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Abstract. The rapidly emerging diversity of single cell RNAseq datasets allows us to characterize the transcriptional behav-1

ior of cell types across a wide variety of biological and clinical conditions. With this comprehensive breadth comes a major2

analytical challenge. The same cell type across tissues, from different donors, or in different disease states, may appear3

to express different genes. A joint analysis of multiple datasets requires the integration of cells across diverse conditions.4

This is particularly challenging when datasets are assayed with different technologies in which real biological differences5

are interspersed with technical differences. We present Harmony, an algorithm that projects cells into a shared embedding6

in which cells group by cell type rather than dataset-specific conditions. Unlike available single-cell integration methods,7

Harmony can simultaneously account for multiple experimental and biological factors. We develop objective metrics to8

evaluate the quality of data integration. In four separate analyses, we demonstrate the superior performance of Harmony to9

four single-cell-specific integration algorithms. Moreover, we show that Harmony requires dramatically fewer computational10

resources. It is the only available algorithm that makes the integration of ∼ 106 cells feasible on a personal computer. We11

demonstrate that Harmony identifies both broad populations and fine-grained subpopulations of PBMCs from datasets with12

large experimental differences. In a meta-analysis of 14,746 cells from 5 studies of human pancreatic islet cells, Harmony13

accounts for variation among technologies and donors to successfully align several rare subpopulations. In the resulting in-14

tegrated embedding, we identify a previously unidentified population of potentially dysfunctional alpha islet cells, enriched15

for genes active in the Endoplasmic Reticulum (ER) stress response. The abundance of these alpha cells correlates across16

donors with the proportion of dysfunctional beta cells also enriched in ER stress response genes. Harmony is a fast and17

flexible general purpose integration algorithm that enables the identification of shared fine-grained subpopulations across a18

variety of experimental and biological conditions.19
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Recent technological advances1 have enabled unbiased single cell transcriptional profiling of thousands of cells in a20

single experiment. Projects such as the Human Cell Atlas2 (HCA) and Accelerating Medicines Partnership3, 4 exemplify21

the growing body of reference datasets of primary human tissues. While individual experiments contribute incrementally22

to our understanding of cell types, a comprehensive catalogue of healthy and diseased cells will require the integration of23

multiple datasets across donors, studies, and technological platforms. Moreover, in translational research, joint analyses24

across tissues and clinical conditions will be essential to identify disease expanded populations. However, meaningful25

biological variation in single cell RNA-seq datasets from different studies is often hopelessly confounded by data source.526

Recognizing this key issue, investigators have developed unsupervised multi-dataset integration algorithms, such as Seurat27

MultiCCA,6 MNN Correct,7 Scanorama,8 and BBKNN9 to enable joint analysis. These methods embed cells from diverse28

experimental conditions and biological contexts into a common reduced dimensional embedding to enable shared cell type29

identification across datasets.30

Here we introduce Harmony, an algorithm for robust, scalable, and flexible multi-dataset integration that addresses, to31

meet three key challenges of unsupervised scRNAseq joint embedding. First, cell types with regulatory or pathogenic roles32

are often rare, with subtle transcriptomic signatures. Integration must be able to identify both common and rare cell types,33

particularly those whose subtle signatures are initially obscured by technical or biological confounders. To be sensitive to34

subpopulations with subtle signatures, Harmony uses a two-step iterative strategy that removes the effect of such confounding35

factors at each round. This makes it easier to identify shared cell types whose expression signatures were obscured in the36

original data. Second, the number of cells in experiments is quickly expanding, exceeding 100,000 cells in atlas-like datasets.37

Integration algorithms must scale computationally, both in terms of runtime and required memory resources. To scale to big38

data, Harmony uses linear methods and avoids the costly cell-to-cell comparisons that scale quadratically with the number39

of cells. Third, more complex experimental design of single cell analysis compares cells from different donors, tissues, and40

technological platforms. In order for the joint embedding to be free of the influence of each, integration must simultaneously41

account for multiple sources of variation. The Harmony simultaneously accounts for multiple sources of variation, because42

the clustering objective function is formulated to account for any number of categorical covariates. Harmony is available as43

an R package on github (https://github.com/immunogenomics/harmony), with functions for standalone and Seurat6 pipeline44

analyses.45

Here, we demonstrate how Harmony address the three unmet needs outlined above. First, we give an overview of the46

Harmony algorithm. Then, we integrate carefully designed cell line datasets to introduce metrics for quantifying cell-type47

accuracy and degree of dataset-mixing before and after integration. All measures of cell-type accuracy are based on anno-48

tation within datasets separately. As Harmony does not use cell-type information to integrate cells, these labels provide an49

unbiased quantification of accuracy. We then demonstrate that Harmony generates embeddings with higher quality and fewer50

computational resources than all currently available algorithms by testing each of them across a wide range of dataset sizes,51

from 25,000 to 500,000 total cells. Next, we show that Harmony to identify both broad populations and fine-grained sub-52
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populations of cells in three datasets of peripheral blood mononuclear cell (PBMC) datasets with large technical differences.53

Finally, in a pancreatic islet cell meta-analysis, we demonstrate the power of Harmony to simultaneously integrate donor-54

and technology-specific effects to identify several rare subpopulations, including one putative novel islet cell subtype.55

Results56

Harmony Iteratively Learns a Cell-Specific Linear Correction Function57

Starting with a PCA embedding, Harmony first groups cells into multi-dataset clusters (Figure 1A). We use soft clustering,58

assigning cells to potentially multiple clusters, to account for smooth transitions between cell states. In our thinking, these59

clusters serve as surrogate variables, rather than actually defining discrete cell-types. We developed a novel variant of soft60

k-means clustering to favor clusters with representation across multiple datasets (Online Methods). Clusters containing61

cells that are disproportionately represented by a small subset of datasets are penalized by an information theoretic metric.62

Harmony allows the user to apply multiple different penalties to accommodate multiple technical or biological factors, such63

as different batches and different technology platforms. The uncertainty encoded in the soft clustering preserves discrete64

and continuous topologies while avoiding local minima that might result from too quickly maximizing representation across65

multiple datasets, and preserves uncertainty. After clustering, each dataset has a cluster-specific centroid (Figure 1B) that is66

used to compute cluster-specific linear correction factors (Figure 1C). Under favorable conditions, the surrogate variables,67

defined by cluster membership, correspond to cell types and cell states. Thus, the cluster-specific correction factors that68

Harmony computes correspond to individual cell-type and cell-state specific correction factors. In this way, Harmony learns69

a simple linear adjustment function that is sensitive to intrinsic cellular phenotypes. Finally, each cell is assigned a cluster-70

weighted average of these terms and corrected by its cell-specific linear factor (Figure 1D). As a result, each cell has a71

potentially unique correction factor, depending on its soft clustering distribution. Harmony iterates these four steps until72

convergence. At convergence, additional iterations would assign cells to the same clusters and compute the same linear73

correction factors.74
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Figure 1: Overview of Harmony algorithm. We represent datasets with colors, and different cell types with shapes. Before we apply Harmony,

principal components analysis embeds cells into a space with reduced dimensionality. Harmony accepts the cell coordinates in this reduced space and

runs an iterative algorithm to adjust for data set specific effects. (A) Harmony uses fuzzy clustering to assign each cell to multiple clusters, while a

penalty term ensures that the diversity of datasets within each cluster is maximized. (B) Harmony calculates a global centroid for each cluster, as well as

dataset-specific centroids for each cluster. (C) Within each cluster, Harmony calculates a correction factor for each dataset based on the centroids. (D)

Finally, Harmony corrects each cell with a cell-specific factor: a linear combination of dataset correction factors weighted by its soft cluster assignments

made in step A. Harmony repeats steps A through D until convergence. The dependence between cluster assignment and dataset diminishes with each

round.

Quantification of Error and Accuracy in Cell Line Integration75

We first assessed Harmony using three carefully controlled datasets, in order to evaluate performance on both integration76

(mixing of datasets) and accuracy (no mixing of cell types). Both metrics are important. Perfect integration can be achieved77

by simply mixing all cells, regardless of cellular identity. Similarly, high accuracy can be achieved by partitioning cell types78

into broad clusters without mixing datasets in small neighborhoods. In this situation, broad cellular states are defined, but79

fine-grained cellular substates and subtypes are confounded by the originating dataset. In order to quantify integration and80

accuracy of this embedding we felt that it was important that we have an objective metric. To this end, we compute the Local81

Inverse Simpson’s Index (LISI, Online Methods) in the local neighborhood of each cell. To assess integration, we employ82

integration LISI (iLISI, Figure 2A), denotes the effective number of datasets in a neighborhood. Neighborhoods represented83

by only a single dataset get an iLISI of 1, while neighborhoods with an equal number of cells from 2 datasets get an iLISI84

of 2. Note that even under ideal mixing, if the datasets have different numbers of cells, iLISI would be less than 2. To85

assess accuracy, we use cell-type LISI (cLISI, Figure 2B), the same mathematical measure, but applied to cell-type instead86

of dataset labels. Accurate integration should maintain a cLISI of 1, reflecting a separation of unique cell types throughout87

the embedding. An erroneous embedding would include neighborhoods with a cLISI of 2, indicating that neighbors have 288

different types of cells.89
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We begin with three datasets from two cells lines: (1) pure Jurkat, (2) pure 293T and (3) a 50:50 mix.10 These datasets90

are particularly ideal for illustration and for assessment, as each cell can be unambiguously labeled Jurkat or 293T (Figure91

S1). A thorough integration would mix the 1799 Jurkat cells from the mixture dataset with 3255 cells from the pure Jurkat92

dataset and the 1565 293T cells from the mixture dataset with the 2859 from the pure 293T dataset. Thus, we expect the93

average iLISI to range from 1, reflecting no integration, to 1.8 for Jurkat cells and 1.5 for 293T cells1, reflecting maximal94

accurate integration. Application of a standard PCA pipeline followed by UMAP embedding demonstrates that the cells95

group broadly by dataset and cell type. This is both visually apparent (Figure 2C,D) and quantified (Figure 2E,F) with96

high accuracy reflected by a low cLISI (median iLISI 1.00, 95% [1.00, 1.00]). However the iLISI (median iLISI 1.01, 95%97

[1.00, 1.61]) is also low, reflecting imperfect integration, and ample structure within each cell-type reflecting the data set98

of origin. After Harmony, cells from the 50:50 dataset are mixed into the pure datasets (Figure 2E), which is appropriate99

in this case since these cell-lines have no additional biological structure. The increased iLISI (Figure 2D, median iLISI100

1.59, 95% [1.27, 1.97]) reflects the mixing of datasets, while the low cLISI (median iLISI 1.00, 95% [1.00, 1.02]) reflects101

the accurate separation of Jurkat from 293T cells. iLISI and cLISI provide a quantitative way to assess the integration and102

accuracy of multiple algorithms. We repeated the integration and LISI analyses with MNN Correct, BBKNN, MultiCCA,103

and Scanorama (Figure 2G). While Harmony had the highest iLISI, Scanorama MNN Correct, and BBKNN provided lower104

levels of integration, evidence by lower iLISI. MultiCCA actually separated previously mixed datasets, yielding a lower iLISI105

(median 1.00, 95% [1.00, 1.28]) than before integration. Except for MultiCCA (median cLISI 1.00, 95% [1.00, 1.23]), the106

other algorithms maintained high accuracy (Table S1, median cLISI 1.00, 95% [1.00, 1.00]). This benchmark demonstrates107

the two key metrics for assessing mixing and accuracy and shows that Harmony performs well on both metrics in a well-108

controlled analysis of cell-line datasets.109

11.5 = 1 / [(1565 / (1565 + 2859))2 + (2859/ (1565 + 2859))2], 1.8 = 1 / [(1799 / (1799 + 2859))2 + (3255 / (1799 + 3255))2]
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Figure 2: Quantitative assessment of dataset mixing and cell-type accuracy with cell line datasets. (A) iLISI measures the degree of mixing among

datasets in an embedding, ranging from 1 in an unmixed space to B in a well mixed space. B is the number of datasets in the analysis. (B) cLISI

measures integration accuracy using the same formulation but computed on cell-type labels instead. An accurate embedding has a cLISI close to 1 for

every neighborhood, reflecting separation of different cell types. Jurkat and HEK293T cells from pure (purple and yellow) and mixed (green) cell-line

datasets were analyzed together. Before Harmony integration, cells grouped by dataset (C) and known cell-type (D). iLISI and cLISI (E) were computed

for every cell’s neighborhood and summarized with quantiles (5, 25, 50, 75, 95). After Harmony integration, cells from the mixture dataset are mixed

into the other datasets (F), achieved by mixing Jurkat with Jurkat cells and HEK293T with HEK293T cells (G). iLISI and cLISI (H) were re-computed

in the Harmony embedding. (I) This analysis was repeated for other algorithms and compared against no integration and Harmony integration using

iLISI and cLISI quantiles.
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Harmony Scales to Enable Analysis of Large Data110

As an integral part of the scRNAseq analysis pipeline, the integration algorithm must run in a reasonable amount of time111

and within the memory constraints of standard computers. To this end, we evaluated the computational performance of112

Harmony, measuring both the total runtime and maximum memory usage. To demonstrate the scalability of Harmony versus113

other methods, we downsampled from HCA data11 (528,688 cells from 16 donors and 2 tissues) to create 5 benchmark114

datasets with 500,000, 250,000, 125,000, 60,000, and 30,000 cells. We reported the runtime (Table S2) and memory (Table115

S3) for all benchmarks. Harmony runtime scaled well for all datasets (Figure 3A), ranging from 4 minutes on 30,000 cells to116

68 minutes on 500,000 cells, 30 to 200 times faster than MultiCCA and MNN Correct. The runtimes for Harmony, BBKNN,117

and Scanorama were comparable for datasets with up to 125,000 cells. Harmony required very little memory (Figure 3B)118

compared to other algorithms, only 0.9GB on 30,000 cells and 7.2GB on 500,000 cells. At 125,000 cells, Harmony required119

30 to 50 times less memory than Scanorama, MNN Correct and Seurat MultiCCA; these other methods could not scale120

beyond 125,000 cells. Notably, BBKNN was the only other algorithm able to finish on the 500,000 cell dataset, taking 44121

minutes and 45GB of RAM. However, the BBKNN embedding did not achieve better integrated of tissues (Figure 3C, S2A,122

median iLISI 1.00, 95% [1.00, 1.10]) or donors (Figure 3D, S2B, median iLISI 1.60, 95% [1.00, 4.11]) above PCA alone123

(Figure S2C tissue median iLISI 1.00, 95% [1.00, 1.03], Figure S2D donor median iLISI 1.38, 95% [1.00, 3.14]).124

Importantly, in addition to better computational performance of other algorithms Harmony returned a substantially more125

integrated space that other competing algorithms, allowing for the identification of shared cell types across tissues (Figure126

3E, Table S4, median iLISI 1.40, 95% [1.04, 1.97] compared to medians of 1.00 to 1.12) and donors (Figure S3, median127

iLISI 3.93, 95% [2.46, 4.95] compared to medians of 1.07 to 2.82). In the Harmony embedding, we clustered cells and128

were able to identify shared populations (Figure 3F) using canonical markers (Figure S4). These results demonstrate that129

Harmony is computationally efficient and capable of analyzing even large datasets (105 - 106 cells) on personal computers.130

Alternative methods may require extensive parallelization to run modestly sized datasets.131
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Figure 3: Computational efficiency benchmarks. We ran Harmony, BBKNN, Scanorama, MNN Correct, and MultiCCA on 5 downsampled HCA

datasets of increasing sizes, from 25,000 to 500,000 cells. We recorded the (A) total runtime and (B) maximum memory required to analyze each

dataset. Scanorama, MultiCCA, and MNN Correct were terminated for excessive memory requests on the 250,000 and 500,000 cell datasets. For

Scanorama and Harmony, we quantified the extent of integration in the 500,000 cell benchmark for (C) the two tissues (cord blood and bone marrow)

and (D) the 16 donors. For reference, (C) and (D) report the iLISI scores prior to integration. The mixing between tissues in the Harmony embedding is

visualized in (E). In the Harmony embedding, (F) we clustered cells and labeled populations by canonical markers: pre-T cells, CD4 Naive T cells, CD4

Memory T cells, T-regs, CD8 Naive T cells, CD8 Effector T cells, natural killer cells (NK), pre-B cells, Naive B cells, Memory B cells, plasma cells,

plasmacytoid dendritic cells (pDC), conventional dendritic cells (DC), granulocyte macrophage progenitor (GMP), CD16- monocytes (CD14 Mono),

CD16+ monocytes (CD16 Mono), a population of monocytes also positive for Megakaryocyte markers (PPBP Mono), Megakaryocytes (Mk), Erythroid

progenitors (Eryth), and a cluster of hematopoietic stem cells and multipotent progenitor cells (HSC/MPP).
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Deep Integration Enables Identification of Broad and Fine-Grained PBMCs Subpopulations132

To assess how effective Harmony might be under more challenging scenarios, we gathered three datasets of human PBMCs,133

each assayed on the Chromium 10X platform but prepared with different protocols: 3-prime end v1 (3pV1), 3-prime end134

v2 (3pV2), and 5-prime (5p) end chemistries. After pooling all the cells together, we performed a joint analysis. Before135

integration, cells group primarily by dataset (Figure 4A, median iLISI 1.00, 95% [1.00, 1.00]). Harmony integrates the136

three datasets (Figure 4B, median iLISI 1.96, 95% [1.36, 2.56]), more than other methods (Figure 4C). To assess accu-137

racy, within each dataset, we separately annotated (online methods) broad cell clusters with canonical markers of major138

expected populations (Figure S5): monocytes (CD14+ or CD16+), dendritic cells (FCER1A+), B cells (CD20+), T cells139

(CD3+), Megakaryocytes (PPBP+), and NK cells (CD3-/GNLY+) before clustering. We observed that Harmony retained140

differences among cell types (Figure 4D median cLISI 1.00, 95% [1.00, 1.02]). The greater dataset integration, compared141

to other algorithms, affords a unique opportunity to identify fine-grained cell subtypes. Using canonical markers (Figure142

4E), we identified shared subpopulations of cells (Figure 4F) including naive CD4 T (CD4+/CCR7+), effector memory143

CD4 T (CD4+/CCR7-), Treg (CD4+/FOXP3+), memory CD8 (CD8+/GZMK-), effector CD8 T (CD8+/GZMK+), naive B144

(CD20+/CD27-), and memory B cells (CD20+/CD27+). In the embeddings produced by other algorithms, the median iLISI145

did not exceed 1.1 (Table S5). Accordingly, the subtypes identified with Harmony reside in dataset-specific, rather than146

dataset-mixed clusters (Figure S6). These results show that Harmony successfully accounts for technical variation among147

different protocols and integrates many different cell types while preserving large-scale and fine-grained structures in the148

data.149
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Figure 4: Fine-grained subpopulation identification in PBMCs across technologies. Three PBMC datasets were assayed with 10X, using different

library construction protocols: 5-prime (orange), 3-prime V1 (purple), and 3-prime V2 (green). Before integration (A), cells group by dataset. After

Harmony integration (B), datasets are mixed together. (C) Harmony achieves the most thorough integration among datasets, while preserving (D) cell

type differences. Using canonical markers (E), we identified (F) 5 shared subtypes of T cells and 2 shared subtypes of B cells. (G) Other integration

algorithms fail to group these cells by subtype.

Simultaneous Integration Across Donors and Technologies Identifies Rare Pancreas Islet Subtypes150

We considered a more complex experimental design, in which integration must be performed simultaneously over more than151

one variable. We gathered human pancreatic islet cells from independent five studies12–16 , each of which were generated152

with a different technological platform. Integration across platforms is already challenging. However, within two12, 13 of the153

datasets, the authors also reported significant donor-specific effects. In this scenario, a successful integration of these studies154

must account for the effects of both technologies and donors, which may both affect different cell types in different ways.155

Harmony is the only single cell integration algorithm that is able to explicitly integrate over more than one variable, hence156

we omit a comparison against other methods.157

As before, we assess cell type accuracy cLISI with canonical cell types identified independently within each dataset158

(Figure S7): alpha (GCG+), beta (MAFA+), gamma (PPY+), delta (SST+), acinar (PRSS1+), ductal (KRT19+), endothelial159

(CDH5+), stellate (COL1A2+), and immune (PTPRC+). Since there are two integration variables, we asses both donor iLISI160

and technology iLISI. Prior to integration, PCA separates cells by technology (Figure 5A,E, median iLISI 1.00 95% [1.00,161

1.06]), donor (Figure 5B,E, median iLISI 1.42 95% [1.00, 5.50]), and cell type (Figure 5E, median cLISI 1.00 95% [1.00,162

1.48]). The wide range of donor-iLISI reflects that in the CEL-seq, CEL-seq2, and Fluidigm C1 datasets, many donors were163

well mixed prior to integration. Harmony integrates cells by both technology (Figure 5C,E, median iLISI 2.27 95% [1.31,164
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3.27]) and donor (Figure 5D,E, median iLISI 4.71 95% [1.81, 6.36]).165

Harmony was able to discern rare cell subtypes (Figure 5F) across the 5 datasets (Figure 5G). We labeled previously166

described subtypes using canonical markers: activated stellate cells (PDGFRA+), quiescent stellate cells (RGS5+), mast cells167

(BTK+), macrophages (C1QC+), and beta cells under endoplasmic reticulum (ER) stress (Figure 5H). Beta ER stress cells168

may represent a dysfunctional population. This cluster has significantly lower expression of genes key to beta cell identify17
169

and function:18 PDX1, MAFA, INSM1, NEUROD1 (Figure 5I). Further, Sachdeva et al19 suggest that PDX1 deficiency170

makes beta cells less functional and exposes them to ER stress induced apoptosis.171

Intriguingly, we also observed an alpha cell subset that to our knowledge, has not been previously described. This cluster172

was also enriched with genes involved in ER stress (Figure 5J, DDIT3, ATF3, ATF4, and HSPA5). Similar to the beta173

ER stress population, these alpha cells also expressed significantly lower levels of genes necessary for proper function:20, 21
174

GCG, ISL1, ARX, and MAFB (Figure 5K). A recent study22 reported ER stress in alpha cells in mice and linked the stress to175

dysfunctional glucagon secretion. Moreover, we found that the proportions of alpha and beta ER stress cells are significantly176

correlated (spearman r=0.46, p=0.004, Figure 5L) across donors in all datasets. These results suggest a basis for alpha cell177

injury that might parallel beta cell dysfunction in humans during diabetes.23
178
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Figure 5: Integration of pancreatic islet cells by both donor and technology. Human pancreatic islet cells from 36 donors were assayed on 5 different

technologies. Cells initially group by (A) technology, denoted by different colors, and (B) donor, denoted by shades of colors. Harmony integrates

cells simultaneously across (C) technology and (D) donor. Integration across both variables was quantified with iLISI (E) and error was computed with

cLISI (E). Clustering in the Harmony embedding identified common and rare cell types, including a previously undescribed alpha population. Except

for activated stellate cells, all rare cell types were found across the 5 technology datasets (G). The new alpha cluster was enriched for ER stress genes

(I), just like the previously identified beta ER stress cluster (J). The abundances of the two ER stress populations were correlated across donors (H).

Key genes necessary for endocrine function were downregulated in the alpha (K) and beta (L) ES stress clusters.
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Discussion179

We showed that Harmony address the three key challenges we laid out for single cell integration analyses: scaling to large180

datasets, identification of both broad populations and fine-grained subpopulations, and flexibility to accommodate complex181

experimental design. We evaluated the degree of mixing among datasets using a quantitative metric, the iLISI. Apart from182

its use benchmarking, iLISI was particularly important in analyses with more than 3 datasets. Here, we observed that the183

commonly utilized approach of assessing integration visually was subjective and insensitive, particularly when the number184

of samples, batches or cell types was large. iLISI provides a quantitative and interpretable metric to help guide analysis.185

In the computational efficiency benchmarks, we found that 3 of the 5 algorithms were not able to scale beyond 125,000186

cells because they exceeded the memory resources of our 128GB servers. We were struck by the fact many researchers187

routinely analyze data on personal computers, which often do not exceed 8 or 16GB. Harmony, which only required 7.2GB188

to integrate 500,000 cells, is the only algorithm that would enable the integration of large datasets on personal computers.189

With the pancreatic islet meta-analysis, we demonstrated that Harmony is able to account simultaneously for donor and190

technology specific effects. One solution to this multi-level problem stepwise is to first globally regress out one variable191

from the gene expression values and then performing single cell integration on the resulting expression matrix. Harmony192

allows for cell-type aware integration of both variables, simultaneously avoiding global correction terms that treat all cells193

uniformly. However, the global regression strategy is flexible enough to account for continuous variables, such as read depth194

or cell quality. In the future, Harmony should also be able to account for such non-discrete sources of variation.195

We noticed that it is not an uncommon practice to apply a batch-sensitive gene scaling step step before using a single-196

cell integration algorithm. Specifically, many investigators scale gene expression values within datasets separately, before197

pooling cells into a single matrix. We show (Supplementary Results) that this strategy may make it easier to integrate datasets198

(Figure S8A,B) in the rare situation in which all cell populations and subpopulations are present across all analyzed datasets.199

However, when the datasets consist of overlapping but not identical populations, this scaling strategy is less effective (Figure200

S8C) and may indeed even increase error (Figure S8D). For this reason, we do not use this scaling strategy in this manuscript.201

As part of a universal pipeline, Harmony finds highly integrated embeddings without the need for within-dataset scaling.202

Harmony allows the user to set a hyperparameter for each covariate that guides how deeply to integrate over each source203

of variation. When the penalty is 0, Harmony performs minimal integration. Curiously, we noticed that for small inter-204

datasets differences, cells from multiple datasets cluster together without the penalty. In this case, Harmony still integrates205

the cells during the linear correction phase. On the other hand, one could imagine that with an infinitely large penalty206

hyperparameter, Harmony would overmix datasets during clustering and hence overcorrect the data. We evaluated the effect207

of the diversity penalty in the PBMCs example (see Supplementary Results) and observed that the Harmony embedding208

is robust to a wide range of penalties (Figure S9). Nonetheless, as with any integration algorithm, we urge the user to209

understand the effects of hyperparameters and experiment with several values.210
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Harmony is designed to accept a matrix of cells and covariate labels for each cell as input, and it will output a matrix211

of adjusted coordinates with the same dimensions as the input matrix. As such, Harmony should be used as an upstream212

step in a full analysis pipeline. Downstream analyses, such as clustering, trajectory analysis, and visualization, can use213

the integrated Harmony adjusted coordinates instead of the commonly used PCA coordinates. As a corollary, Harmony214

does not alter the expression values of individual genes to account for dataset-specific differences. We recommend using a215

batch-aware approach, such as a linear model with covariates, for differential expression analysis.216

In our meta-analysis of pancreatic islet cells, we identified a previously undescribed rare subpopulation of alpha ER217

stress cells (Figure 5F,J). Similar to beta ER stress cells, they appear to have reduced endocrine function (Figure 5K).218

Because Harmony integrated over both donors and technology (Figure 5C,D,E), we were able to identify the significant219

association between the proportion of alpha to beta ER stress populations across donors (Figure 5L). Based on this corre-220

lation and similar stress response patterns, it is possible that these two populations are involved in a coordinated response221

to an environmental stress. Beta cell dysfunction is key to the pathogenesis of diabetes23. Experimental follow up on this222

alpha subtype and its relation to beta ER stress cells may yield insight into disease. This analysis demonstrates the power of223

Harmony’s multilevel integration to mix diverse datasets and uncover potentially novel rare cell types.224

Online Methods225

Harmony226

The Harmony algorithm inputs some embedding (Z) of cells, along with their batch assignments (φ), and returns a batch227

corrected embedding (Ẑ). This algorithm, summarized as Algorithm 1 below, iterates between two complementary stages:228

maximum diversity clustering (Algorithm 2) and a mixture model based linear batch correction (Algorithm 3). The clus-229

tering step uses the a batch corrected embedding Ẑ to compute a soft assignment of cells to clusters, encoded in the matrix230

R. The correction step uses these soft clusters to compute a new corrected embedding from the original one. Efficient231

implementations of Harmony, including the clustering and correction subroutines, are available as part of an R package at232

https://github.com/immunogenomics/harmony.233

Algorithm 1 Harmony

function HARMONIZE(Z, φ(1) . . . φ(F ))
Ẑ ← Z
repeat

R← CLUSTER(Ẑ, φ(1) . . . φ(F ))
Ẑ ← CORRECT(Z,R, φ(1))

until convergence
return Ẑ

Note that the correction procedure uses Z, not Ẑ to regress out confounder effects. In this way, we restrict correction to234

a linear model of the original embedding. An alternative approach would use the output Ẑ of the last iteration as input to235
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the correction procedure. Thus, the final Ẑ would be the result of a series of linear corrections of the original embedding.236

While this allows for more expressive transformations, we found that in practice, this can over correct the data. Our choice to237

limit the transformation reflects the notion in the introduction. Namely, if we had perfect knowledge of the cell types before238

correction, we would linearly regress out batch within each cell type.239

Lastly, we note that Z can be any arbitrary embedding of the cells. In this paper, we use principal components for240

scRNAseq datasets. However, Harmony can be efficiently run on any low dimensional embedding of the data, including241

diffusion maps, autoencoders, or independent components.242

Glossary243

For reference, we define all data structures used in all Harmony functions. For each one, we define its dimensions and244

possible values, as well as an intuitive description of what it means in context. The dimensions are stated in terms of d:245

the dimensionality of the embedding (e.g. number of PCs), B: the number of batches, N: the number of samples, Nb: the246

number of samples in batch b, and K: the number of clusters.247

Z ∈ Rd×N . The input embedding, to be corrected in Harmony. This is often PCA embeddings of cells.248

Ẑ ∈ Rd×N . The integrated embedding, output by Harmony.249

R ∈ [0, 1]K×N , ∀i
∑K

k=1Rki = 1. The soft cluster assignment matrix of cells (columns) to clusters (rows). Each column250

is a probability distribution and thus sums to 1.251

φ ∈ {0, 1}B×N One-hot assignment matrix of cells (columns) to batches (rows).252

Prb ∈ [0, 1]B . Frequency of batches.253

O ∈ [0, 1]K×B The observed co-occurence matrix of cells in clusters (rows) and batches (columns).254

E ∈ [0, 1]K×B The expected co-occurence matrix of cells in clusters and batches, under the assumption of independence255

between cluster and batch assignment.256

Y ∈ [0, 1]d×K Cluster centroid locations in the kmeans clustering algorithm.257

µ ∈ Rd×K Centroid locations. Conceptually the same as Y but not normalized to unit length. Used in GMM Correct.258

β ∈ Rd×K×B Batch-specific centroid locations. Used in GMM Correct.259

Note that in the case of multiple (F ) batch variables, φ, θ, O, and E are independently defined for each batch f . We260

denote these by φ(f), θf , O(f), and E(f) for each batch from 1 to F .261
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Maximum Diversity Clustering262

We developed a clustering algorithm to maximize the diversity among batches within clusters. We present this method as263

follows. First, review a previously published objective function for soft k-means clustering.264

We then add a diversity maximizing regularization term to this objective function, and derive this regularization term as265

the penalty on statistical dependence between two random variables: batch membership and cluster assignment. We then266

derive and present pseudocode for an algorithm to optimize the objective function. Finally, we explain key details of the267

implementation.268

Background: Entropy regularization for Soft K-means269

The basic objective function for classical K means clustering, in which each cell belongs to exactly one cluster, is defined by270

the distance from cells to their assigned centroids.271

min
R,Y

∑
i,k

Ri,k||Zi − Yk||2 (1)

s.t.∀i∀kRki ∈ {0, 1}

Above, Z is some feature space of the data, shared by centroids Y . Ri,k can takes values 0 or 1, denoting membership of272

cell i in cluster k. In order to transform this into a soft clustering objective, we follow the direction of24 and add a an entropy273

regularization term over R, weighted by a hyperparameter σ. Now, Rki can take values between 0 and 1, so long as for a274

given cell i, the sum over cluster memberships
∑

k Rki equals 1. That is, Ri· must be a proper probability distribution with275

support [1,K].276

min
R,Y

∑
i,k

Rki||Zi − Yk||2 + σRki log(Rki) (2)

s.t.∀i∀kRki > 0,
K∑
k=1

Rki = 1

As σ approaches 0, this penalty approach hard clustering. As σ approaches infinity, the entropy of R outweighs the277

data-centroid distances. In this case, each data point is assigned equally to all clusters.278

Objective Function for Maximum Diversity Clustering279

The full objective function for Harmony’s clustering builds on the previous section. In addition to soft assignment regular-280

ization, the function below penalizes clusters with low batch-diversity, for all defined batch variables. This penalty, derived281
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in the following section, depends on the cluster and batch identities Ω(R,φ
(1)
i . . . φ

(F )
i ) =

∑
i,k Rki

∑
f log(O(f)

ki /E
(f)
ki )φ

(f)
i .282

min
R,Y

∑
i,k

Rki||Zi − Yk||2 + σRki log(Rki)

+ σ
∑
f

θfRki log

(
O

(f)
ki

E
(f)
ki

)
(3)

s.t.∀i∀kRki > 0,
K∑
k=1

Rki = 1

For each batch variable, we add a new parameter θf . θf decides the degree of penalty for dependence between batch283

membership and cluster assignment. When ∀fθf = 0, the problem reverts back to (2), with no penalty on dependence. As284

θf increases, the objective function favors more independence between batch f and cluster assignment. As θf approaches285

infinity, it will yield a degenerate solution. In this case, each cluster has an equivalent distribution across batch f . However,286

the distances between cells and centroids may be large. Finally, σ is added to this term for notational convenience in the287

gradient calculations.288

We found that this clustering works best when we compute the cosine, rather than Euclidean distance, between Z and289

Y . Haghverdi et al25 showed that the squared Euclidean distance is equivalent to cosine distance when the vectors are L2290

normalized. Therefore, assuming that all Zi and Yk have a unity L2 norm, the squared Euclidean distance above can be291

re-written as a dot product.292

min
R,Y

∑
i,k

Rki2(1− Y T
k Zi) + σRki log(Rki)

+ σ
∑
f

θfRki log

(
O

(f)
ki

E
(f)
ki

)
(4)

s.t.∀i∀kRki > 0,

K∑
k=1

Rki = 1

Cluster Diversity Score293

Here, we discuss and derive the diversity penalty term Ω(·), defined in the previous section. For simplicity, we discuss294

diversity with respect to a single batch variable, as the multiple batch penalty terms are additive in the objective function.295

The goal of Ω(·) is to penalize statistical dependence between batch identity and cluster assignment. In statistics, dependence296

between two discrete random variables is typically measured with the χ2 statistic. This test considers the frequencies with297

which different values of the two random variables are observed together. The observed co-occurrence counts (O) are298

compared to the counts expected under independence (E). For practical reasons, we do not use the χ2 statistic directly.299
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Instead, we use the Kullback Leibler Divergence (DKL), an information theoretic distance between two distributions. In this300

section, we define the O and E distributions, as well the DKL penalty, in the context of the probabilistic cluster assignment301

matrix R.302

Obk = NPr(b, k)

Obk = NPr(k|b)Pr(b)

Obk = N

(∑
i

1i∈b
Rki
Nb

)
Nb

N

Obk =
∑
i

1i∈bRki (5)

Ebk = NPr(b, k)

Ebk = NPr(k)Pr(b)

Ebk = N

(∑
i

Rki
N

)
Nb

N

Ebk =
Nb

N

∑
i

Rki (6)

Next, we define the KL divergence in terms ofR. Note that bothO andE depend onR. However, in the derivation below,303

we expand one of the O terms. This serves a functional purpose in the optimization procedure, described later. Intuitively,304

in the update step of R for a single cell, we compute O and E on all the other cells. In this way, we decide how to assign the305

single cell to clusters given the current distribution of batches amongst clusters.306

DKL(E||O) =
B∑
b=1

K∑
k=k

Ob,k log

(
Obk
Ebk

)

DKL(E||O) =

B∑
b=1

K∑
k=k

[ N∑
i=1

1i∈bRki

]
log

(
Obk
Ebk

)

DKL(E||O) =
N∑
i=1

K∑
k=k

B∑
b=1

1i∈bRki log

(
Obk
Ebk

)

DKL(E||O) =

N∑
i=1

K∑
k=k

Rki log

(
Obk
Ebk

)
φi (7)

For multiple batch variables, we sum over these convergence terms to get the penalty in equation 3.307

Ω(R,φ(1) . . . φ(F )) =
∑
f

DKL(E(f)||O(f))
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Optimization308

Optimization of 4 admits an Expectation-Maximization framework, iterating between cluster assignment (R) and centroid309

(Y ) estimation .310

Cluster assignment R. Using the same strategy as,24 we solve for the optimal assignment Ri for each cell i. First we set up311

the Lagrangian with dual parameter λ and solve for the partial derivative wrt each cluster k.312

L(Ri, λ) =
K∑
k=1

Rki2(1− Y T
k Zi) + σRki logRki

+ σRki
∑
f

θf log(
O

(f)
ki

E
(f)
ki

) + λ
[
(

K∑
k=1

Rki)− 1
]

δL(Ri, λ)

δRki
= 0 = 2(1− Y T

k Zi) + σ + σ logRki

+ σ
∑
f

θf log(
O

(f)
ki

E
(f)
ki

) + λ

logRki = −
2(1− Y T

k Zi)

σ
− 1− θf

∑
f

log(
O

(f)
ki

E
(f)
ki

)− λ

σ

Rki =
∏
f

(
O

(f)
ki

E
(f)
ki

)θf
exp

(
−

2(1− Y T
k Zi)

σ

)
· exp(−λ

σ
− 1)

Next, we use the probability constraint
∑K

k=1Rki = 1 to solve for exp(−λ
σ − 1).313

1 =

K∑
k=1

Rki

1 =
K∑
k=1

∏
f

(
O

(f)
ki

E
(f)
ki

)θf
exp

(
−

2(1− Y T
k Zi)

σ

)
· exp(−λ

σ
− 1)

exp(−λ
σ
− 1) =

1∑K
k=1

∏
f

(
O

(f)
ki

E
(f)
ki

)θf
exp

(
− 2(1−Y T

k Zi)

σ

)

Finally, we substitute exp(−λ
σ − 1) to remove the dependency of Rki on the dual parameter λ.314
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Rki =

∏
f

(
O

(f)
ki

E
(f)
ki

)θf
exp

(
− 2(1−Y T

k Zi)
σ

)
∑K

k̂=1

∏
f

(
O

(f)
ki

E
(f)
ki

)θf
exp

(
−

2(1−Y T
k̂
Zi)

σ

) (8)

The denominator term above makes sure that Ri sums to one. In practice (alg 2), we compute the numerator and divide315

by the sum.316

Centroid Estimation Y. Our clustering algorithm uses cosine distance instead of Euclidean distance. In the context of317

kmeans clustering, this approach was pioneered by Dhillon et al.26 We adopt their centroid estimation procedure for our318

algorithm. Instead of just computing the mean position of all cells that belong in cluster k, this approach then L2 normalizes319

each centroid vector to make it unit length. Note that normalizing the sum over cells is equivalent to normalizing the mean320

of the cells. In the soft clustering case, this summation is an expected value of the cell positions, under the distribution321

defined by R. That is, re-normalizing R·k for cluster k gives the probability of each cell belonging to cluster k. Again, this322

re-normalization is a scalar factor that is irrelevant once we L2 normalize the centroids. Thus, the unnormalized expectation323

of centroid position for cluster k would be Yk = ER·kZ =
∑

iRkiZi. In vector form, for all centroids, this is Y = ZRT .324

The final position of the cluster centroids is given by this summation followed by L2 normalization of each centroid. This325

procedure is implemented in algorithm 2 in the section {Compute Cluster Centroids}.326
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Algorithm 2 Maximum Diversity Clustering

function CLUSTER(Ẑ, φ(1) . . . φ(F ))
{Initialize Cluster Centroids}
Y ← 0[d×K]

for b← 1...B do
sample← K random points from batch b
Y ← Y + Zsample

for i← 1...N do . L2 Normalization
Y·,i ← Y·,i/‖Y·,i‖2
Ẑ·,i ← Ẑ·,i/‖Ẑ·,i‖2

for f ← 1...F do
E(f) ← R1PrTb
O(f) ← R[φ(f)]T

repeat
for all Update Blocks do

in← cells to update in block
{Compute O and E on left out data}
for f ← 1...F do

E(f) ← E(f) −Rin1PrTb
O(f) ← O(f) −Rin[φ

(f)
in ]T

{Update and Normalize R}

Rin ← exp

(
− 2(1−Y T Ẑin)

σ

)
Ω←

∏
f (E(f) + αE(f)/O(f) + αE(f))θfφ

(f)
in

Rin ← Rin ◦ Ω
Rin ← Rin/1TRin . Ri sum to one

{Compute O and E with full data}
for f ← 1...F do

E(f) ← E(f) +Rin1Pr
T
b

O(f) ← O(f) +Rin[φ
(f)
in ]T

{Compute Cluster Centroids}
Y ← ZRT

for i← 1...N do . L2 Normalization
Y·,i ← Y·,i/‖Y·,i‖2

until convergence
return R

Implementation Details327

The update steps of R and Y derived above form the core of Maximum Diversity Clustering, outlined as algorithm 2. This328

section explains the other implementation details of this pseudocode. Again, for simplicity, we discuss details related to329

diversity penalty terms θ, φ, O, and E for each single batch variable independently.330

Block Updates of R. Unlike in regular kmeans, the optimization procedure above for R cannot be faithfully parallelized, as331

the values of O and E change with R. The exact solution therefore depends an online procedure. For speed, we can coarse332
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grain this procedure and update R in small blocks (e.g. 5% of the data). Meanwhile, O and E are computed on the held out333

data. In practice, this approach succeeds in minimizing the objective for sufficiently small block size. In the algorithm, these334

blocks are included as the Update Blocks in the for loop.335

Centroid Initialization. We initialize cluster centroids using a batch balanced random medeoid approach. We randomly336

select K cells within each batch for a total of B × K centroids. We then randomly select one centroid from each batch,337

average it, and L2 normalize it to create a total of K centroids. With this strategy, any single centroid is unlikely to be338

centered within one batch.339

Regularization for Smoother Penalty.340

The diversity penalty term (Ebk/Obk)θ can tend towards infinity if there are no cells from batch b assigned to cluster k.341

This extreme penalty can erroneously force cells into an inappropriate cluster. To protect against this, we smooth this term342

to ensure that the denominator will not be zero. The strategy is to use E as a prior and add some portion α ∈ [0, 1] of it to343

the empirically estimated values of E and O. As a result, the smoothed fraction becomes (Ebk+αEbk
Obk+αEbk

)θ.344

θ Discounting. The diversity penalty, weighted by θ enforces an even mixing of cells from a batch among all clusters. This345

assumption is more likely to break for a batch with few cells. The smaller the batch, the more likely it is, through a sampling346

argument, that some cell types are not represented in the batch. Spreading such a batch across all clusters would result in347

erroneous clustering. To prevent such a situation, we allot each batch its own θb term, scaled to the number of cells in the348

batch.349

θb = θmax
[
1− exp(− Nb

Kτ
)2
]

Above, θmax is the non-discounted θ value, for a large enough batch. The multiplicative factor
[
1− exp(− N

Kτ )2
]

ranges350

from 0 to 1. This factor scales exponentially for small values of batch size Nb and plateaus for sufficiently large Nb. The351

hyperparameter τ can be interpreted as the minimum number of cells that should be assigned to each cluster from a single352

batch. By default, we use values between τ = 5 and τ = 20.353

Linear Mixture Model Correction354

In this section, we refer to all effects to be integrated out of the original embedding as batch effects. This does not imply355

that these effects are purely technical. This terminology is only meant for convenience. After clustering, we estimate and356

correct for additive batch effect in low dimensional space. The intuition behind our approach is to give each cell within a357

batch a different batch effect term, depending on its cell type/state. As we do not know the latter a priori, we use cluster358

membership as a surrogate variable. For simplicity, we choose to limit our treatment of batch effect to the additive mode and359

avoid estimating scaling effects. Note that although there are potentially multiple batch assignments handled in the clustering360

above, the regression step currently deals with only one variable. Here, we assume that φ is φ(1).361
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362

Simple Additive Batch Model. Before we jump in to the full mixture model, we review a simpler model of additive batch.363

Here, batch effect is global and is not sensitive to any surrogate variables, such as cluster membership. We assume the data364

is normally distributed and model each sample (i) with a multivariate Gaussian.365

Zi ∼ N (µ+ βφi, σ
2I) (9)

The covariance matrix Σ is a diagonal matrix with the same variance σ2 for each dimension. The mean is a sum of a366

global intercept vector µ and a batch effect vector βφi. In this example, β ∈ Rd×B defines an offset vector for each batch.367

We use φi to index into the appropriate batch of β (i.e. βφi ∈ Rd×1). In order to regress out the batch effect, we estimate the368

parameters µ and β and subtract the batch offsets (βφi) from the raw data. Since batch effect here is purely additive, we do369

not estimate variance. µ is the global mean of the dataset (µ =
∑N

i=1 Zi/N ). β terms are estimated by maximizing the log370

likelihood of (9) wrt each βb term independently.371

LL(Z) ∝
N∑
i=1

[Zi − (µ+ βφi)]
TΣ[Zi − (µ+ βφi)]+

log |Σ|
δ

δβb
LL(Z) ∝

∑
i∈b

Zi − (µ+ βb) = 0

βb =

∑
i∈b Zi

Nb
− µ (10)

Thus, the batch offset of batch b is the mean of cells inside the batch minus the global mean. We subtract this offset from372

the raw data (Z) to get the corrected data (Ẑ).373

Ẑi = Zi − βφi (11)

In the following section, we follow the same approach laid out here to incorporate soft cluster membership into the model.374

375

Additive Batch Mixture Model In order to model the effect of batch, we take advantage of the parameterization of K-means376

as a special case of a Gaussian mixture model (GMM). That is, the cluster assignment probabilities (R) computed before now377

become the component mixture weights in the GMM. Like above, this GMM has a homoschedastic, spherical covariance378

matrix (Σ = σ2I). Unlike the simpler model, each cluster has its own intercept µk and set of batch terms βbk.379
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Zi ∼
∑
k

RkiN (µk + βkφi, σ
2I) (12)

In this new generative model, each sample is explained as a mixture of Gaussians, with weights Rki. The cluster specific380

intercepts (µk) are the (non-spherical) cluster centroids. We compute the MLE β terms using standard methods for GMMs.381

It is known that the GMM does not have a convex log likelihood, so we use the the expected log likelihood instead. Fixing382

µk and Rki, we solve for the MLE βbk terms.383

LL(Z) ∝
N∑
i=1

Rki
[

log |Σ|+

(Zi − (µk + βkφi))
TΣ(Zi − (µk + βkφi))

]
δ

δβbk
LL(Z) ∝

∑
i∈b

Rki(Zi − µk + βbk) = 0

βbk =

∑
i∈bRkiZi

Obk
− µk (13)

Note that (10) and (13) have similar forms. Both compute the expected difference between the batch cells and some µ.384

In the simple model, µ is a global term, while in the mixture model, µk is specific to a local cluster k. In order to correct the385

data in this model, we need a batch offset term for each cell. (12) shows us that this is done by taking expectations over βkφi386

terms:387

Ẑi = Zi −
K∑
k=1

Rkiβkφi (14)

Implementation. Algorithm 3 lays down the pseudocode for GMM Correct, the mixture model correction procedure derived388

above. For a more vectorized implementation, we rewrite the (13) in terms of each βb ∈ Rd×K matrix and (14) in terms of389

the whole Z matrix.390

βb = ZRTdiag(1Ob)
−1 − µ (15)

Ẑ = Z −
K∑
k=1

(1RTk ◦ βkφ) (16)
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Algorithm 3 GMM Correct
function CORRECT(Z,R, φ)
{Compute Cluster Means}
Γ← diag(1TR)
µ← ZRTΓ−1R

{Compute Batch Offsets}
Obk ← RφT

β ← 0[d×K×B]

for b← 1 . . . B do
Γb ← diag(1Ob)
βb ← ZRTΓ−1b − µ

{Compute Batch Corrected Output}
Ẑ ← Z −

∑K
k=1(1R

T
k ◦ βkφ)

return Ẑ

Caveat. This section assumes the modeled data are orthogonal and each normally distributed. This is not true for the L2391

normalized data used in spherical clustering. Regression in this space requires the estimation and interpolation of rotation392

matrices, a difficult problem. We instead perform batch correction in the unnormalized space. The corrected data Ẑ are then393

L2-normalized for the next iteration of clustering.394

Performance and Benchmarking395

LISI Metric396

Assessing the degree of mixing during batch correction and dataset integration is an open problem. Several groups have397

proposed methods to quantify the diversity of batches within local neighborhoods, defined by k nearest neighbor (KNN)398

graphs, of the embedded space. Buttner et al27 provide a statistical test to evaluate the degree of mixing, while Azizi et al28
399

report the entropy of these distributions. Our metric for local diversity is related to these approaches, in that we start with a400

KNN graph. However, our approach considers two problems that these do not.401

First, the metric should be more sensitive to local distances. For example, a neighborhood of 100 cells can be equally402

mixed among 4 batches. However, within the neighborhood, the cells may be clustered by batch. The second problem is403

one of interpretation. kBET provides a statistical test to assess the significance of mixing, but it is not clear whether all404

neighborhood should be significantly mixed when the datasets have vastly different cell type proportions. Azizi et al28 et al405

use entropy as a measure of diversity, but it is not clear how to interpret the number of bits required to encode a neighborhood406

distribution.407

Our diversity score, the Local Inverse Simpson’s Index (LISI) addresses both points. To be sensitive to local diversity, we408

build Gaussian kernel based distributions of neighborhoods. This gives distance-based weights to cells in the neighborhood409

and gives less diversity to . The current implementation computes these local distributions using a fixed perplexity (default410
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30), which has been shown to be a smoother function than fixing the number of neighbors. We address the second issue of411

interpretation using the Inverse Simpson’s Index (1/
∑B

b=1 p(b)). The probabilities here refer to the batch probabilities in412

the local neighborhood distributions described above. This index is the expected number of cells needed to sampled before413

two are drawn from the same batch. If the neighborhood consists of only one batch, then only one draw is needed. If it is414

an equal mix of two batches, two draws are required on average. Thus, this index gives the effective number of batches in415

a local neighborhood. Our diversity score, LISI, combines these two features: perplexity based neighborhood construction416

and the Inverse Simpson’s Index. LISI assigns a diversity score to each cell. This score is the effective number of batches in417

that cell’s neighborhood. Code to compute LISI is available as at https://github.com/immunogenomics/LISI.418

Time and Memory419

We performed execution time and maximum memory usage benchmarks on all analyses. All jobs were run on Linux servers420

and allotted 6 cores and 120GB of memory. The machines were equipped with Intel Xeon E5-2690 v3 processors. To421

evaluate execution time and maximal memory usage, we used the Linux time utility (/usr/bin/time on our systems) with the422

-v flag to record memory usage. Execution time was recorded from the Elapsed time field. Maximum memory usage was423

recorded from the Maximum resident set size field.424

Analysis Details425

Data Availability426

All data analyzed in this manuscript is publicly available through online sources. We included links to all data sources in427

Table S6.428

Preprocessing scRNAseq data.429

We downloaded raw read or UMI matrices for all datasets, from their respective sources. The one exception was the 3pV1430

dataset from the PBMC analysis. These data were originally quantified with the hg19 reference, while the other two PBMC431

datasets were quantified with GRCh38. Thus, we downloaded the fastq files from the 10X website (Table S6). We quantified432

gene expression counts using Cell Ranger10, 29 v2.1.0 with GRCh38. From the raw count matrices, we used a standard433

data normalization procedure, laid out below, for all analyses, unless otherwise specified. Except for the L2 normalization434

and within-batch variable gene detection, this procedure follows the standard guidelines of the Seurat single cell analysis435

platform.436

We filtered cells with fewer than 500 genes or more than 20% mitochondrial reads. In the pancreas datasets, we filtered437

cells with the same thresholds used in Butler et al:6 1750 genes for CelSeq, 2500 genes for CelSeq2, no filter for Fluidigm C1,438

2500 genes for SmartSeq2, and 500 genes for inDrop. We then library normalizes each cell to 10,000 reads, by multiplicative439
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scaling, then log scaled the normalized data. We then identified the top 1000 variable genes, ranked by coefficient of440

variation, within in each dataset. We pooled these genes to form the variable gene set of the analysis. Using only the variable441

genes, we mean centered and variance 1 scaled the genes across the cells. Note that this was done in the aggregate matrix,442

with all cells, rather than within each dataset separately. We then L2 normalized the cell expression vectors, so that squared443

cosine distance can be computed as the squared Euclidean distance. With these values, performed truncated SVD keeping444

the top 30 eigenvectors. Finally, we multiplied the cell embeddings by the eigenvalues to avoid giving eigenvectors equal445

variance.446

Visualization447

We used the UMAP algorithm30 to visualize cells in a two dimensional space. For all analyses, UMAP was run with the448

following parameters: k = 30 nearest neighbors, correlation based distance, and min dist = 0.1.449

Comparison to other algorithms.450

We used the provided packages or source code provided by the four comparison algorithm publications. For MNN Correct,451

we used the mnncorrect function, with default parameters, in the scran R package,31 version 1.9.4. For Seurat MultiCCA,452

we followed the suggested integration pipeline in the Seurat R package,32 version 2.3.4. Specifically, this included the453

RunMultiCCA, MetageneBicorPlot, CalcVarExpRatio, SubsetData (based on the var.ratio.pca statistic), and AlignSubspace454

functions. We used all default parameters. We chose the number of canonical components to match the number of principal455

components used in the preprocessing. Unlike the integration examples, we did not scale data within datasets separately,456

unless otherwise specified. We scaled data on the pooled count matrix instead. For Scanorama, we used the assemble457

function, with precomputed PCs, from the primary github repository (brianhie/scanorama). We set knn=30 and sigma=1, to458

match the default comparable MNN Correct parameters. All other parameters were kept at default values. We did not use459

the correct function, as this included both pre-processing and integration of the data. For more equitable comparisons, we460

tried to use the same pre-processing pipelines for all methods and only compare only the integration steps. For BBKNN, we461

downloaded software from the primary github repository (Teichlab/bbknn) and followed the suggested integration pipelines,462

using the bbknn and scanpy umap functions. For the bbknn function, we used k=5 and trim=20 for all analyses except for463

the HCA datasets, in which we used k=10 and trim=30, to accommodate the larger number of cells. All other parameters464

were kept at default values.465

Harmony Parameters466

By default, we set the following parameters for Harmony: θ = 2, K = 100, τ = 0, α = 0.1, σ = 0.1, block size= 0.05,467

εcluster = 10−5, εharmony = 10−4, max itercluster = 200, max iterHarmony = 10. For the pancreas analysis, we set τ = 5.468

We set donors to be the primary covariate (θ = 2) and technology secondary (θ = 4).469
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Identification of alpha and beta ER stress subpopulations.470

We identified the alpha and beta ER stress clusters in Figure 5 by performing downstream analysis, specified in this section,471

on the integrated joint embedding produced by Harmony. After Harmony integration, we performed clustering analysis to472

find novel subtypes. Clustering was done on the trimmed shared nearest neighbor graph with the Louvain algorithm,33 as473

implemented in the Seurat package BuildSNN and RunModularityClustering functions. We used parameters resolution=0.8,474

k=30, and nn.eps=0. We identified several clusters within the alpha, beta, and ductal cell populations. For each cluster, we475

performed differential expression analysis within the defined cell type. That is, we compared alpha clusters to all other alpha476

cells. For differential expression, we used the R Limma package34 on the normalized data. We included technology and477

library complexity (log number of unique genes) as covariates in the linear models. We used the top 100 over-expressed478

genes for each cluster, weighted by the t-statistic, to perform pathway enrichment with the enrichR35, 36 R package, using479

the three Gene Ontology genesets.37, 38 The ductal subpopulation was enriched for ribosomal genes; we did not follow up480

on this cluster. The results for the differential expression and enrichment analyses for the two ER stress subpopulations is481

available in Tables S7 through S10.482

Labeling cells with canonical markers.483

In the cell-line, PBMC, and Pancreas analyses, we labeled cells within individual datasets using canonical markers. We did484

this by using the standard pre-processing pipeline for each dataset, clustering (Louvain, as above), and identifying clusters485

specific for the canonical markers for that analysis. We used a similar strategy to identify fine-grained subpopulations of486

PBMCs and in the HCA 500,000 cell dataset. In these case, we clustered in the joint embedding produced by Harmony, then487

looked for clusters that specifically expressed expected canonical markers.488
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