug–Sep 1976 DRC* 318 262 Yes No Yes
Jun–Nov 1976 Sudan 284 284 Yes No Yes
Aug–Sep 1979 Sudan 34 34 Yes Yes Yes
Dec 1994–Feb 1995 Gabon 52 49 Yes No Yes
May–Jul 1995 DRC 315 317 Yes Yes Yes
Jan–Apr 1996 Gabon 37 29 Yes Yes Yes
Jul 1996–Mar 1997 Gabon 60 – No No No
Oct 2000–Jan 2001 Uganda 425 436 Yes No Yes
Oct 2001–Jul 2002 Gabon, Repub-

lic of the Congo
124 124 Yes Yes Yes

Dec 2002–Mar 2003 Republic of the
Congo

143 – No No No

Nov–Dec 2003 Republic of the
Congo

35 35 Yes Yes Yes

Apr–Jun 2004 Sudan 17 17 Yes Yes Yes
Apr–May 2005 DRC 12 12 Yes Yes Yes
Aug–Nov 2007 DRC 264 264 Yes Yes Yes
Dec 2007–Jan 2008 Uganda 131 127 Yes Yes Yes
Dec 2008–Feb 2009 DRC 32 32 Yes Yes Yes
Jun–Aug 2012 Uganda 24 24 Yes Yes Yes
Jun–Nov 2012 DRC 52 52 Yes Yes Yes
Aug–Nov 2014 DRC 66 62 Yes Yes Yes
Jul–Oct 2014 Nigeria (offshoot

of West African
outbreak)

20 – No No No

Jan 2014–Jun 2016 Guinea, Liberia,
Sierra Leone

28,616 21,422 Yes No Yes

Apr–Jun 2018 DRC 53 53 Yes Yes Yes

Table 1: Table of past outbreaks by year and country. Official reported case counts for each
epidemic are given, including suspected cases (“Reported Count”). Case counts for the time series
data included in the models include only probable and confirmed cases (“Time Series Count”).
Case counts for historic outbreaks were pulled from publicly available literature.11–24 Lastly, each
historic outbreak’s inclusion in the regression, stochastic, and auto-regression models is enumerated.
*Democratic Republic of Congo (formerly Zaire)

Table 1 summarizes the past outbreaks used as data to inform our models.

We retained snapshots of the set of available case counts at multiple time points, for use in
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scoring of retrospective model projections against known subsequent counts (Figure 8). In later

data sets, due to the larger number of data points, a subset of the case counts was selected for use

in the stochastic model’s particle filtering step, as noted in the figure.

Stochastic Model

Epidemic curves reported for past Ebola outbreaks were used to estimate time series of effective

reproduction number (R) by day, which were then fit to an exponential quenching curve (Figure 9).

The parameters Rinitial and τ estimated by that curve fitting on past epidemics were then used

to create a distribution from which values were sampled to parametrize the stochastic simulation

(Figure 10).

The Rinitial and τ parameters driving simulated outbreaks that were successful in passing the

particle filtering step tended to cluster in particular locations within the assumed distribution

(Figure 11). In some cases, distinct ranges of Rinitial and/or τ were selected in conjunction with

the different vaccine coverage scenarios.

For simulation based on cases as of August 20, 320 outbreaks were retained from 10,196,928

simulated outbreaks after filtering based on approximate agreement with reported case counts from

the current outbreak. For the August 27 data set, 320 were retained from 11,622,528; for September

5, 321 were retained from 6,492,672; for September 15, 320 from 39,537,792; and for October 7, 320

from 48,845,376.

The simulations passing the particle filtering step, representing a distribution of parameter

values and vaccine scenarios, were continued beyond the particle filtering points to generate a

spreading set of projections of case counts at later dates (Figure 12), which was smoothed to create

probabilistic projections of future case counts at the desired dates.

Projections

We have recorded the projections generated by our models from older data sets to assess the

development of the projections as the outbreak has progressed, in Figures 13, 14, 15, and 16.

Table 2 summarizes the medians and 95% prediction intervals produced by each model on

the most recent data set included, and their probabilities of outcomes exceeding the 2013–2016
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Data as of 8-20-2018 Data as of 8-27-2018

Data as of 9-5-2018 Data as of 9-15-2018

Data as of 10-7-2018 Data as of 10-13-2018

Figure 8: Reported case counts in current outbreak by date, in multiple snapshots of available
data. Where not otherwise noted, all case counts shown were used in the stochastic model’s particle
filtering step.
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Figure 9: Estimates of reproduction number R by day in past Ebola outbreaks. Thin curves
are exponentially quenched curves R = Rinitiale

−τd fit to each series of R estimates.

Figure 10: Distribution of transmission rates sampled for simulation. Black dots are pairs
Rinitial and quenching rate τ estimated from past Ebola outbreaks, and blue cloud is the continuous
distribution from which pairs are sampled for simulation.
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Data as of 8-20-2018 Data as of 8-27-2018

Data as of 9-5-2018 Data as of 9-15-2018

Data as of 10-7-2018 Data as of 10-13-2018

Figure 11: Transmission rates selected by the particle filtering process, by vaccine coverage
scenario, for successive snapshots of available case count data. As in previous figure, black dots for
Rinitial, τ pairs estimated for past outbreaks (for comparison), and colors illustrate the density of
Rinitial, τ pairs selected by filtering simulated outbreaks, classified by level of vaccine coverage.
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Data as of 8-20-2018 Data as of 8-27-2018

Data as of 9-5-2018 Data as of 9-15-2018

Data as of 10-7-2018 Data as of 10-13-2018

Figure 12: Cumulative case counts by date projected by individual realizations of the stochastic
model, by vaccine coverage scenario, using successive snapshots of available case count data. The
vertical axis is cut off at the upper limit of the 95% prediction interval for outbreak sizes, for
readability.
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Data as of 8-20-2018 Data as of 8-27-2018

Data as of 9-5-2018 Data as of 9-15-2018

Data as of 10-7-2018

Figure 13: Short-term projections based on past data sets.
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Data as of 8-20-2018 Data as of 8-27-2018

Data as of 9-5-2018 Data as of 9-15-2018

Data as of 10-7-2018

Figure 14: Medians and prediction intervals from short-term projections based on past
data sets.
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Data as of 8-20-2018 Data as of 8-27-2018

Data as of 9-5-2018 Data as of 9-15-2018

Data as of 10-7-2018

Figure 15: Final outbreak size projections based on past data sets.
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Data as of 8-20-2018 Data as of 8-27-2018

Data as of 9-5-2018 Data as of 9-15-2018

Data as of 10-7-2018

Figure 16: Medians and prediction intervals from final outbreak size projections based
on past data sets.
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outbreak.

Forecast as of Forecast Model Lower Median Upper Over 28,616
2018-10-13 2018-10-20 Auto-Regression 214 227 258 0.00000
2018-10-13 2018-10-20 Stochastic 200 214 243 0.00000
2018-10-13 2018-10-27 Auto-Regression 215 240 307 0.00000
2018-10-13 2018-10-27 Stochastic 205 226 268 0.00000
2018-10-13 2018-11-10 Auto-Regression 216 259 395 0.00000
2018-10-13 2018-11-10 Stochastic 208 245 315 0.00000
2018-10-13 2018-12-13 Auto-Regression 217 279 501 0.00000
2018-10-13 2018-12-13 Stochastic 204 268 428 0.00000
2018-10-13 final Gott’s Law 222 421 4219 0.00526
2018-10-13 final Regression 216 277 485 0.00000
2018-10-13 final Stochastic 210 274 632 0.00000

Table 2: Table of medians and prediction intervals of model projections.
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