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Abstract 17 

Reduced levels of dopamine in Parkinson’s disease (PD) contribute to changes in learning, resulting 18 

from the loss of midbrain dopamine neurons that transmit a teaching signal to the striatum. Dopamine 19 

medication used by PD patients has previously been linked to either behavioral changes during learning 20 

itself or adjustments in approach and avoidance behavior after learning. To date, however, very little is 21 

known about the specific relationship between dopaminergic medication-driven differences during 22 

learning and subsequent changes in approach/avoidance tendencies in individual patients. We assessed 23 

24 PD patients on and off dopaminergic medication and 24 healthy controls (HC) performing a 24 

probabilistic reinforcement learning task, while undergoing functional magnetic resonance imaging. 25 

During learning, medication in PD reduced an overemphasis on negative outcomes. When patients were 26 

on medication, learning rates were lower for negative (but not positive) outcomes and concurrent striatal 27 

BOLD responses showed reduced prediction error sensitivity. Medication-induced shifts in negative 28 

learning rates were predictive of changes in approach/avoidance choice patterns after learning, and these 29 

changes were accompanied by striatal BOLD response alterations. These findings highlight dopamine-30 

driven learning differences in PD and provide new insight into how changes in learning impact the 31 

transfer of learned value to approach/avoidance responses in novel contexts.  32 
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INTRODUCTION 33 

Learning from trial and error is a core adaptive mechanism in decision-making (Glimcher, 2002; 34 

Packard et al., 1989). This learning process is driven by reward prediction errors (RPEs) that signal 35 

the difference between expected and actual outcomes (Houk, 1995; Montague et al., 1996; Schultz et 36 

al., 1997). Substantia nigra (SN) and ventral tegmental area (VTA) midbrain neurons use bursts and 37 

dips in dopaminergic signaling to relay positive and negative RPE to prefrontal cortex (Deniau et al., 38 

1980; Swanson, 1982) and the striatum, activating the so-called Go and NoGo pathways (Beckstead et 39 

al., 1979; Surmeier et al., 2007). 40 

PD is caused by a substantial loss of dopaminergic neurons in the SN (Edwards et al., 2008), 41 

leading to the depletion of dopamine in the striatum (Koller and Melamed, 2007). Dopaminergic 42 

medication has been shown to alter how PD patients learn from feedback (Bódi et al., 2009; Cools et 43 

al., 2001) and how they use past learning to make choices in novel situations (Frank, 2007; Frank et 44 

al., 2004; Shiner et al., 2012). A common finding is that, after learning, when patients are on 45 

compared to off medication, they are better at choosing the option associated with the highest value 46 

(approach), whereas when off medication, they are better at avoiding the option with the lowest value 47 

(avoidance) (Frank, 2007; Frank et al., 2004). However, it is currently unknown how dopamine-48 

induced changes during the learning process relate to these subsequent dopamine-induced changes in 49 

approach/avoid choice behavior on a within-patient basis. 50 

An influential framework of dopamine function in the basal ganglia proposes that the 51 

dynamic range of phasic dopamine modulation in the striatum, in combination with tonic baseline 52 

dopamine levels, gives rise to the medication differences observed in PD (Frank, 2005). This theory 53 

suggests that lower baseline dopamine levels in unmedicated PD are favorable for the upregulation of 54 

the NoGo pathway, leading to an emphasis on learning from negative outcomes. In contrast, higher 55 

tonic dopamine levels in medicated PD lead to continued suppression of the NoGo pathway, resulting 56 

in (erroneous) response perseveration even after negative feedback. Extremes in these medication-57 

induced changes in brain signaling are thought to manifest behaviorally in dopamine dysregulation 58 

syndrome, in which patients exhibit compulsive tendencies, such as pathological gambling or 59 

shopping (Voon et al., 2010). In support of the theory on Go/NoGo signaling, impairments in learning 60 

performance associated with higher dopamine levels have been found mainly in negative-outcome 61 

contexts; during probabilistic selection (Frank et al., 2004), reversal learning (Cools et al., 2006), and 62 

probabilistic classification (Bódi et al., 2009).  63 

In addition to these behavioral adaptations, increased striatal activations have been reported in 64 

medicated PD patients during the processing of negative RPE (Voon et al., 2010). Similarly, a recent 65 

study on rats performing a reversal learning task revealed a distinct impairment in the processing of 66 

negative RPE with increased dopamine level (Verharen et al., 2018). However, very little is known 67 
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about how these medication-related changes in the striatum’s responsivity to RPE relate to 1) later 68 

behavioral choice patterns, and 2) changes in brain activity during subsequent value-based choices.  69 

We examined the role of dopaminergic transmission not only in choice behavior, but also in 70 

terms of associated neural mechanisms. 24 PD patients ON and OFF dopaminergic medication and a 71 

reference group of 24 age-matched HC performed a two-stage probabilistic selection task (Frank et 72 

al., 2004) (Figure 1A) while undergoing functional magnetic resonance imaging (fMRI). The 73 

experiment’s first stage was a learning phase, during which participants gradually learned to make 74 

better choices for three fixed pairs of stimulus options, based on reward feedback. In the second, 75 

transfer stage, participants used their learning phase experience to guide choices when presented with 76 

novel combinations of options, without receiving any further feedback (Figure 1A). Value-based 77 

decisions during the transfer phase were examined using an approach/avoidance framework (Figure 78 

1B). To better describe the underlying processes that contribute to learning, behavioral responses were 79 

fit using a hierarchical Bayesian reinforcement learning model (Jahfari et al., 2017; van Slooten et al., 80 

2018), adapted to estimate both within-patient effects of medication and across-subject effects of 81 

disease (Sharp et al., 2016). This quantification of behavior then informed our model-based fMRI 82 

analysis, in which we examined medication-related changes in blood oxygen level dependent (BOLD) 83 

brain signals in response to RPEs during learning, as well as medication-related changes in 84 

approach/avoidance behavior and brain responses during subsequent value-based choices.  85 
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Figure 1. Learning and transfer phase tasks  86 
A) Learning task: on each trial participants chose between two everyday objects and observed a probabilistic 87 
outcome ‘Correct’ or ‘Wrong’, corresponding to winning 10 cents or nothing. Each participant viewed three 88 
fixed pairs of stimuli (AB, CD, and EF) and tried to learn which was the best option of each pair, based on the 89 
feedback received. Reward probability contingency per stimulus during learning is shown on the right. Transfer 90 
task: participants were presented with all possible combinations of stimuli from the learning phase and had to 91 
choose what they thought was the better option, based on what they learned. No feedback was provided in this 92 
phase. B) Transfer phase analysis was performed on correctly choosing A on trials in which A was paired with 93 
another stimulus (approach accuracy) or correctly avoiding B on trials where B was paired with another 94 
stimulus (avoidance accuracy). C) Accuracy in choosing the better option of each pair across each group during 95 
learning (mean ±1 SEM). Parameter estimates of these medication and disease effects are presented in Figure 96 
S1. 97 
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RESULTS  98 

 

During the learning phase, participants successfully learned to choose the best option out of three 99 

fixed pairs of stimuli (Figure 1C). Each pair was associated with its own relative reward probability 100 

among the two options, labeled as AB (with 80:20 reward probability for A:B stimuli), CD (70:30) 101 

and EF (60:40). Choice accuracy analysis showed that learning took place in PD OFF, PD ON and 102 

HC (N=23 in each condition), with the probability with which participants chose the better option of 103 

each stimulus pair largely reflecting the underlying reward probabilities (PD ON: 82.3 % ± 3.1, 70.8 104 

% ± 3.5, and 63.7 % ± 3.5; PD OFF: 76.6 % ± 3.4, 70.7 % ± 3.7, and 64.4 % ± 3.6; and HC: 83.7 % ± 105 

2.7, 78.4 % ± 3.1, and 66.5 % ± 4.4 for AB, CD, and EF stimulus pairs, respectively). 106 

We detailed within- and between-subject differences in choice accuracy using a Bayesian 107 

mixed-effects logistic regression on the observed trial-by-trial behaviors (see Methods). This analysis 108 

assessed how choice accuracy was affected by stimulus pair, medication, disease status, and their 109 

interactions. When patients were ON medication, overall performance was more accurate in comparison 110 

to OFF, with the biggest difference for the easier AB choices and relatively smaller difference for the 111 

more uncertain EF pair. This was evidenced by a main effect of stimulus pair (b (SE) = 0.35 (0.03),  z 112 

= 10.19, p << .001), medication (b (SE) = 0.11 (0.04), z = 2.80, p = .005), and, specifically, an 113 

interaction between medication and stimulus pair (b (SE) = 0.17 (0.05), z = 3.47, p <.001). Importantly, 114 

this specific effect of medication was reflected in a similar effect of disease when comparing PD OFF 115 

to HC, with a significant interaction between disease status and stimulus pair (b (SE) = 0.20 (0.05), z = 116 

3.81, p < .001). Overall, these first analyses show an improvement in choice accuracy when patients are 117 

ON compared to OFF medication, with performance on the easiest option pair elevated up to the level 118 

of HC. However, although choice accuracy provides us with a general assessment of medication effects 119 

on performance, it does not relate these effects to a mechanistic explanation of how underlying indices 120 

of learning might be affected by medication. These underlying mechanisms can be studied and defined 121 

both at the group level (HC vs. PD), and within-subject level (PD ON vs. OFF) by adopting a formal 122 

learning model of behavior, to which we turn next. 123 

 

Medication reduces learning rate for negative outcomes 124 

Reinforcement learning theories describe how an agent learns to select the highest-value action for a 125 

given decision, based on the incorporation of received rewards (Rescorla and Wagner, 1972; Sutton 126 

and Barto, 1998).  We implemented a Q-learning model, graphically represented in Figure 2A, to 127 

describe both value-based decision-making and the integration of reward feedback in our experiment 128 

(Daw et al., 2011; Jocham et al., 2011; Schmidt et al., 2014). Our model used separate parameters to 129 

describe, for a given agent, how strongly current value estimates are updated by positive (again) and 130 

negative (aloss) feedback, i.e. positive and negative learning rates (Grogan et al., 2017; Jahfari et al., 131 
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2017; Slooten et al., 2018; Verharen et al., 2018), as well as a parameter that determines the extent to 132 

which differences in value between stimuli are exploited (b). To understand how medication affects 133 

learning in PD we examined the posterior distributions of group-level parameters representing the 134 

within-subject medication shift in again, aloss and b (Figure 2B). The large leftward shift of the aloss 135 

posterior distribution indicates higher learning rates after negative outcomes in PD OFF compared to 136 

ON (Bayes Factor (BF) = 11.40). This is consistent with the theory that PD increases the sensitivity to 137 

negative outcomes, and that dopaminergic medication remediates specifically this disease symptom. 138 

Conversely, shifts in the distributions of the again and b parameters were merely anecdotal (1<BFs<2, 139 

see Table S4, and Figure S3 for individual results). For parameter comparisons based on disease 140 

status, we found strong evidence for a higher b, i.e. greater exploitation, in HC compared to PD (BF = 141 

16.89; see Figure S4). 142 
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Figure 2. Q-learning graphical model and medication-driven parameter differences in PD 143 
(a) Graphical representation of the hierarchical Bayesian Q-learning model. The inner box represents trial-by-144 
trial information (t=1,…,T) and behavior of each subject. The outer box contains subject-level positive and 145 
negative learning rate (aG and aL) and explore-exploit (b) parameters, for any ith subject (i= 1,…,N), pth PD 146 
subject (p=1,…,N_pd), or hth HC subject (h=1,…,N_hc), as well as medication (Km) and disease (Kd) 147 
difference variables for these parameters. The outermost layer represents group mean and standard deviation of 148 
each parameter across all subjects, medication difference distributions and disease difference distributions. 149 
Directed arrows from parents to children represent that parameters of the child are distributed according to its 150 
parents; the priors of these distributions are listed to the right. Double-lined borders denote deterministic 151 
variables. Continues variables are represented by circular nodes, and discrete variables by square nodes. 152 
Observed variables are shaded in grey. Per subject and session, ri,t-1 is the reward received on the previous trial 153 
of a particular option pair, Qi,t is the current expected value of a particular stimulus, P[S] is the probability of 154 
choosing a particular stimulus in the current trial. (b) Group-level PD medication (within-subject) difference in 155 
learning phase parameters from Q-learning model (associated group-level Km medication difference parameters 156 
are highlighted in a). A leftward shift in the aloss distribution indicates greater learning from negative outcomes 157 
in PD OFF compared to ON. 158 
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Medication in PD reduces the sensitivity of dorsal striatum to RPE 159 

In the Q-learning model, the learning rate weighs the extent to which value beliefs are updated based 160 

on trial-by-trial RPE. The processing of choice outcomes is known to influence BOLD signals in the 161 

striatum, where the sensitivity to RPE is changed when dopamine levels are manipulated (Jocham et 162 

al., 2011; Pessiglione et al., 2006; Schmidt et al., 2014). To establish whether RPE processing in the 163 

current study was influenced by dopaminergic state, we first examined within-subject medication-164 

related differences in whole-brain responses to all positive and negative RPE in the learning phase 165 

using a single-trial GLM (see Methods). We found a significant PD OFF > ON medication difference 166 

in RPE modulation of the caudate nucleus and putamen (Figure 3), among other regions including the 167 

globus pallidus interna and externa, thalamus, cerebellum, lingual gyrus and precuneus. Because our 168 

model-based behavioral analysis revealed a medication-related difference specific to learning from 169 

negative outcomes (Figure 2B), we proceeded by analysing BOLD response time series to positive 170 

and negative outcomes separately. 171 

 

 
Figure 3. Whole-brain medication difference in RPE modulation 172 
Whole-brain medication effects for the comparison PD OFF > ON in RPE-related modulations during the 173 
learning phase (z=2.3, p<.01, cluster-corrected), showing a dopamine-driven difference in the left dorsal 174 
striatum (see Supplementary Table 5 for a full list of included brain areas and contrast statistics). Whole-brain 175 
group-level contrasts of RPE and feedback valence are available to view at 176 
https://doi.org/10.6084/m9.figshare.6989024.v1. 177 
 

 

Medication effects in dorsal striatum are specific to the processing of negative RPE 178 

To disentangle the separate effects of positive and negative RPE signaling, we examined feedback-179 

triggered BOLD time courses from three independent striatal masks; the caudate nucleus, putamen, 180 

and nucleus accumbens (see Methods). We found a significant medication difference only in the 181 

caudate nucleus, in BOLD activity associated only with negative RPE (Figure 4). RPE modulation 182 

was greater in PD OFF compared to ON, during the interval 7.51s – 10.67s after the onset of negative 183 

feedback. Medication status did not alter the BOLD responses to positive RPE, indicating that 184 

changes due to dopaminergic medication are specific to negative RPE signaling in the caudate 185 

nucleus, the most dorsal part of the striatum. 186 
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Figure 4. Positive and negative RPE modulations of the caudate nucleus  187 
BOLD RPE covariation time courses for positive (left panel) and negative (right panel) feedback events. We 188 
found a significant difference between PD OFF and ON in negative RPE responses, but not in positive RPE 189 
responses. The grey shaded area reflects a significant PD OFF > ON difference passing cluster-correction for 190 
multiple comparisons across timepoints (p<.05). Colored bands represent 68% confidence intervals (±1 SEM). 191 
The same analysis of putamen and nucleus accumbens ROIs revealed no medication-related RPE differences 192 
(see Figure S6). Time courses of associated BOLD percent signal change after positive and negative outcomes 193 
in these striatal ROIs are presented in Figure S7. 194 

 
 
 
Behavioral analysis of transfer phase  195 

The previous sections reveal how medication remediates the way patients learn from negative 196 

outcomes by detailing medication-related changes in brain and behavior. Much of the previous 197 

literature, however, has focused on how subsequent decision-making in the transfer phase is affected 198 

by dopaminergic medication (Frank, 2007; Frank et al., 2004; Grogan et al., 2017; Shiner et al., 199 

2012). In the transfer phase, participants were presented with novel pairings of the learning phase 200 

stimuli and were asked to choose the best option based on their previous experience with the options 201 

(Figure 1A). We examined accuracy in correctly choosing the stimulus associated with the highest 202 

value from the learning phase (“Approach A”) and correctly avoiding the stimulus associated with the 203 

lowest value (“Avoid B”) (Frank, 2007; Frank et al., 2004; Grogan et al., 2017; Jocham et al., 2011; 204 

Shiner et al., 2012), as in Figure 1B (also see Methods). Consistent with several previous reports 205 

(Frank, 2007; Frank et al., 2004), results showed a strong interaction between medication (PD ON or 206 

OFF) and trial type (Approach A or Avoid B) (b (SE) = 0.34 (0.06), z = 5.75, p < .001). That is, 207 

medication in PD improved accuracy scores for “approach” trials, but decreased accuracy for “avoid" 208 

trials (Figure 5A, and see Figure S8 for HC performance). Notably, there were no main effects of trial 209 

type, medication or disease status in addition to this pivotal approach/avoid-medication interaction. 210 

Thus, medication only influenced Approach A versus Avoid B choice patterns, with no further 211 

differences in the overall accuracy across groups or trials. 212 
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Medication shifts in learning rate for negative outcomes relate to behavioral and striatal changes 213 

during transfer 214 

We have described how medication affects patients’ updating of their beliefs after encounters with 215 

negative feedback, and replicate previous work by showing medication-induced changes in 216 

approach/avoidance choices during a follow-up transfer phase with no feedback. This final section 217 

explores how the shift in learning rates caused by medication during learning relates to the subsequent 218 

approach/avoidance interaction in 1) choice outcomes, and 2) the BOLD response of the dorsal striatum. 219 

Consistent with the observation that medication only affects learning rates after negative 220 

outcomes, we found that only the medication-related shift in aloss (and not again) was predictive for the 221 

magnitude of change in approach/avoid behavior, as indicated by the lowest BIC in a formal model 222 

comparison analysis (see Methods and Table S6). In other words, the more aloss was lowered by 223 

medication, the bigger the medication-induced interaction effect in future approach/avoidance choice 224 

patterns (b (SE) = 91.97 (41.26), t (22) = 2.23, p = .037, Figure 5B).   225 

Because the dorsal striatum was differentially responsive to RPE during learning, we 226 

additionally explored how learning rate shifts relate to the striatal BOLD response in 227 

approach/avoidance trials, while patients were ON or OFF medication. To this end, we masked the 228 

caudate and putamen using the whole-brain RPE z-statistics map shown in Figure 3. From these 229 

masks BOLD responses were extracted for Approach A and Avoid B trials, for each of the PD ON 230 

and OFF sessions. Again, only the medication-induced shift in aloss predicted the magnitude of change 231 

in the BOLD response of the caudate nucleus, but not the putamen, for approach/avoidance trials of 232 

OFF compared to ON (see Methods and Table S5) (b (SE) = 1.54, (0.56), t (22) = 2.77, p=.012, 233 

Figure 5C). In summary, these findings show that within-subject medication-related shifts in learning 234 

from negative outcomes are predictive of subsequent approach/avoidance medication-related changes, 235 

both in terms of behavioral accuracy and BOLD signaling in the caudate nucleus. 236 
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Figure 5. Medication-induced changes in learning from negative outcomes predicts the magnitude of 237 
medication difference in subsequent approach/avoidance behavioral choices and striatal response  238 
A) Transfer phase behavioral accuracy in Approach A and Avoid B responses, showing a significant medication 239 
interaction in approach/avoidance behavior (p<.001). PD ON had a higher accuracy in approach trials but a 240 
lower accuracy in avoid trials than PD OFF. B) A positive relationship between the medication difference (i.e. 241 
the parameter shift for OFF > ON) in negative learning rate and the transfer phase medication accuracy 242 
difference (OFF > ON) in avoiding the lowest-value stimulus versus approaching the highest-valued stimulus, 243 
i.e. the interaction observed in A. C) A negative relationship between the medication difference (OFF > ON) in 244 
negative learning rate and the same transfer phase medication difference (OFF > ON) in avoid versus approach 245 
trials, here in terms of BOLD percent signal change in the caudate nucleus.  246 
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DISCUSSION 247 

 

Our findings provide a bridge between a previously disparate set of findings relating to reinforcement 248 

learning in PD. First, using a formalized learning theory, we show how dopaminergic medication 249 

remediates learning behavior by reducing the patient’s emphasis on negative outcomes. These 250 

behavioral adaptations were tied to BOLD changes in the dorsal striatum, with medication reducing 251 

the sensitivity to RPE, specifically during the processing of negative outcomes. Second, we explored 252 

how the medication-induced change in learning relates to subsequent approach/avoid choices that 253 

differ in PD when patients are ON or OFF medication. We found that the greater the degree of 254 

restoration by medication in the learning rate for negative outcomes, the greater the medication-255 

related impact on both subsequent behavior and associated BOLD responses of the dorsal striatum 256 

during approach and avoidance choices. 257 

Our finding that medication reduces negative learning rate directly replicates studies showing 258 

a medication-driven impairment in behavioral responses relating to negative feedback, in a variety of 259 

probabilistic learning tasks (Bódi et al., 2009; Cools et al., 2006; Frank et al., 2004; Palminteri et al., 260 

2009). Furthermore, this finding corroborates a dopamine-driven reduction in model-based negative 261 

learning rate in PD patients (Voon et al., 2010) and rats (Verharen et al., 2018). The shift towards 262 

lower sensitivity to negative outcomes in PD ON reflects a partially restorative effect, as sensitivity to 263 

negative outcomes became more similar to that observed in healthy controls, whereas decision-264 

making volatility, i.e. the exploitation of higher-valued options, did not (see Figure S5).  265 

The medication interaction in subsequent approach/avoidance behavior we find in the transfer 266 

phase supports previous research on the transfer of learned value to new contexts (Cox et al., 2015; 267 

Frank, 2007; Frank et al., 2004). This reinforces the notion that dopaminergic medication shifts the 268 

balance in activation of the Go and NoGo pathways of the striatum (Frank, 2005). It has been an open 269 

question whether these Go and NoGo pathways are in competition with each other or function 270 

independently. A recent review suggests that the Go and NoGo pathways should not be viewed as 271 

separate, parallel systems (Calabresi et al., 2014). The two pathways are instead described to be 272 

structurally and functionally intertwined, with “cross-talk” occurring between Go and NoGo neuronal 273 

subtypes. This represents a potential means by which the dopamine-dependent alterations in learning 274 

from negative outcomes observed in the current study can lead to an integrated (interactive) effect on 275 

subsequent approach and avoidance behavior and associated BOLD activation in the striatum.   276 

We observed greater RPE modulation of BOLD signaling in PD OFF compared to ON, 277 

indicating a medication-related role in the modulation of caudate nucleus activity during learning. 278 

Striatal BOLD activations have previously been demonstrated to track RPE, with numerous studies 279 

implicating the caudate nucleus in RPE signaling during goal-directed behavior (Davidson et al., 280 

2004; Delgado et al., 2005; Haruno and Kawato, 2006; O’Doherty et al., 2004). The whole-brain 281 

analysis used in the current study reveals greater within-subject RPE modulation in patients OFF 282 
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compared to ON medication in the dorsal striatum, a region well established to suffer substantial 283 

depletion of dopamine availability in PD (Bernheimer et al., 1973; Dauer and Przedborski, 2003). 284 

Patients in our study do not exhibit clear medication-related differences that signify an excessive level 285 

of dopamine in the ventral striatum, as postulated by the dopamine overdose hypothesis (Cools et al., 286 

2006, 2001) and presented in studies focusing on the nucleus accumbens (Cools et al., 2007; Schmidt 287 

et al., 2014). In our data, there does appear to be a quantitative medication-induced increase in the 288 

modulation of nucleus accumbens activity by positive RPE, however, this effect is not significant (see 289 

Figure S6).  290 

Activation of the dorsal striatum has been reported for instrumental but not Pavlovian 291 

learning, suggesting its role in establishing stimulus-response-outcome associations (O’Doherty et al., 292 

2004). A prominent theory of dopamine functioning, the actor-critic model, highlights distinct roles 293 

for reward prediction and action-planning in reinforcement learning (Houk, 1995; Joel et al., 2002; 294 

Suri and Schultz, 1999), with the ventral striatum (critic) implicated in the prediction of future 295 

rewards (Cardinal et al., 2002), and the dorsal striatum (actor) proposed to maintain information about 296 

rewarding outcomes of current actions to help inform future actions (Atallah et al., 2007; Packard and 297 

Knowlton, 2002). Connectivity between the midbrain SN and dorsal striatum has also been found to 298 

predict the impact of differing reinforcements on future behavior (Kahnt et al., 2009). Overall, the 299 

caudate nucleus has been put forward as a hub that integrates information from reward and cognitive 300 

cortical areas in the development of strategic action planning (Haber and Knutson, 2010). The 301 

dopamine-dependent differences in RPE modulation of BOLD activity in dorsal striatum presented 302 

here therefore suggest that PD’s dopamine-related effects are specific to the processing of feedback to 303 

guide future actions. The dopamine-related interaction in approach/avoidance behavior found in the 304 

transfer phase, in which actions were guided by previously learned values, provides further support 305 

for this interpretation. 306 

We were able to link medication-dependent changes in learning from negative outcomes to 307 

subsequent changes in approach/avoidance striatal activity by specifically focusing on the region that 308 

showed a robust medication-dependent difference in phasic RPE modulation during learning. This 309 

suggests that the caudate nucleus’ processing of negative RPE in PD ON plays an important role in 310 

the subsequent medication-induced shift in balance between approach and avoidance behavior. 311 

Although focusing on the ventral striatum, a recent study on rats showed that increased activation in 312 

the VTA-NAc pathway associated with a higher dopaminergic state was reflected in behavior by a 313 

reduced sensitivity to negative outcomes (Verharen et al., 2018). Our findings suggest that the caudate 314 

nucleus may play a similar role in the processing of negative outcomes in PD. Future research could 315 

address whether this is modulated by SN-caudate nucleus connectivity and/or the interplay between 316 

instrumental and Pavlovian learning. 317 

In several previous studies, dopamine level was manipulated pharmacologically in healthy 318 

adults, via levodopa medication (Pessiglione et al., 2006) or NoGo (D2) receptor antagonists (Jocham 319 
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et al., 2011; Van Der Schaaf et al., 2014). Here, we examined separable disease-related and 320 

dopaminergic medication-related effects in PD. Patients in the current study used a combination of 321 

dopaminergic medications, including those acting on both Go and NoGo receptors (levodopa), 322 

inhibitors that slow the effect of levodopa to give a more stable release, and dopamine agonists, which 323 

have a particular affinity for NoGo receptors. Accordingly, a limitation of our study is that we cannot 324 

pin down the relationship between specific dopaminergic medications and changes in learning. 325 

Dissociation between the different types of dopaminergic medication could therefore be a potential 326 

avenue for future research. 327 

Although there is moderate evidence for a higher sensitivity to negative feedback in PD OFF 328 

compared to HC (see Figure S5), we find that the greatest disease-related difference lies in the 329 

explore/exploit parameter of the model (Figure S4). Higher choice accuracy during easier decisions in 330 

HC is likely strongly influenced by greater exploitation of value differences between options; indeed, 331 

a positive correlation has recently been shown between choice accuracy and exploitation in a similar 332 

reinforcement learning task (Jahfari et al., 2017). In the current study, this difference in exploitation 333 

was observed regardless of PD medication state (Figure S5), showing that dopamine medication in PD 334 

does not reinstate healthy exploitative behavior. This selectivity of dopaminergic medication’s effects 335 

on learning may indicate certain mechanisms underlying PD-related psychiatric disorders (Voon et 336 

al., 2010). Recent evidence from a perceptual decision-making study in PD showed an impaired use 337 

of prior information in patients in making perceptual decisions (Perugini et al., 2016), a deficiency 338 

that also was not alleviated by dopaminergic medication (Perugini et al., 2018). Thus, regardless of 339 

medication status, PD patients show impairment in the integration of memory with the current sensory 340 

input. Since the explore/exploit parameter of the task used in our experiments is dependent upon the 341 

retrieval of the expected value of chosen options, a similar memory-guided decision-making 342 

impairment may have also played a role in the current reinforcement learning task. 343 

In conclusion, we comprehensively illustrate how dopaminergic medication used in PD can 344 

help remediate sensitivity to negative outcomes, indicated by both changes in negative learning rate 345 

and the dorsal striatum’s response to negative RPE. Furthermore, we show how, when using 346 

experience garnered during learning to guide subsequent value-based decisions, these effects shift the 347 

balance of approach/avoidance behavior and associated striatal activation. Aside from explicating 348 

dopamine’s role in reinforcement learning and value-based decision-making, our findings open new 349 

avenues of treatment in PD and its associated psychiatric symptoms.  350 
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METHODS 351 

Participants 352 

Twenty-four patients with Parkinson’s disease (7 female, mean age = 63 ± 8.2 years old) were 353 

recruited via the VU medical center, Zaans medical center, and OLVG hospital in Amsterdam. All 354 

patients were diagnosed by a neurologist as having idiopathic PD according to the UK Parkinson’s 355 

Disease Society Brain Bank criteria. Twenty-four age-matched healthy controls (9 female, mean age = 356 

60.3 ± 8.5 years old) were also recruited, via the PD patients (e.g. spouses, relatives) or from the local 357 

community. This study was approved by the Medical Ethical Review committee (METc) of the VU 358 

Medical Center, Amsterdam.  359 

Prior to participation, all subjects were screened according to the following inclusion criteria: 360 

age range 40-75 years old, normal/corrected-to-normal vision, and a prior diagnosis of PD in patients. 361 

Exclusion criteria were no current psychotropic medication usage (other than DA/Parkinson-related 362 

medication in patients), no major somatic disorder or psychosis, no dementia diagnosis, and no history 363 

of head injury, stroke or any other neurological diseases. Patients were additionally not included if 364 

they took selective serotonin reuptake inhibitors (SSRIs) in order to primarily examine the effects of 365 

dopamine, since serotonin has also been implicated in learning mechanisms (Daw et al., 2002; den 366 

Ouden et al., 2013). At each session of the study, the severity of clinical symptoms was assessed 367 

according to the Hoehn and Yahr rating scale(Hoehn and Yahr, 1967) and the motor part of the 368 

Unified PD Rating Scale (UPDRS III; Fahn et al., 1987). Demographic and clinical data of the 369 

included participants can be seen in Table S1. Information on Parkinson-related medication per 370 

patient is available in Table S2. 371 

All participants provided written informed consent and were paid a minimum of €100 (PD 372 

patients, three sessions) or €70 (HCs, two sessions) for participation. A reward bonus was additionally 373 

paid out based on performance during the reinforcement learning task (PD ON mean= €8.86 ± 0.99, 374 

PD OFF mean= €8.85 ± 1.00, HC mean= €9.34 ± 1.42, per learning run).  375 

We excluded one PD patient (excessive falling asleep in scanner) and one HC (could not learn 376 

the task) from both learning and transfer phase behavior and fMRI analyses. fMRI data of one further 377 

HC could not be analyzed (T1 scan was not collected; session was terminated early due to 378 

claustrophobia). Transfer phase fMRI and behavior data were not collected for an additional HC due 379 

to early termination of scanning session (technical malfunction). Overall, we included 23 PD patients 380 

on and off dopaminergic medication in all behavioral and fMRI analyses. 23 HCs were included in 381 

learning phase behavioral analysis, 22 in learning phase fMRI analysis, and 21 in transfer phase 382 

behavioral and fMRI analysis. 383 
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Procedure 384 

The study was set up as a dopaminergic-manipulation, within-subject design in PD patients, to reduce 385 

the variance associated with inter-individual differences. All PD and HC participants took part in at 386 

least two sessions, the first of which was always a neuropsychological examination (2 hours; 30 387 

minutes of which was spent practicing the reinforcement learning task with basic shape stimuli). PD 388 

patients subsequently attended two separate fMRI scanning sessions (once in a dopamine-medicated 389 

“ON” state and once in a lower dopamine “OFF” state), and HCs underwent one fMRI session. The 390 

patient fMRI sessions were carried out over the same weekend in all but one patient (2 weeks apart) 391 

and were counterbalanced for medication/order effect in the following way: first session ON and 392 

second session OFF in 12 patients, with the opposite schedule in the remaining 12 patients. All OFF 393 

sessions had to be carried out in the morning for ethical reasons. Patients were instructed to not take 394 

their usual dopamine medication dosage on the evening prior to and the morning of the OFF session, 395 

thereby allowing >12 hours withdrawal at the time of scanning. If patients were on dopamine-agonists 396 

(pramipexole, ropinerol) they took their final dopamine-agonist dose on the morning prior to the day 397 

of scanning (~ 24 hours withdrawal). One PD patient took his medication 8.5 hours before OFF day 398 

scanning to relieve symptoms but was still included in the analysis. 399 

 

Neuropsychological assessment 400 

Participants completed a battery of neuropsychological tests on their first visit. A description of these 401 

tests and self-report questionnaires, along with group results, is included in Table S1. All patients 402 

used their dopaminergic medication as usual during this session. These assessments were not 403 

examined in the current study, but are discussed in greater detail elsewhere (Engels et al., 2018). 404 

 

Reinforcement Learning Task  405 

Participants completed a probabilistic selection reinforcement learning task consisting of two stages; a 406 

learning phase and transfer phase. This task has been used in a number of previous studies, in both PD 407 

patients (Frank et al., 2004; Grogan et al., 2017; Shiner et al., 2012) and healthy participants (Jocham 408 

et al. 2011; Jahfari et al. 2017; van Slooten et al. 2018). We used pictures of everyday objects from 409 

different object categories, such as hats, cameras, and leaves (stimulus set extracted from Konkle et 410 

al., 2010, 17-objects.zip).  411 

 

Learning phase 412 

In the learning phase, three different pairs of object stimuli (denoted as AB, CD and EF) were 413 

repeatedly presented in random order. Each pair had assigned reward probabilities associated with 414 

each stimulus, and participants had to learn to choose the best option of each pair based on the 415 

feedback provided (see Figure 1A). Participants were instructed to try to find the better option of a 416 

pair in order to maximize reward. Feedback was either “Goed” or “Fout” text (meaning “correct” or 417 
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“wrong” in Dutch), indicating a payout of 10 cents for correct trials and nothing for incorrect trials. 418 

Different objects were used across each fMRI session of patients, so as not to induce any familiarity 419 

or reward associations with particular stimuli.  In the “easiest” AB pair, the probability of receiving 420 

reward was 80% for the A stimulus and 20% for the B stimulus, with ratios of 70:30 for CD and 60:40 421 

for EF. The EF pair was therefore the hardest to learn due to a much closer reward probability 422 

between the two options. All object stimuli were counterbalanced for reward probability pair across 423 

subjects (i.e. a leaf and hat as the A and B stimuli for one participant were the C and D stimuli for 424 

another participant) and for better versus worse option of a pair (i.e. a leaf and hat as the A and B 425 

stimuli for one participant were the B and A stimuli for another participant). In total, there were 12 426 

object stimuli and a single participant viewed six of these objects in a given fMRI session, with PD 427 

patients viewing the remaining 6 stimuli in their second fMRI session. The learning phase consisted 428 

of two runs of 150 trials each (50 trials per stimulus pair). Each run was interspersed with 15 null 429 

trials to minimize problems relating to temporal autocorrelation and model fitting of rapid event-430 

related designs. Null trials, during which only the fixation cross was presented, lasted at least 4 431 

seconds plus an additional interval generated randomly from an exponential distribution with a mean 432 

of 2 seconds. Each task trial had a fixed duration of 5000 ms, and began with a jittered interval of 0, 433 

500, 1000, or 1500 ms to obtain an interpolated temporal resolution of 500 ms. During the interval, a 434 

black fixation cross was presented and participants were asked to hold fixation. Two objects were 435 

then presented simultaneously left and right (counterbalanced across left/right locations per pair) of 436 

the fixation cross and remained on the screen until a response was made. If a response was given on 437 

time, a black frame surrounding the chosen object was shown (300 ms) and followed by feedback 438 

(600 ms). Omissions were followed by the text “te langzaam” (“too slow” in Dutch). The fixation 439 

cross was displayed alone after feedback was presented, until the full trial duration was reached.  440 

 

Transfer phase 441 

In the transfer phase, novel pairings of all possible combinations of the six stimuli were presented, in 442 

addition to the original three stimulus pairs, making up 15 possible pairings. This phase consisted of 443 

two runs of 120 trials each (8 trials per pair), and each run randomly interspersed with 12 null trials. 444 

The duration of these null trials was generated in the same way as in the learning phase. Participants 445 

were instructed to choose what they thought was the better option, given what they had learned. There 446 

was no feedback in this phase and no frame surrounding the chosen response. Each trial began with a 447 

jittered interval of 500, 1000, 1500 or 2000 ms, with a new trial starting whenever a response was 448 

made.  449 

 

Each object stimulus was presented equally often on the left or right side in both learning and transfer 450 

phases. Responses were made with the right hand, using the index or middle finger to choose the left 451 

or right stimulus, respectively. One patient felt uncomfortable using two fingers of the right hand and 452 
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so responded with his left and right index finger on separate button boxes (in both ON and OFF 453 

sessions). The feedback text was made larger for one patient in both ON and OFF sessions to make it 454 

easier to read.  455 

 

Behavioral analysis 456 

Learning phase 457 

Bayesian mixed-effects logistic regression modeling was carried out on trial-by-trial behavior (Doll et 458 

al., 2016; Sharp et al., 2016; Wunderlich et al., 2012). These analyses were performed in R (R 459 

Development Core and Team, 2017), using the Bayesian Linear Mixed-Effects Models (blme) 460 

package (Chung et al., 2013), built on top of lme4 (Bates et al., 2014). In our mixed-effects models 461 

we coded for both fixed and random trial-by-trial effects and allowed for a varying intercept on a per 462 

subject basis. For the model on learning behavior, the dependent variable was accuracy in choosing 463 

the better stimulus of a pair (correct=1, incorrect=0). Stimulus pair was taken as a within-subject 464 

(random-effect) explanatory variable (EV), from easiest to most difficult (AB pair=1, CD pair=0, EF 465 

pair=-1). We also included two binary covariates, which interacted with the within-subject random 466 

effects variable: the between-subject effect of disease (PD=0, HC=1) and the within-subject effect of 467 

dopaminergic medication state (OFF=0, ON=1). HCs were also coded as OFF=0, as we wanted this 468 

variable to capture only the within-subject effect of medication. Since disease and medication status 469 

were both included in the same model, PD OFF was considered to act as a baseline (Dis=0, Med=0). 470 

Within-subject effects of medication for PD ON (Dis=0, Med=1) were therefore captured by the 471 

medication variable only and between-subject effects of disease for HC (Dis=1, Med=0) were 472 

captured by the disease variable only (with Dis=1 essentially meaning “healthy”). Positive beta 473 

estimates obtained from the model therefore indicated higher accuracy for either PD ON or HC 474 

compared to OFF in the Med and Dis variables, respectively, with negative estimates for those 475 

variables reflecting greater accuracy for PD OFF.  476 

 

Transfer phase 477 

The mixed-effects regression on transfer phase behavior was carried out on trials in which either the 478 

A or B stimulus appeared, excluding those in which both appeared together (see Figure 1B). The 479 

expectation was that participants should opt to choose A (Approach A) and avoid choosing B (Avoid 480 

B) whenever they were presented, since they were associated with the highest and lowest reward 481 

probabilities during learning, respectively. The regression was performed almost identically to that in 482 

the learning phase, except the stimulus pair variable was replaced with an Approach A / Avoid B trial 483 

variable (A=1, B=-1). The dependent variable (accuracy) was then coded as 1 for correctly choosing 484 

A in Approach A or correctly not choosing B in Avoid B trials, and as 0 for incorrectly choosing the 485 

other option each trial type.  486 
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To further examine the medication difference found in Approach A vs. Avoid B accuracy of 487 

the transfer phase (Figure 5A), we performed robust (multiple) regression with OFF > ON medication 488 

difference in Avoid B > Approach A accuracy as the dependent variable and compared three models 489 

with within-subject learning rate medication differences derived from the learning phase Q-learning 490 

model as EVs. The EVs were either: both positive and negative learning rate medication differences 491 

(termed kagain and  kaloss), kagain only, or kaloss only. BIC values were calculated and compared across 492 

these models (see Table S6). The learning to transfer phase accuracy correlation p-value was therefore 493 

obtained from the winning aloss-only model. Individual medication differences were quantified as the 494 

modes of the within-subject medication difference parameter distributions, to capture peak probability 495 

densities (see Figure 2A and Group-level model). 496 

 

Computational model 497 

We fit a hierarchical Bayesian temporal difference Q-learning model to learning phase behavioral 498 

data. The Q-learning reinforcement learning algorithm (Sutton and Barto, 1998) captures trial-by-trial 499 

updates in the expected value of options and has been used extensively to model behavior during 500 

learning (Daw et al., 2011; Grogan et al., 2017; Jahfari et al., 2017; Jocham et al., 2011; Schmidt et 501 

al., 2014). We used a variant of this model with three parameters free to vary across subjects, allowing 502 

us to determine how subjects learned separately from positive and negative feedback (again and aloss) 503 

and how much they exploited differences in value between stimulus pair options (b). In hierarchical 504 

models, group and individual parameter distributions are fit simultaneously and can constrain each 505 

other, leading to greater statistical power over standard non-hierarchical methods (Ahn et al., 2011; 506 

Jahfari et al., 2017; Kruschke, 2015; Steingroever et al., 2013; Wiecki et al., 2013). We also fit a 507 

separate model with an additional free parameter, relating to persistence of choices irrespective of 508 

feedback, and performed model comparison, to justify that the chosen model better represented the 509 

data (see Table S3).  510 

 

Subject-level model 511 

The Q-learning algorithm assumes that after receiving feedback on a given trial, subjects update their 512 

expected value of the chosen stimulus (0 < Qchosen < 1) based on the difference between reward 513 

received for choosing that stimulus (rchosen, reward or no reward) and their prior expected value of that 514 

stimulus, according to the following equation: 515 

 516 

𝑄"#$%&'(𝑡 + 1) = 	𝑄"#$%&'(𝑡) +	/
𝛼123'[𝑟"#$%&'(𝑡) −	𝑄"#$%&'(𝑡)],					𝑖𝑓	𝑟 = 1
𝛼;$%%[𝑟"#$%&'(𝑡) − 	𝑄"#$%&'(𝑡)],					𝑖𝑓	𝑟 = 0

 517 
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The term 𝑟"#$%&'(𝑡) − 𝑄"#$%&'(𝑡) is the reward prediction error (RPE). Accordingly, choices 518 

followed by positive feedback (r = 1) are weighted by the again   learning rate parameter and choices 519 

followed by negative feedback (r = 0) are weighted by the aloss learning rate parameter (0 < again, aloss 520 

<1). All Q-values were initialized at 0.5 (no initial bias in value). The probability of choosing one 521 

stimulus over another is described by the softmax rule: 522 

 

𝑃"#$%&'(𝑡) =
𝑒𝑥𝑝A𝛽 × 𝑄"#$%&'(𝑡)D

𝑒𝑥𝑝A𝛽 × 𝑄E'"#$%&'(𝑡)D + 𝑒𝑥𝑝A𝛽 × 𝑄"#$%&'(𝑡)D
 523 

 

where b is known as the inverse temperature or “explore-exploit” parameter (0 < b < 100). 524 

Effectively, b is used as a weighting on the difference in value between the two options. The free 525 

parameters again, aloss   and b were fit for each subject individually, in a combination that maximizes 526 

the probability of the actual choices made by the subject. 527 

 

Group-level model 528 

The subject-level model described above was nested inside a group-level model in a hierarchical 529 

manner. All participants were assigned to one group and we fit separate group-level distributions to 530 

capture the within-subject effect of medication and the across-subject effect of disease (see model 531 

representation in Figure 2A), adopting a similar group-level model to that described in (Sharp et al., 532 

2016). In Figure 2A, the free parameters again and aloss are denoted as aG and aL for viewing purposes. 533 

The inner box describes trial-by-trial behavior of individual subjects. The quantities ri, t-1 (reward for 534 

participant i on trial t-1) and choicei, t-1 (choice made by participant i on trial t-1) were obtained 535 

directly from the data. The quantities with a double-border were deterministic; e.g. Q-values (Qi, t-1) 536 

and the probability of selecting a certain stimulus (P[St]) were calculated according to the equations 537 

above, given the fitted free parameters for a particular subject. Higher layers of the model represent 538 

within-subject parameters (separately for Kagain,  Kaloss  and Kb) that capture the medication effects 539 

per subject, and group-level parameters capturing the group-level (within-subject) effect of 540 

medication and group-level (across-subject) effect of disease. These parameters were transformed 541 

during estimation using an approximation of the probit transformation, indicated by z’i. This is the 542 

inverse cumulative distribution function of the normal distribution. 𝛷2GGH$I	 represents the standard 543 

cumulative normal distribution. 544 

Similar to Sharp et al., 2016, we tested for medication- or disease-related variation in the 545 

three parameters again, aloss   and b by including additional intermediate terms. For again these were: 546 

KmaG’p (for the effect of medication Km on again in PD patient p) and KdaG’h (for the effect of no 547 

disease Kd on again in HC participant h), with the same terms for aloss  (KmaL’p and KdaL’h) and b 548 

(Kmb’p and Kdb’h). Symmetric boundaries for all Km and Kd distributions were used to constrain the 549 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 7, 2018. ; https://doi.org/10.1101/445528doi: bioRxiv preprint 

https://doi.org/10.1101/445528
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

22 

model and assist with convergence (-5 < Km, Kd < 5). As in the logistic regression we took PD OFF 550 

as “baseline” by using two binary indicators: 𝐼(′𝑜𝑛N) = 0, and 𝐼(′ℎ𝑒𝑎𝑙𝑡ℎ𝑦N) = 0. PD ON was coded as 551 

𝐼(′𝑜𝑛N) = 1, 𝐼(′ℎ𝑒𝑎𝑙𝑡ℎ𝑦N) = 0, and HC was coded as 𝐼(′𝑜𝑛N) = 0, 𝐼(′ℎ𝑒𝑎𝑙𝑡ℎ𝑦N) = 1. For subject s and 552 

medication condition 𝑚, the aG parameter of an individual subject was distributed as follows: 553 

 

𝛼′𝐺%,U	~		𝛷2GGH$IA𝜇XY + A𝑠𝑑XY × 𝛼𝐺%,UD + [𝐾𝑚𝛼𝐺 × 𝐼(𝑚, ′𝑜𝑛N)] + [𝐾𝑑𝛼𝐺 × 𝐼(𝑠, ′ℎ𝑒𝑎𝑙𝑡ℎ𝑦N)]D 554 

 

Using the binary indicators described above, PD OFF did not contain either of the or 𝐾𝑑𝛼𝐺	terms, PD 555 

ON included the 𝐾𝑚𝛼𝐺	term to indicate the within-subject effect of medication, and HC included the 556 

𝐾𝑑𝛼𝐺 term to denote the between-subject effect of disease. aloss and b parameters were distributed in 557 

the same way with their corresponding terms. Since the medication effect was within-subject, it was 558 

itself a subject-specific random variable with its own population-level mean and variance, given by: 559 

 

𝐾𝑚𝛼′𝐺%		~			𝛷2GGH$IA𝐾𝑚𝛼𝐺 + (𝑠𝑑]UXY × 𝐾𝑚𝛼𝐺%)D 560 

 

A normal prior was assigned to group-level means of the three free parameters and the Km and Kd 561 

indicators of each free parameters, 𝜇z’ N (0,1). A half-Cauchy prior was given to all group-level 562 

standard deviations, sz’ ~ Cauchy (0,5). Weakly informative priors such as these are recommended in 563 

small sample sizes to reduce the influence of the priors on posterior distributions (Ahn et al., 2017). 564 

Bayes Factors (BF) of group level posterior distributions for medication and disease differences were 565 

calculated as the ratio of the posterior density above zero relative to the posterior density below zero 566 

(Pedersen et al., 2016). This method is possible since the priors for the distributions of these 567 

parameters were symmetric (unbiased) around zero (Marsman and Wagenmakers, 2017). Categories 568 

of evidential strength of an effect are based on (Jeffreys, 1998), with BFs > 10 considered as strong 569 

evidence that the shift in the posterior distribution is different from zero. 570 

 

Model estimation 571 

The model was estimated using Markov Chain Monte Carlo (MCMC) inference. Models were 572 

implemented using the Stan programming language (Hoffman and Gelman, 2016; Stan Development 573 

Team, 2014). We ran three chains of 5000 samples each (discarding the first 2500 of each chain for 574 

burn-in), and ensured convergence using manual examination of the trace plots (hairy caterpillars, 575 

easily moving around the parameter space) and evaluation of 𝑟 ̂statistics, which were all <1.1 (Gelman 576 

and Rubin, 1992). Simulations displayed in Figure S2 show adequate parameter recovery. Mean 577 

group-level posterior distributions after fitting can also be seen in Figure S2. We additionally 578 

generated a number of quantities of interest from the model, including individual subjects’ trial-by-579 

trial RPE for inclusion in fMRI whole-brain and deconvolution analyses.  580 
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fMRI image acquisition 581 

fMRI scanning was carried out using a 3T GE Signa HDxT MRI scanner (General Electric, 582 

Milwaukee, WI, USA) with 8-channel head coil at the VU University Medical Center (Amsterdam, 583 

The Netherlands). Functional data for the learning and transfer phase runs were acquired using T2*-584 

weighted echo-planar images with blood oxygenation level dependent (BOLD) contrasts, containing 585 

approximately 410 and 240 volumes for learning and transfer runs respectively. The first two TR 586 

volumes were removed to allow for scanner stabilization. Each volume contained 42 axial slices, with 587 

3.3 mm in-plane resolution, TR = 2,150 ms, TE = 35 ms, FA = 80 degrees, FOV = 240 mm, 64 x 64 588 

matrix. Structural images were acquired with a 3D T1-weighted magnetization prepared rapid 589 

gradient echo (MPRAGE) sequence with the following acquisition parameters: 1 mm isotropic 590 

resolution, 176 slices, repetition time (TR) = 8.2 ms, echo time (TE) = 3.2 ms, flip angle (FA) = 12 591 

degrees, inversion time (TI) = 450 ms, 256 x 256 matrix. The subject’s head was stabilized using 592 

foam pads to reduce motion artifacts.  593 

 

fMRI analysis 594 

Preprocessing 595 

Preprocessing was performed using FMRIPREP version 1.0.0-rc2 (O. Esteban et al., 2018; Oscar 596 

Esteban et al., 2018), a Nipype-based tool (Gorgolewski et al., 2017, 2011). The following 597 

information was generated from FMRIPREP based on the preprocessing pipeline used in this study. 598 

Each T1w (T1-weighted) volume was corrected for INU (intensity non-uniformity) using 599 

N4BiasFieldCorrection v2.1.0 (Tustison et al., 2010) and skull-stripped using antsBrainExtraction.sh 600 

v2.1.0 (using the OASIS template). Brain surfaces were reconstructed using recon-all from FreeSurfer 601 

v6.0.1 (Dale et al., 1999), and the brain mask estimated previously was refined with a custom 602 

variation of the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the 603 

cortical gray-matter of Mindboggle (Klein et al., 2017). Spatial normalization to the ICBM 152 604 

Nonlinear Asymmetrical template version 2009c (Fonov et al., 2009) was performed through 605 

nonlinear registration with the antsRegistration tool of ANTs v2.1.0 (Avants et al., 2008), using brain-606 

extracted versions of both T1w volume and template. Brain tissue segmentation of cerebrospinal fluid 607 

(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using 608 

fast (Zhang et al., 2001) (FSL version 5.0.9). Functional data was motion corrected using mcflirt (FSL 609 

version 5.0.9) (Jenkinson et al., 2002). "Fieldmap-less" distortion correction was performed by co-610 

registering the functional image to the same-subject T1w image with intensity inverted (Huntenburg 611 

et al., 2012; Wang et al., 2017) constrained with an average fieldmap template (Treiber et al., 2016), 612 

implemented with antsRegistration (ANTs). This was followed by co-registration to the 613 

corresponding T1w using boundary-based registration (Greve and Fischl, 2009) with 9 degrees of 614 

freedom, using bbregister (FreeSurfer version 6.0.1). Slice timing correction was not performed on 615 

the data. Motion correcting transformations, field distortion correcting warp, BOLD-to-T1w 616 
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transformation and T1w-to-template (MNI) warp were concatenated and applied in a single step using 617 

antsApplyTransforms (ANTs version 2.1.0) using Lanczos interpolation. Physiological noise 618 

regressors were extracted applying CompCor (Behzadi et al., 2007). Principal components were 619 

estimated for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). A mask 620 

to exclude signal with cortical origin was obtained by eroding the brain mask, ensuring it only 621 

contained subcortical structures. Six tCompCor components were then calculated including only the 622 

top 5% variable voxels within that subcortical mask. For aCompCor, six components were calculated 623 

within the intersection of the subcortical mask and the union of CSF and WM masks calculated in 624 

T1w space, after their projection to the native space of each functional run. Frame-wise displacement 625 

(Power et al., 2014) was calculated for each functional run using the implementation of Nipype. Many 626 

internal operations of FMRIPREP use Nilearn (Abraham et al., 2014), principally within the BOLD-627 

processing workflow. For more pipeline details, please refer to 628 

https://fmriprep.readthedocs.io/en/latest/workflows.html. 629 

 

Single-trial whole-brain analysis  630 

We were interested in estimating trial-by-trial representations of learning (e.g. RPEs) in the brain. For 631 

this, we carried out a single-trial whole-brain analysis to capitalize on the variability in BOLD signal 632 

across trials, using Nipype’s FSL interface (Gorgolewski et al., 2017, 2011). A Least Squares All 633 

(LSA) GLM fit was performed on each subject’s brain data, per learning run (see Mumford et al., 634 

2012). The feedback onset of each trial was included as a separate regressor. We included 13 635 

confound regressors to remove nuisance effects that might have contributed to the brain signal: 636 

Framewise Displacement (FD), 6 rigid-body transform motion parameters (3 translational, 3 637 

rotational), and 6 aCompCor physiological noise regressors (to help exclude physiological noise in the 638 

CSF and WM). Spatial smoothing was performed using a Gaussian kernel with a full width at half 639 

maximum of 4 mm. A 3rd order Savitsky-Golay filter was used for high-pass filtering, with a window 640 

length of 120 seconds. The first-level design was set up using the Nipype interface to FMRI Expert 641 

Analysis Tool (FEAT) from FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). Delta 642 

functions of all regressors in the model were convolved with the canonical hemodynamic response 643 

function (HRF) and regressed against each subject’s fMRI data, using Nipype’s FSL FILMGLS 644 

interface. From this, a contrast of parameter estimates (COPE) was obtained for each trial of every 645 

subject. Next, we performed a second-stage analysis on the single-trial copes, to model the per trial 646 

feedback valence and RPE. The feedback regressor was coded as +1 or -1 for positive and negative 647 

feedback trials respectively, to model brain activity that co-varied with valence. The RPE regressor 648 

contained demeaned trial-by-trial signed RPEs from the Q-learning model. Since feedback valence 649 

and RPEs are correlated, i.e. positive feedback is accompanied by a positive RPE, this allowed us to 650 

assign brain activity co-varying specifically with valence or RPE. This was run as a fixed effects 651 

multiple regression model using FLAMEO on a per subject basis. Fixed effects multiple regression 652 
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models for collapsing across runs and deriving within-patient medication difference COPEs were 653 

carried out in a similar way. Medication difference COPEs of feedback and RPE were then brought to 654 

the group level in a random effects model, using FSL’s FLAME 1+2 and outlier detection procedures. 655 

All group level Z (Gaussianized T) statistic images were thresholded using clusters of z > 2.3 and a 656 

cluster-corrected significance threshold of p < 0.01. Group-level analyses were carried out in this way 657 

for each regressor (feedback valence and RPE) on each separate group (HC, PD ON, PD OFF), on the 658 

within-subject medication differences ON > OFF and OFF > ON, and on across-subject disease 659 

differences HC vs PD (OFF or ON). All group-level z-statistic contrasts can be viewed at 660 

https://doi.org/10.6084/m9.figshare.6989024.v1. The MNI152_T1_1mm_brain standard brain was 661 

converted to functional space using FSL FLIRT, eroded by 1 voxel, and used as a brain mask for all 662 

of the analyses described above.  663 

 

ROIs 664 

We obtained high-resolution probabilistic atlas masks from a recent open-source dataset (Pauli et al., 665 

2018). These sub-cortical ROIs have been well-established in playing an important role in 666 

reinforcement learning (Brown et al., 1999; Hazy et al., 2010; O’Doherty et al., 2017; Schultz et al., 667 

1997). We focused on striatal ROIs (caudate nucleus, putamen, and nucleus accumbens) for the 668 

learning phase deconvolution analysis, as these have been most extensively studied in the past (Cools 669 

et al., 2007; Cox et al., 2015; Frank, 2005; Jahfari et al., 2017). FSL FLIRT was used to register the 670 

masks to FMRIPREP output space. BOLD percent signal change during the transfer phase was 671 

extracted from ROIs informed by the learning phase of the task. We took the cluster-corrected RPE 672 

medication difference (OFF-ON) z-statistic COPE from the learning phase and multiplied it by 673 

independent striatal ROIs from the Pauli et al. (2018) dataset. The bottom 25% of voxels from each of 674 

the resulting masks were excluded and the final masks were binarized. These masks are available at 675 

https://doi.org/10.6084/m9.figshare.6989024.v1. 676 

 

Deconvolution analysis 677 

Deconvolution analyses were carried out in striatal ROIs (see ROIs for mask information), to extract 678 

detailed BOLD time courses and tease apart the covariation with BOLD signal of positive and 679 

negative RPEs separately. We used the fMRI timeseries data already preprocessed by FMRIPREP. 680 

These timeseries were then converted to percent signal change (PSC). PSC was calculated by dividing 681 

the timeseries by the mean of the entire timeseries, multiplying by 100, and then subtracting 100, to 682 

get a mean-centered output timeseries. Data from each subject were weighted per voxel according to 683 

the probability of belonging to a particular striatal ROI, and then averaged across voxels of that ROI. 684 

We set up a model with three regressors: stimulus onsets (with RT duration), positive feedback onsets 685 

and negative feedback onsets. Positive and negative RPEs were z-scored separately and included as 686 

covariates of their respective positive or negative feedback event type. The deconvolution was 687 
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implemented using the Python-based nideconv package (de Hollander and Knapen, 2017). Since we 688 

were not interested in the specific time courses related to stimulus onset, these events were modeled 689 

with a canonical HRF. Feedback events and covariates were deconvolved using a Fourier basis set, 690 

which uses a combination of sines and cosines to model the data. This was implemented instead of the 691 

standard finite impulse response (FIR) function as it substantially reduces the number of regressors, 692 

thereby improving the robustness of parameter estimates. Five Fourier regressors (1 intercept, 2 sine 693 

waves and 2 cosine waves) were used for each of the positive and negative feedback events and 694 

positive and negative RPE covariates. We also included several confound regressors in the model: 695 

FD, 6 rigid-body transform motion parameters (3 translational, 3 rotational), WM, stdDVARS 696 

(standardized derivative of RMS variance over voxels), and 6 aCompCor physiological noise 697 

regressors. Time courses were then estimated simultaneously using a least-squares fit, for the time 698 

window -2 to 13.05 seconds (7 TRs) around feedback onsets. Up-sampling during the fitting 699 

procedure was implemented 20-fold as part of nideconv functionality. The resulting time courses were 700 

then brought to the group level, and within-patient medication differences were calculated per up-701 

sampled timepoint of each fit. Clusters of significant intervals were identified with mne-python 702 

(Gramfort et al., 2014, 2013) using permutation-based one-sample t-tests (t-threshold set at p<.05, 703 

n=5000 permutations). Shaded regions in Figure 4 and Figure S4 & S5 represent 68% confidence 704 

intervals (±1 SEM; bootstrapped using n=5000 permutations). 705 

 

Transfer phase BOLD percent signal change 706 

A standard GLM was set up to model BOLD responses to events in the transfer phase. Stimulus 707 

onsets and durations for three regressors were included: Approach A trials, Approach B trials, and all 708 

other trials (of no interest). Similar to the steps carried out in the learning phase whole-brain analysis, 709 

we performed 4mm smoothing, Savitsky-Golay high-pass filtering, and included the same 13 710 

confound regressors in the design and convolved with a canonical HRF. Fixed effects analyses were 711 

performed across runs and for medication differences within patients. We then took the resulting two 712 

COPES for Approach A and Avoid B trials per subject and used FSL’s featquery to calculate the 713 

mean percent signal change in the striatal ROIs that showed a significant learning phase medication 714 

difference in RPE (described in ROIs). In a similar way to the behavioral correlation analysis between 715 

learning rate and transfer accuracy (Behavioral analysis and Figure 5B), we included learning rate 716 

EVs to explain the PSC (OFF>ON) medication difference in Avoid B>Approach A trials in striatal 717 

ROIs using robust (multiple) regression, with EVs as either: both positive and negative learning rate 718 

medication differences (kagain and kaloss), kagain only, or kaloss only. Models were compared based on 719 

calculated BIC values (see Table S6), and the learning to transfer PSC correlation p-value was 720 

obtained from the winning aloss-only model. Individual medication differences were quantified as the 721 

modes of the within-subject medication difference parameter distributions. 722 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 7, 2018. ; https://doi.org/10.1101/445528doi: bioRxiv preprint 

https://doi.org/10.1101/445528
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

27 

ACKNOWLEDGEMENTS 723 

We would like to thank Annemarie Vlaar, Henk Berendse, and Odile van den Heuvel from the 724 

neurology and psychiatric departments of the Zaans MC and VUmc for help with patient recruitment, 725 

Ton Schweigmann and Joost Kuijer for practical and technical assistance at the MRI scanner, and 726 

Charlotte Koning, Daan Beverdam, and Rosa Broeders for help with data collection. We also thank 727 

Helen Steingroever and Ruud Wetzels for valuable insights on Bayesian modeling, Gilles de 728 

Hollander for inspiring discussions about fMRI modeling and Eduard Ort for exciting conversations 729 

about fMRI analyses and helpful comments on a version of the manuscript. This study was supported 730 

by an ERC Advanced Grant ERC-2012-AdG-323413 awarded to Jan Theeuwes. 731 

 

AUTHOR CONTRIBUTIONS 732 

BM, SJ and TK designed the study. BM and GE collected the data. BM analyzed the data. SJ and TK 733 

supervised data analysis. BM, SJ and TK contributed (novel) methods. BM wrote the first draft of the 734 

manuscript. SJ and TK supervised and contributed to intermediate versions. BM, SJ, TK, GE and JT 735 

contributed to the final manuscript. 736 

 

COMPETING INTERESTS 737 

The authors declare no competing financial interests. 738 

 

CODE AVAILABILITY 739 

Related analysis code scripts and output brain statistics are available to view at 740 

https://github.com/mccoyb4/Parkinson_RL. 741 

 

DATA AVAILABILITY  742 

The data that support the findings of this study are available upon reasonable request from the 743 

corresponding author. 744 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 7, 2018. ; https://doi.org/10.1101/445528doi: bioRxiv preprint 

https://doi.org/10.1101/445528
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

28 

REFERENCES 745 

Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Muller, A., Kossaifi, J., Gramfort, A., Thirion, B., 746 
Varoquaux, G., 2014. Machine Learning for Neuroimaging with Scikit-Learn. Front. Neuroinform. 8, 1–747 
10. 748 

Ahn, W.-Y., Haines, N., Zhang, L., 2017. Revealing neuro-computational mechanisms of reinforcement 749 
learning and decision-making with the hBayesDM package. Comput. Psychiatry 1, 24–57. 750 

Ahn, W., Krawitz, A., Kim, W., 2011. A model-based fMRI analysis with hierarchical Bayesian parameter 751 
estimation. J. Neurosci. Psychol. Econ. 4, 95–110. 752 

Atallah, H.E., Lopez-Paniagua, D., Rudy, J.W., O’Reilly, R.C., 2007. Separate neural substrates for skill 753 
learning and performance in the ventral and dorsal striatum. Nat. Neurosci. 10, 126–131. 754 

Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C., 2008. Symmetric diffeomorphic image registration with 755 
cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med. Image 756 
Anal. 12, 26–41. 757 

Bates, D., Maechler, M., Bolker, B., Walker, S., 2014. lme4: Linear mixed-effects models using Eigen and S4. 758 
R package. http://CRAN.r-project.org. 759 

Beckstead, R.M., Domesick, V.B., Nauta, W.J.H., 1979. Efferent connections of the substantia nigra and ventral 760 
tegmental area in the rat. Brain Res. 175, 191–217. 761 

Behzadi, Y., Restom, K., Liau, J., Liu, T.T., 2007. A component based noise correction method (CompCor) for 762 
BOLD and perfusion based fMRI. Neuroimage 37, 90–101. 763 

Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., Seitelberger, F., 1973. Brain dopamine and the 764 
syndromes of Parkinson and Huntington Clinical, morphological and neurochemical correlations. J. 765 
Neurol. Sci. 20, 415–455. 766 

Bódi, N., Kéri, S., Nagy, H., Moustafa, A., Myers, C.E., Daw, N., Dibó, G., Takáts, A., Bereczki, D., Gluck, M. 767 
a., 2009. Reward-learning and the novelty-seeking personality: A between-and within-subjects study of 768 
the effects of dopamine agonists on young parkinsons patients. Brain 132, 2385–2395. 769 

Brown, J., Bullock, D., Grossberg, S., 1999. How the basal ganglia use parallel excitatory and inhibitory 770 
learning pathways to selectively respond to unexpected rewarding cues. J. Neurosci. 19, 10502–10511. 771 

Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V., Di Filippo, M., 2014. Direct and indirect pathways of basal 772 
ganglia: A critical reappraisal. Nat. Neurosci. 17, 1022–1030. 773 

Cardinal, R.N., Parkinson, J.A., Hall, J., Everitt, B.J., 2002. Emotion and motivation: The role of the amygdala, 774 
ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev. 26, 321–352. 775 

Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A., Jingchen, L., 2013. A nondegenerative penalized 776 
likelihood estimator for variance parameters in multilevel models. Psychometrika 78, 685–709. 777 

Cools, R., Altamirano, L., D’Esposito, M., 2006. Reversal learning in Parkinson’s disease depends on 778 
medication status and outcome valence. Neuropsychologia 44, 1663–73. 779 

Cools, R., Barker, R.A., Sahakian, B.J., Robbins, T.W., 2001. Enhanced or Impaired Cognitive Function in 780 
Parkinson ’ s Disease as a Function of Dopaminergic Medication and Task Demands. Cereb. Cortex 11, 781 
1136–1143. 782 

Cools, R., Lewis, S.J.G., Clark, L., Barker, R.A., Robbins, T.W., 2007. L-DOPA disrupts activity in the nucleus 783 
accumbens during reversal learning in Parkinson’s disease. Neuropsychopharmacology 32, 180–189. 784 

Cox, S.M.L., Frank, M.J., Larcher, K., Fellows, L.K., Clark, C.A., Leyton, M., Dagher, A., 2015. Striatal D1 785 
and D2 signaling differentially predict learning from positive and negative outcomes. Neuroimage 109, 786 
95–101. 787 

Dale, A.M., Fischl, B., Sereno, M.I., 1999. Cortical surface-based analysis: I. Segmentation and surface 788 
reconstruction. Neuroimage 9, 179–194. 789 

Dauer, W., Przedborski, S., 2003. Parkinson’s disease: Mechanisms and models. Neuron 39, 889–909. 790 
Davidson, M.C., Horvitz, J.C., Tottenham, N., Fossella, J.A., Watts, R., Uluǧ, A.M., Casey, B.J., 2004. 791 

Differential cingulate and caudate activation following unexpected nonrewarding stimuli. Neuroimage 23, 792 
1039–1045. 793 

Daw, N.D., Gershman, S.J., Seymour, B., Dayan, P., Dolan, R.J., 2011. Model-based influences on humans’ 794 
choices and striatal prediction errors. Neuron 69, 1204–1215. 795 

Daw, N.D., Kakade, S., Dayan, P., 2002. Opponent interactions between serotonin and dopamine. Neural 796 
Networks 15, 603–616. 797 

de Hollander, G., Knapen, T., 2017. nideconv [WWW Document]. URL https://response-798 
fytter.readthedocs.io/en/latest/index.html 799 

Delgado, M.R., Miller, M.M., Inati, S., Phelps, E.A., 2005. An fMRI study of reward-related probability 800 
learning. Neuroimage 24, 862–873. 801 

den Ouden, H.E., Daw, N.D., Fernandez, G., Elshout, J.A., Rijpkema, M., Hoogman, M., Franke, B., Cools, R., 802 
2013. Dissociable effects of dopamine and serotonin on reversal learning. Neuron 80, 1090–100. 803 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 7, 2018. ; https://doi.org/10.1101/445528doi: bioRxiv preprint 

https://doi.org/10.1101/445528
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

29 

Deniau, J.M., Thierry, A.M., Feger, J., 1980. Electrophysiological identification of mesencephalic ventromedial 804 
tegmental (VMT) neurons projecting to the frontal cortex, septum and nucleus accumbens. Brain Res. 805 
189, 315–326. 806 

Doll, B.B., Bath, K.G., Daw, N.D., Frank, X.M.J., 2016. Variability in Dopamine Genes Dissociates Model-807 
Based and Model-Free Reinforcement Learning. J. Neurosci. 36, 1211–1222. 808 

Edwards, M.J., Quinn, N., Bhatia, K.P., 2008. Parkinson’s disease and other movement disorders. Oxford 809 
University Press. 810 

Engels, G., McCoy, B., Vlaar, A., Theeuwes, J., Weinstein, H., Scherder, E., 2018. Clinical pain and functional 811 
network topology in Parkinson’s disease : a resting-state fMRI study. J. Neural Transm. 0, 0. 812 

Engels, G., Vlaar, A., McCoy, B., Scherder, E., Douw, L., n.d. Dynamic functional connectivity and symptoms 813 
of Parkinson’s disease: a resting-state fMRI study. Front. Aging Neurosci. 814 

Esteban, O., Blair, R., Markiewicz, C., Berleant, S.L., Moodie, C., Ma, F., Isik, A.I., 2018. 815 
poldracklab/fmriprep: 1.1.1 [WWW Document]. Zenodo. URL https://doi.org/10.5281/zenodo.1285255 816 

Esteban, O., Markiewicz, C., Blair, R.W., Moodie, C., Isik, A.I., Aliaga, A.E., Kent, J., Goncalves, M., DuPre, 817 
E., Snyder, M., Oya, H., Ghosh, S., Wright, J., Durnez, J., Poldrack, R., Gorgolewski, K.J., 2018. 818 
FMRIPrep: a robust preprocessing pipeline for functional MRI. bioRxiv 306951. 819 

Fahn, S., Elton, R.., Members of the UPDRS Development Committee, 1987. Unified Parkinson’s disease rating 820 
scale. In: Recent Developments in Parkinson’s Disease. Macmillan Health Care Information, Florham 821 
Park, NJ, pp. 153–163. 822 

Fonov, V.S., Evans, A.C., McKinstry, R.C., Almli, C.R., Collins, D.L., 2009. Unbiased nonlinear average age-823 
appropriate brain templates from birth to adulthood. Neuroimage 47. 824 

Frank, M.J., 2005. Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of 825 
cognitive deficits in medicated and nonmedicated Parkinsonism. J. Cogn. Neurosci. 17, 51–72. 826 

Frank, M.J., 2007. Hold your horses: Impulsivity, deep brain stimulation, and medication in Parkinsonism. 827 
Science (80-. ). 1309, 1309–1312. 828 

Frank, M.J., Seeberger, L.C., Reilly, R.C.O., 2004. By Carrot or by Stick : Cognitive Reinforcement Learning in 829 
Parkinsonism. Science (80-. ). 306, 1940–1943. 830 

Gelman, A., Rubin, D.B., 1992. Inference from Iterative Simulation Using Multiple Sequences. Stat. Sci. 7, 831 
457–472. 832 

Glimcher, P., 2002. Decisions, Decisions, Decisions: Review Choosing a Biological Science of Choice. Neuron 833 
36, 1–10. 834 

Gorgolewski, K., Burns, C.D., Madison, C., Clark, D., Halchenko, Y.O., Waskom, M.L., Ghosh, S.S., 2011. 835 
Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python. 836 
Front. Neuroinform. 5. 837 

Gorgolewski, K., Esteban, O., Burns, C., Zeigler, E., Pinsard, B., Madison, C., Waskom, M., Ellis, D.G., 2017. 838 
Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. 0.13.0 839 
[WWW Document]. Zenodo. URL 10.5281/zenodo.581704 840 

Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brodbeck, C., Goj, R., Jas, M., Brooks, 841 
T., Parkkonen, L., Hämäläinen, M., 2013. MEG and EEG data analysis with MNE-Python. Front. 842 
Neurosci. 7, 1–13. 843 

Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brodbeck, C., Parkkonen, L., 844 
Hämäläinen, M.S., 2014. MNE software for processing MEG and EEG data. Neuroimage 86, 446–460. 845 

Greve, D.N., Fischl, B., 2009. Accurate and robust brain image alignment using boundary-based registration. 846 
Neuroimage 48, 63–72. 847 

Grogan, J.P., Tsivos, D., Smith, L., Knight, B.E., Bogacz, R., Whone, A., Coulthard, E.J., 2017. Effects of 848 
dopamine on reinforcement learning and consolidation in parkinson’s disease. Elife 6, 1–23. 849 

Haber, S.N., Knutson, B., 2010. The reward circuit: Linking primate anatomy and human imaging. 850 
Neuropsychopharmacology 35, 4–26. 851 

Haruno, M., Kawato, M., 2006. Different Neural Correlates of Reward Expectation and Reward Expectation 852 
Error in the Putamen and Caudate Nucleus During Stimulus-Action-Reward Association Learning. J. 853 
Neurophysiol. 95, 948–959. 854 

Hazy, T.E., Frank, M.J., O’Reilly, R.C., 2010. Neural mechanisms of acquired phasic dopamine responses in 855 
learning. Neurosci. Biobehav. Rev. 34, 701–720. 856 

Hoehn, M.M., Yahr, M.D., 1967. Parkinsonism : onset, progression, and mortality Parkinsonism: onset, 857 
progression, and mortality. Neurology 17, 427–442. 858 

Hoffman, M.D., Gelman, A., 2016. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian 859 
Monte Carlo. J. Mach. Learn. Res. 15, 1351–1381. 860 

Houk, J.C., 1995. Information processing in modular circuits linking basal ganglia and cerebral cortex. In: 861 
Houk, J.C., Davis, J.L., Beiser, D.G. (Eds.), Models of Information Processing in the Basal Ganglia. The 862 
MIT Press, Cambridge, MA, pp. 3–10. 863 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 7, 2018. ; https://doi.org/10.1101/445528doi: bioRxiv preprint 

https://doi.org/10.1101/445528
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

30 

Huntenburg, J.M., Gorgolewski, K.J., Anwander, A., Margulies, D.S., 2012. Evaluating nonlinear coregistration 864 
of BOLD EPI and T1 images. Proc. Organ. Hum. Brain Mapp. 865 

Jahfari, S., Ridderinkhof, K.R., Collins, A.G.E., Knapen, T., Waldorp, L.J., Frank, M.J., 2017. Cross-task 866 
contributions of fronto-basal ganglia circuitry in response inhibition and conflict-induced slowing. Cereb. 867 
Cortex 1–15. 868 

Jeffreys, H., 1998. The theory of probability. Oxford University Press, Oxford, UK. 869 
Jenkinson, M., Bannister, P., Brady, M., Smith, S., 2002. Improved optimization for the robust and accurate 870 

linear registration and motion correction of brain images. Neuroimage 17, 825–841. 871 
Jocham, G., Klein, T. a, Ullsperger, M., 2011. Dopamine-mediated reinforcement learning signals in the 872 

striatum and ventromedial prefrontal cortex underlie value-based choices. J. Neurosci. 31, 1606–1613. 873 
Joel, D., Niv, Y., Ruppin, E., 2002. Actor-critic models of the basal ganglia: new anatomical and computational 874 

perspectives. Neural Networks 15, 535–547. 875 
Kahnt, T., Park, S.Q., Cohen, M.X., Beck, A., Heinz, A., Wrase, J., 2009. Dorsal Striatal–midbrain Connectivity 876 

in Humans Predicts How Reinforcements Are Used to Guide Decisions. J. Cogn. Neurosci. 21, 1332–877 
1345. 878 

Klein, A., Ghosh, S.S., Bao, F.S., Giard, J., Häme, Y., Stavsky, E., Lee, N., Rossa, B., Reuter, M., Chaibub 879 
Neto, E., Keshavan, A., 2017. Mindboggling morphometry of human brains, PLoS Computational 880 
Biology. 881 

Koller, W.C., Melamed, E., 2007. Parkinson’s disease and related disorders: part 1. In: Handbook of Clinical 882 
Neurology. Elsevier, Philadelphia. 883 

Konkle, T., Brady, T.F., Alvarez, G.A., Oliva, A., 2010. Conceptual distinctiveness supports detailed visual 884 
long-term memory for real-world objects. J. Exp. Psychol. Gen. 139, 558–578. 885 

Kruschke, J., 2015. Doing Bayesian data analysis: A tutorial introduction with R, JAGS and Stan, 2nd ed. 886 
Academic Press/Elsevier, London, UK: 887 

Marsman, M., Wagenmakers, E.J., 2017. Three Insights from a Bayesian Interpretation of the One-Sided P 888 
Value. Educ. Psychol. Meas. 77, 529–539. 889 

Montague, P.R., Dayan, P., Sejnowski, T.J., 1996. A framework for mesencephalic dopamine systems based on 890 
predictive Hebbian learning. J. Neurosci. 16, 1936–1947. 891 

Mumford, J. a, Turner, B.O., Ashby, F.G., Poldrack, R. a, 2012. Deconvolving BOLD activation in event-892 
related designs for multivoxel pattern classification analyses. Neuroimage 59, 2636–43. 893 

O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., Dolan, R.J., 2004. Dissociable roles of ventral 894 
and dorsal striatum in instrumental conditioning. Science 304, 452–454. 895 

O’Doherty, J.P., Cockburn, J., Pauli, W.M., 2017. Learning, Reward, and Decision Making. Annu. Rev. 896 
Psychol. 68, 73–100. 897 

Packard, M.G., Hirsh, R., White, N.M., 1989. Differential effects of fornix and caudate nucleus lesions on two 898 
radial maze tasks: evidence for multiple memory systems. J Neurosci 9, 1465–1472. 899 

Packard, M.G., Knowlton, B.J., 2002. Learning and memory functions of the Basal Ganglia. Annu. Rev. 900 
Neurosci. 25, 563–93. 901 

Palminteri, S., Lebreton, M., Worbe, Y., Grabli, D., Hartmann, A., Pessiglione, M., 2009. Pharmacological 902 
modulation of subliminal learning in Parkinson’s and Tourette’s syndromes. Proc. Natl. Acad. Sci. 106, 903 
19179–19184. 904 

Pauli, W.M., Nili, A.N., Tyszka, J.M., 2018. A high-resolution probabilistic in vivo atlas of human subcortical 905 
brain nuclei. Sci. Data 1–13. 906 

Pedersen, M.L., Frank, M.J., Biele, G., 2016. The drift diffusion model as the choice rule in reinforcement 907 
learning. Psychon. Bull. Rev. 908 

Perugini, A., Ditterich, J., Basso, M.A., 2016. Patients with Parkinson’s Disease Show Impaired Use of Priors in 909 
Conditions of Sensory Uncertainty. Curr. Biol. 26, 1902–1910. 910 

Perugini, A., Ditterich, J., Shaikh, A.G., Knowlton, B.J., Basso, M.A., 2018. Paradoxical Decision-Making: A 911 
Framework for Understanding Cognition in Parkinson’s Disease. Trends Neurosci. 41. 912 

Pessiglione, M., Seymour, B., Flandin, G., Dolan, R.J., Frith, C.D., 2006. Dopamine-dependent prediction errors 913 
underpin reward-seeking behaviour in humans. Nature 442, 1042–1045. 914 

Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2014. Methods to detect, 915 
characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341. 916 

R Development Core and Team, 2017. R: A language and environment for statistical computing. 917 
Rescorla, R.A., Wagner, A.., 1972. A theory of Pavlovian conditioning: variations in the effectiveness of 918 

reinforcement. In: Classical Conditioning II: Current Research and Theory. Appleton-Century-Crofts, pp. 919 
64–99. 920 

Schmidt, L., Braun, E.K., Wager, T.D., Shohamy, D., 2014. Mind matters: placebo enhances reward learning in 921 
Parkinson’s disease. Nat. Neurosci. 17, 1793–1797. 922 

Schultz, W., Dayan, P., Montague, P.R., 1997. A Neural Substrate of Prediction and Reward. Science (80-. ). 923 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 7, 2018. ; https://doi.org/10.1101/445528doi: bioRxiv preprint 

https://doi.org/10.1101/445528
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

31 

275, 1593–1600. 924 
Sharp, M.E., Foerde, K., Daw, N.D., Shohamy, D., 2016. Dopamine selectively remediates “model-based” 925 

reward learning: A computational approach. Brain 139, 355–364. 926 
Shiner, T., Seymour, B., Wunderlich, K., Hill, C., Bhatia, K.P., Dayan, P., Dolan, R.J., 2012. Dopamine and 927 

performance in a reinforcement learning task: Evidence from Parkinson’s disease. Brain 135, 1871–1883. 928 
Slooten, J.C. Van, Jahfari, S., Knapen, T., 2018. Pupil responses as indicators of value-based. BioRxiv. 929 
Stan Development Team, 2014. RStan: The R interface to Stan (Version 2.17.0). 930 
Steingroever, H., Wetzels, R., Wagenmakers, E.J., 2013. Validating the PVL-Delta model for the Iowa 931 

gambling task. Front. Psychol. 4, 1–17. 932 
Suri, R.E., Schultz, W., 1999. A neural network model with dopamine-like reinforcement signal that learns a 933 

spatial delayed response task. Neuroscience 91, 871–890. 934 
Surmeier, D.J., Ding, J., Day, M., Wang, Z., Shen, W., 2007. D1 and D2 dopamine-receptor modulation of 935 

striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 30, 228–235. 936 
Sutton, R.S., Barto, A.., 1998. Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA. 937 
Swanson, L.W., 1982. The Projections of the Ventral Tegmental Area and Adjacent Regions: A Combined 938 

Flourescent Retrograde Tracer and Immunofluorescence Study in the Rat. Brain Res.Bull. 9, 321–353. 939 
Treiber, J.M., White, N.S., Steed, T.C., Bartsch, H., Holland, D., Farid, N., McDonald, C.R., Carter, B.S., Dale, 940 

A.M., Chen, C.C., 2016. Characterization and correction of geometric distortions in 814 Diffusion 941 
Weighted Images. PLoS One 11, 1–9. 942 

Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C., 2010. N4ITK: 943 
Improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320. 944 

Van Der Schaaf, M.E., Van Schouwenburg, M.R., Geurts, D.E.M., Schellekens, A.F.A., Buitelaar, J.K., Verkes, 945 
R.J., Cools, R., 2014. Establishing the dopamine dependency of human striatal signals during reward and 946 
punishment reversal learning. Cereb. Cortex 24, 633–642. 947 

Verharen, J.P.H., De Jong, J.W., Roelofs, T.J.M., Huffels, C.F.M., Van Zessen, R., Luijendijk, M.C.M., 948 
Hamelink, R., Willuhn, I., Den Ouden, H.E.M., Van Der Plasse, G., Adan, R.A.H., Vanderschuren, 949 
L.J.M.J., 2018. A neuronal mechanism underlying decision-making deficits during hyperdopaminergic 950 
states. Nat. Commun. 9, 1–15. 951 

Voon, V., Pessiglione, M., Brezing, C., Gallea, C., Fernandez, H.H., Dolan, R.J., 2010. Mechanisms Underlying 952 
Dopamine-Mediated Reward Bias in Compulsive Behaviors. Neuron 65, 135–142. 953 

Wang, S., Peterson, D.J., Gatenby, J.C., Li, W., Grabowski, T.J., Madhyastha, T.M., 2017. Evaluation of Field 954 
Map and Nonlinear Registration Methods for Correction of Susceptibility Artifacts in Diffusion MRI. 955 
Front. Neuroinform. 11, 1–9. 956 

Wiecki, T. V., Sofer, I., Frank, M.J., 2013. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion 957 
Model in Python. Front. Neuroinform. 7, 14. 958 

Wunderlich, K., Smittenaar, P., Dolan, R.J., 2012. Report Dopamine Enhances Model-Based over Model-Free 959 
Choice Behavior. 960 

Zhang, Y., Brady, M., Smith, S., 2001. Segmentation of brain MR images through a hidden Markov random 961 
field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57. 962 

 963 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 7, 2018. ; https://doi.org/10.1101/445528doi: bioRxiv preprint 

https://doi.org/10.1101/445528
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

32 

SUPPLEMENTAL MATERIAL 964 

 

Dopaminergic medication reduces striatal sensitivity to negative outcomes 965 

in Parkinson’s disease 966 

 
Brónagh McCoy1*, Sara Jahfari2,3, Gwenda Engels4, Tomas Knapen1,2† and Jan Theeuwes1† 967 

 

1 Department of Experimental and Applied Psychology, Vrije Universiteit, Amsterdam, The 968 

Netherlands  969 

2 Spinoza Centre for Neuroimaging, Royal Academy of Sciences, Amsterdam, The Netherlands  970 

3 Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands 971 

4 Department of Clinical, Neuro and Developmental Psychology, Vrije Universiteit, Amsterdam, The 972 

Netherlands 973 

 

 

† These authors share senior authorship 974 
 

* Brónagh McCoy 975 

Vrije Universiteit Amsterdam Department of Experimental and Applied Psychology, 976 

Van Der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands  977 

mccoy.bronagh@gmail.com 978 

 

 

 

 

 

 

 

 

            

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 7, 2018. ; https://doi.org/10.1101/445528doi: bioRxiv preprint 

https://doi.org/10.1101/445528
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

33 

 

Figure S1 | Beta parameter estimates for learning phase mixed-effects logistic regression model. PD OFF 979 
was considered as ‘baseline’, with any relative increase in beta parameters for PD ON or HC representing the 980 
effect of medication and disease status, respectively. Here, the main effects of disease and medication on choice 981 
accuracy are presented (left), as well as interaction effects of stimulus pair and disease, and stimulus pair and 982 
medication, on choice accuracy (right). 983 
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Figure S2 | Bayesian hierarchical computational model assessment and simulation. A) Group-level 984 
parameter estimate distributions. B) Simulation of the fitted model. To check whether the model sufficiently 985 
captured actual choice behavior of participants, we simulated the probability of choosing the best option using 986 
the posterior distributions of the fitted free parameters of each participant. Plots of the modeled against 987 
empirical data across each group and stimulus pair show that the model is a good representation of overall 988 
learning. 989 
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Figure S3 | Individual medication differences in Parkinson’s patients in computational model parameters. 990 
Medians are displayed, with red and black horizontal bars denoting 85% and 95% highest density intervals 991 
(HDI), respectively. Note that wherever individual medication difference parameters are used, we take the mode 992 
rather than median of the distributions, as this point has the highest posterior density of all parameter values. 993 
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Parameter Mean SEM 95% HDI BF10 

b 0.707 0.014 [-0.185, 1.565] 16.59 
again -0.354 0.021 [-1.944, 1.298] 2.05 
aloss -1.928 0.038 [-4.500, 1.065] 7.89 

  

Figure S4 | Disease differences in computational model parameters. Parameter distributions are shown for 994 
HC v PD (N=46). We found moderate evidence for greater aloss negative learning in PD compared to HC (BF = 995 
7.89), and strong evidence for greater exploitation in HC compared to PD patients (BF = 16.89). 996 
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Figure S5 | Disease differences in computational model parameters, separately for PD medication status. 997 
To assess whether both PD ON and OFF contributed in a similar or differential way to the disease-related 998 
difference distributions shown in Figure S4, two additional smaller models were run using a subset of data 999 
entered into the main model: HC vs. PD ON and HC vs. PD OFF. We ran 3000 samples each (discarding the 1000 
first 1500 of each chain for burn-in). Checks for model convergence via visual inspection and 𝑟 ̂statistics was 1001 
carried out in the same way as in the main model. The effect of disease on group-level parameters are displayed 1002 
above for HC vs. PD ON (top row) and HC vs. PD OFF (bottom row). There is strong evidence for greater 1003 

exploitation in HC compared to both PD ON and OFF, as indicated by a rightward shift in the b parameter 1004 
distribution and BFs > 10. 1005 
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Figure S6 | Positive and negative RPE in striatal ROIs. In addition to the caudate nucleus, we ran a 1006 
deconvolution analysis in the putamen and nucleus accumbens (NAc). Positive and negative RPEs were z-1007 
scored around positive and negative events, respectively. Although no medication difference in RPE was found 1008 
for ventral striatal NAc activity, it was included here for informational purposes since it has been implicated in 1009 
several previous studies on the effects of dopamine on learning (Breiter et al., 2001; Cools et al., 2007; McClure 1010 
et al., 2003; O’Doherty et al., 2003). In NAc, there appears to be a quantitative PD ON > OFF group level 1011 
difference in positive RPE, however this difference is not statistically significant when within-subject 1012 
differences were cluster-corrected across multiple timepoints.  1013 
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Figure S7 | Changes in BOLD percent signal change for positive and outcomes in striatal ROIs. Percent 1014 
signal change is shown for the caudate nucleus, putamen, and NAc. BOLD percent signal change is presented 1015 
separately for positive and negative feedback events, for both PD ON (green) and PD OFF (red). Colored bands 1016 
represent 68% confidence intervals.  1017 
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Figure S8 | Subject-level accuracy plots in Approach A and Avoid B trials of the transfer phase. A) 1018 
Averages per condition and within-subject plots, separately for HC, PD ON and PD OFF. B) Within-PD subject 1019 
plots across medication session, separately per Approach/Avoid condition. 1020 
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Characteristic Healthy Controls (HC) 

N=23 

Parkinson patients (PD) 

N=23 

HC vs. PD 

(difference) 

Age (years)  60.35 (8.72) 63.30 (8.24) t(44) = 1.182, p=.244 

Gender 8 females 6 females χ2(1) = .411, p =.522 

Education level (Verhage) 6.09 (0.85) 5.26 (1.14) t(44) = 2.793, p=.008** 

MoCA score 27.91 (1.88) 26.96 (1.92) t(44) = 1.708, p=.095 

BDI 4.09 (3.03) 6.07 (4.31) t(44) = 1.802, p=.078 

BAI 23.17 (2.27) 31.48 (6.15) t(44) = 6.077, p<.001*** 

Digit Span Backwards 7.00 (2.09) 6.35 (2.39) t(44) = .986, p=.329 

NLV reading score 90.96 (8.47) 89.57 (7.36) t(43) = .588, p=.560 

Verbal fluency 43.91 (11.26) 37.91 (11.01) t(43) = 1.808, p=.078 

Disease duration (years)                      -  4.00 (3.18)                               - 

UPDRS III on                      - 17.87 (7.77)                               - 

UPDRS III off                      - 20.65 (8.22)                               - 

Hoehn & Yahr                      - 2.11 (0.58)                               - 

LEDD (mg)                      - 790 (629)                               - 

 
Table S1 | Demographic and clinical characteristics of participants. Executive functioning was assessed 1021 
using the following tests: the Montreal Cognitive Assessment (MoCA), the Dutch version (NLV) of the 1022 
National Adult Reading Test (NART) as a measure of pre-morbid IQ, the Stroop color-word task to assess 1023 
effects of interference, verbal (category) fluency tests, and the rule-shift cards test of the Behavioural 1024 
Assessment of the Dysexecutive Syndrome (BADS), to assess mental flexibility (Wilson et al., 1997). The 1025 
Complex Figure of Rey (CFR) was used as a measure of visuospatial memory. Verbal memory was assessed 1026 
using the Dutch version of the Rey Auditory Verbal Learning Test (AVLT), testing both short- and long-term 1027 
verbal memory (Saan and Deelman, 1986). Digit span forwards and backwards in short form (WAIS) was used 1028 
to assess working memory. Participants also completed several self-report questionnaires: Beck Depression 1029 
Inventory (BDI), Beck Anxiety Inventory (BAI), and Monetary Choice Questionnaire (MCQ). PD patients 1030 
additionally completed the Wearing-Off Questionnaire (WOQ-Q10; related to the wearing off of DA 1031 
medication), and the Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease-Rating Scale 1032 
(QUIP-RS). The motor part of the Unified Parkinson’s Disease Rating Scale (UPDRS III) was carried out before 1033 
each fMRI session.  An overview of several test scores is provided in the table below. These assessments were 1034 
not examined in the current study but are discussed in greater detail elsewhere (Engels et al., 2018; Engels et al., 1035 
in press). Quantities are presented as the mean across the sample, with brackets denoting 1 standard deviation. 1036 
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Table S2 | Medication information for PD patients. Patient information regarding levodopa, dopamine 1037 
agonists and any other dopaminergic medication. Levodopa Equivalent Daily Dosage (LEDD) was calculated 1038 
according to Tomlinson et al., 2010. 1039 

Patient  
(Nr.) 

Age 
(years) 

Disease duration 
(years) 

LEDD 
(mg) 

Medication information Time to scan since 
medication (hours) 

    Levodopa DA-agonist Other OFF ON 
1 55 3.5 564 Yes     15.0 1.0 
2 73 2.0 752 Yes   17.0 1.0 

3 67 10.0 564 Yes   20.5 1.0 

4 72 3.0 375 Yes   16.5 1.5 

5 68 1.0 828 Yes   16.0 2.5 

6 56 2.0 375 Yes   26.5 2.0 

7 68 2.0 378 Yes   19.5 5.5 

8 65 8.0 850 Yes     MAO-B inhibitor  
     (Rasagiline)       
   COMT inhibitor   
    (Entacapone) 

12.5 1.5 

9 62 4.0 2780 Yes     COMT inhibitor  
    (Entacapone) 

14.5 3.0 

10 64 5.5 982 Yes   Pramipexol  14.5 2.0 

11 68 2.0 125 Yes   15.5 2.5 

12 69 1.0 500 Yes   15.0 8.0 

13 73 5.0 375 Yes   13.5 3.5 

14 70 3.0 1548 Yes     COMT inhibitor  
    (Entacapone) 

15.5 1.5 

15 71 6.0 1038 Yes   Pramipexol  8.5 5.5 

16 47 6.0 1428 Yes   Ropinirol  14.0 1.0 

17 48 0.5 1000 Yes   15.0 1.5 

18 56 6.0 935 Yes   Pramipexol    MAO-B inhibitor 
     (Rasagiline) 

13.0 1.5 

19 66 1.0 90 Yes   16.5 2.0 

20 53 5.0 615 Yes   Ropinirol  19.5 1.5 

21 72 13.0 1150 Yes   Pramipexol    MAO-B inhibitor 
      (Rasagiline) 

16.0 2.0 

22 57 1.0 106 No   Pramipexol  18.5 4.5 

23 51 6.0 1645 Yes   Ropinirol      Amantadine 14.0 2.5 
24 61 1.5 108 No   Pramipexol   27.0 12.0 
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Table S3 | Model comparison. We tested two hierarchical Bayesian models and used the model that best 1040 
explained the data, as estimated by the lowest Bayesian information criterion (BIC) score on both a subject and 1041 

whole model basis. As well as the free parameters again, aloss  and b included in the previously described model, 1042 
we additionally included a perseverance (“stickiness”) parameter (p) in a separate model, to account for any bias 1043 
in choosing the same stimulus of a pair regardless of the reward outcome (Kable and Glimcher, 2007; 1044 
Schönberg et al., 2007). p was included in the softmax equation and was bounded as [-5, 5] according to 1045 
previous research using this parameter (Wunderlich et al., 2012). The log-likelihoods were calculated per 1046 
subject in the Stan model using the log categorical probability mass function. This was updated on a trial-by-1047 
trial basis to reflect whether a trial was correct given the probability of choosing that option. These log-1048 
likelihoods (LLH) were then extracted from the fitted model on a per subject basis and used to calculate the BIC 1049 
according to: 1050 
 

𝐵𝐼𝐶 = −2 ∗ 𝐿𝐿𝐻 + 𝐾 ∗ 𝑙𝑛	(𝑛) 1051 

 

where K is the number of free parameters of the model and n is the number of observations (the number of 1052 
trials, in this case). The BIC can also be calculated on a whole model basis, where LLH and n are the combined 1053 
across all subjects. The table above shows the overall BIC values for each model; individual subject BICs are 1054 

not shown here but are lower in all 46 subjects for the again, aloss, b model. AICs are also included in the table 1055 

(AIC = −2 ∗ 𝐿𝐿𝐻 + 2𝐾) to show that the again, aloss, b model is better in both cases. 1056 
 

 

 

 
 
Table S4 | Summary of learning phase medication differences in posterior distributions of the Bayesian 1057 
model group parameters. Bayes factors (BF) for medication differences in learning parameter distributions 1058 
represent the BF according to direction of the visible shift in the posterior difference, i.e., the aloss parameter in 1059 
Figure 2B is shifted to the left (higher OFF medication), so the BF represents the probability of OFF > ON 1060 
being greater than zero. HDI = highest density interval. 1061 
 
 
 

 
Parameter Mean SEM 95% HDI  BF10 

b 0.015 0.003 [-0.213, 0.268] 1.24 
again -0.048 0.005 [-0.505, 0.407] 1.39 
aloss -0.960 0.021 [-2.566, 0.338] 11.40 

 
 
 
 

Parameters BIC AIC 
again, aloss, b 290.55 266.89 
again, aloss, b, p 565.11 533.57 
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# 

voxels log10(p) 

MAX X 

(mm) 

MAX Y 

(mm) 

MAX Z 

(mm) 

COPE-

MAX X 

(mm) 

COPE-

MAX Y 

(mm) 

COPE-

MAX Z 

(mm) Areas included 

529 25.6 12.3 -82.8 47.4 35.2 -72.9 54 lateral occipital cortex, precuneous (R) 

233 13.7 5.71 -89.3 -15.3 2.43 -79.5 -8.7 V1, occipital fusiform gyrus,  
occ. pole (R) 

101 6.75 -33.7 -43.4 -45 -30.4 -43.4 -45 cerebellum (L) 

79 5.35 -17.3 -13.9 11.1 -7.41 9.08 4.5 caudate nucleus, putamen, glob. 
pallidus, thalamus (L) 

75 5.08 -43.5 -30.3 44.1 -27.1 -10.6 67.2 postcent. gyrus, supramarg. gyrus,  
sup. parietal lobe (L) 

64 4.31 32 -69.7 -45 -4.13 -63.1 -48.3 cerebellum (R) 

44 2.78 51.6 35.3 30.9 38.5 45.2 37.5 middle front. gyrus, frontal pole (R) 

42 2.62 61.5 -43.4 -8.7 61.5 -46.7 -8.7 middle temp. gyrus, inf. temp. gyrus (R) 

42 2.62 28.7 -7.32 50.7 32 -4.04 50.7 precent. gyrus, middle front. gyrus,  
sup. front. gyr (R) 

40 2.45 2.43 25.5 54 5.71 18.9 47.4 sup. front. gyr. (R )  

39 2.37 38.5 -4.04 44.1 38.5 2.52 37.5 precent. gyrus, middle front. gyrus.  
sup. front. gyr (R) 

 

Table S5 | Medication difference in whole brain RPE signal. Clusters of group-level PD OFF > ON 1062 
medication difference (p <. 01, z = 2.3, cluster-corrected). 1063 
 

 

 

 

 
 
 

 

 

 

 

 

Table S6 | Summary of BIC values for the role of medication-related shifts in learning rate parameters in 1064 
subsequent medication-related changes in transfer phase behavior and BOLD activity. BIC values relating 1065 
to transfer phase behavior (second column) describe the explanatory power of within-patient medication-related 1066 
shifts in learning rate parameters (kagain, kaloss) in the transfer phase medication-related interaction in 1067 
approach/avoidance behavioral accuracy. BIC values relating to brain activity (third column) describe the 1068 
explanatory power of the same within-patient medication-related shifts in learning rate parameters in the transfer 1069 
phase medication-related interaction in caudate nucleus BOLD activity during approach versus avoid trials. 1070 
Overall, in both brain and behavior, the medication-related shift in only the negative learning rate, aloss, 1071 
parameter best explained subsequent medication-related changes in approach/avoidance trials. 1072 

 
 

Explanatory variable BIC (behavior) BIC (brain) 
kaloss only       231.38      33.36  
kagain + kaloss        234.34           36.17  
kagain only       234.48      37.92 
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