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Large-scale functional connectivity of the human brain, commonly observed using functional Magnetic 

Resonance Imaging (fMRI), exhibits a whole-brain spatial organization termed the functional 

connectome. The fMRI-derived connectome shows dynamic reconfigurations that are behaviorally 

relevant. Due to the indirect nature of fMRI, it is unclear whether such topographic changes reliably 

reflect modulation in neuronal connectivity patterns. Here, we directly compared concurrent fMRI-

derived and electrophysiological connectivity dynamics on a connection-wise basis across the whole 

connectome. 

Dynamic whole-brain functional connectivity (dFC) was assessed during resting-state in two 

independent concurrent fMRI-electroencephalography (EEG) datasets (42 subjects total) using a sliding 

window approach. FMRI- and EEG-derived dFC shared significant mutual information in all canonical EEG 

frequency bands. Notably, this was true for virtually all connections. Across all EEG frequency bands, 

connections with the strongest link between EEG and fMRI dynamics tied the default mode network 

(DMN) to the rest of the brain. Beyond this frequency-independent multimodal dFC, fMRI connectivity 

covaried with EEG connectivity in a frequency-specific manner in two distributed sets of connections for 

delta and gamma bands, respectively. These results generalized across the two datasets.  

Our findings promote the DMN as a universal hub of dynamics across frequencies, but also show that 

spatial distribution of fMRI and EEG dFC differ across the canonical EEG-frequency bands. This study 

reveals a close relationship between time-varying changes in whole-brain connectivity patterns of 

electrophysiological and hemodynamic signals. The results support the value of EEG for studying the 

whole-brain connectome and provide evidence for a neuronal basis of fMRI-derived dFC.   

 

Introduction 
To date, our knowledge about the topography of neural communication in the human brain is largely 

derived from fMRI, an indirect measure of neural activity. Since the discovery that brain activity is 

correlated between distant brain regions in resting-state functional magnetic resonance imaging (rs-

fMRI) (1) extensive efforts have been undertaken towards establishing the neural origin of this 

functional connectivity (FC) (2–8). Using fMRI, the brain has been characterized in terms of different 

intrinsic connectivity networks (ICNs) (9–11). Collectively, the connectivity within and between ICNs 

can be represented as a whole-brain connectivity graph, or connectome(12). This line of research has 

traditionally focused on static properties of FC by averaging brain activity across the entire recording 

period (13). Though dominated by fMRI-based research, static whole-brain FC has been shown to have 

a spatial organization comparable across EEG and fMRI (2, 5) and MEG and fMRI (4, 6) and intracranial 

EEG. 
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More recently, the static view on FC has been extended by looking into the dynamic FC changes (dFC) 

of rs-fMRI connectivity in time windows of seconds to minutes (14, 15). Such dynamics have been 

shown to switch between recurrent metastates (16, 17). Additionally, fMRI-derived dynamics correlate 

with behavior (18–20), and are clinically relevant for identifying aberrant dynamic brain state changes 

(for review see (21)). However, it is still unclear how reliably dFC derived from fMRI can measure 

neuronal dynamics (22). Investigations of time-varying fMRI connectivity have been plagued by 

concerns about physiological noise, head motion, and sampling variability (23, 24), and important 

discussions about optimal null models to account for such spurious ‘dynamics’ are currently ongoing 

(15, 22). 

On the other hand, dynamic modulation in phase synchrony of neurophysiological oscillations as 

measured by EEG and MEG has been well-established as a mechanism for long-range neural 

communication (25, 26). However, it is unknown whether these neurophysiological connectivity 

dynamics extend to infraslow time scales comparable to those driving dFC in fMRI (dominated by 

<0.1Hz range). Indications that this may be the case come from studies assessing phase synchrony at 

sensor level and building a coarse global field average across EEG electrode pairs (27, 28), but 

electrophysiological investigations in spatially resolved connectomes are missing to date. While 

neurophysiological measures are subject to limitations such as limited spatial localizability of scalp 

recordings, recent methodological advances have made it possible to establish whole-brain 

connectivity patterns and their dynamics from source-localized signals, at least for coarse whole-brain 

parcellations (29, 30). Applying these methodological advances, source-localized MEG-based 

connectivity studies have reported time-varying interregional connectivity at fast time scales (31, 32). 

However, as MEG and fMRI cannot be recorded concurrently, it remains unclear whether dynamics in 

the MEG-derived connectome coincide with those observed in fMRI-derived dFC. Consequently, the 

relationship of connectivity dynamics across neurophysiological and hemodynamic connectomes is 

unknown. 

Concurrent recordings of hemodynamic and neurophysiological signals help investigate 1.) the neural 

origin of fMRI-derived dFC, and 2.) whether fast neurophysiological signals exhibit slow dynamics that 

concurrently follow the same spatial pattern as that of fMRI. Global neurophysiological measures such 

as EEG band-limited global field power have been linked to fMRI-based dFC both in specific intrinsic 

networks (33) and the whole brain (34). Allen et al. (35) demonstrated that the reoccurring states in 

fMRI-based dFC are related to concurrent states of the EEG power spectrum. Though the correlation 

between global measures of EEG activity and local fMRI-FC in both human and animal research is 

suggestive of the neuronal basis of dFC (36, 37), previous work still lacks the demonstration that dFC 

is locally related across modalities on a connection-wise basis. Using concurrent intracranial-EEG and 

fMRI in presurgical patients, we previously observed a significant correlation between the dynamic 

sliding window variance of intracranial-EEG connectivity and BOLD connectivity (38).  However, it 

remains unclear if this variance correlation reflects a true relationship between the EEG and BOLD 

connectivity timecourses on a whole-brain level. 

Here, we hypothesize that dFC derived from source-space EEG covaries over time with fMRI dFC on a 

connection-wise basis across the whole brain. Further, we aimed to characterize the whole-brain 

topological organization of this cross-modal relationship for each canonical EEG frequency band. 
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Results 
Static connectivity relationship across EEG and fMRI 

We used resting-state concurrent EEG-fMRI data from two independent datasets (primary n=26, 

generalization n=16). Preprocessed fMRI signal was averaged to the 68 cortical regions of the Desikan 

atlas (39, 40). Preprocessed EEG signals band-passed to each canonical frequency band (δ,θ,α,β,γ) were 

source-reconstructed (41–43) to the same atlas (Fig. 1a). First, we sought to confirm that the previously 

reported static relation between fMRI-derived and EEG-derived connection-wise connectivity strength 

(3, 8) holds true for the two datasets of this study. To this end, we assessed connectivity averaged 

across the total duration of EEG and fMRI data. Connectivity in source-projected EEG was quantified 

as band-limited phase synchrony using imaginary coherence, and connectivity in fMRI was quantified 

as Pearson’s r for the same whole-brain parcellation atlas. In line with our prior work (8), static FC 

averaged of all EEG bands were correlated to FC of fMRI (main dataset fMRI vs. δ/θ/α/β/γ: 

r=0.34/0.34/0.33/0.36/0.29; generalization dataset fMRI vs. δ/θ/α/β/γ: r=0.34/0.33/0.36/0.41/0.39, 

taking the average FC across all subjects). This observation reaffirms the link between the spatial 

organization of connectivity across modalities and confirms sufficient quality of EEG source localization 

to the whole-brain parcellation. 

 

Fig. 1: a) Construction of EEG and fMRI connectomes. EEG was source reconstructed and fMRI signal was averaged for the 

68 cortical regions of the Desikan atlas (39). Pearson’s correlation of fMRI timecourses and imaginary coherence of band-

limited EEG source signal were used to build connectomes. b) Dynamic FC was derived from a 1min window sliding at 2s (= 

repetition time of fMRI). Mutual information between fMRI-dFC and EEG-dFC was statistically compared to a null model 

consisting of the mutual information between fMRI-dFC and phase scrambled EEG-dFC (8, 44). 

Dynamic connectivity relationship across EEG and fMRI 

Next, we used a sliding window approach to assess whether time-varying changes in the whole-brain 

connectivity pattern derived from fMRI are linked to dynamics in band-limited phase synchrony across 

modalities (Fig. 1b). We used the information-theoretic measure of mutual information, which 

assesses the relationship between the modalities without assuming linearity. We tested these co-

dynamics against a null model that spatially randomizes connections of the EEG connectome while 

preserving comparable modular organization (8, 44). Dynamic FC in δ, θ, α, β and γEEG showed high 

mutual information with fMRI connectome dynamics significantly outperforming the null model in 
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virtually all region-pairs: in 100% of connections for fMRI vs. δEEG-fMRI, θEEG-fMRI, αEEG-fRMI, and 

γEEG-fMRI, and in 99.91% of connections for βEEG-fMRI (Bonferroni corrected for 2248 connections, 

p<2.19*10-5). This strong cross-modal relationship was confirmed in the generalization dataset, 

although it was significant in a smaller number of connections especially for βEEG-fMRI and γEEG-fMRI: 

fMRI vs. δEEG-fMRI=98.68%, θEEG-fMRI=91.83% αEEG-fRMI=87.97%, βEEG-fMRI=54.48%, γEEG-

fMRI=31.12% (Bonferroni corrected for 2248 connections, p<2.19*10-5). The relative reduction in 

effect size in the replication dataset is in line with the smaller sample size and shorter recording 

duration. Fig. 2 show the distribution of mutual information of one randomly selected subject per 

dataset. 

 

Fig. 2: Distribution of mutual information between fMRI and EEG dFC time courses using real EEG and phase-scrambled EEG 

(null model) across all bands. Data are shown for a randomly selected subject of a) the main dataset and b) the 

generalization dataset. Note that the null model maintains (and thus controls for) the individual subject’s global mean shifts 

that may result from time-varying noise sources that broadly affect connectivity in both EEG and fMRI. For virtually all 

connections of the main dataset, EEG and fMRI dynamics are significantly linked over time irrespective of EEG oscillation 

band. A similar effect is observed for the vast majority of connections in the generalization dataset. 

Additionally, we tested for generalizability at a connection-wise level. The connection-wise strength of 

mutual information averaged across all subjects was strongly correlated across primary and replication 

datasets for fMRI compared to δ/θ/αEEG (r=0.48/0.46/0.34) although no correlation was observed for 

fMRI vs. β/γEEG (r=0.04/-0.02, Fig. 3). A split-half approach indicated that the lack of connection-wise 

generalization for β and γ bands is due to the lower signal-to-noise ratio compared with the slower 

frequencies (SI Results and Table S1). 

 

Fig. 3: Connection-wise comparison of the EEG-fMRI relationship across the two datasets. Each data point reflects the 

mutual information between EEG-dFC and fMRI-dFC for a given connection averaged across all subjects of the respective 

datasets. Scatter plots are provided for the relation of fMRI-dFC to a) δEEG, b) θEEG, c) αEEG, d) βEEG, and e) γEEG-dFC. The 

whole-brain distribution of mutual information correlated across the two datasets for δ, θ and αEEG. 

In summary, fMRI signal correlations were linked to slow modulations of oscillatory phase synchrony 

across the vast majority of the connectome’s region-pairs. This was true for all canonical EEG frequency 

bands across both datasets. The strength of the EEG-fMRI relationship was correlated on a connection-

wise basis between primary and generalization datasets in the δ, θ, and α bands. 
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Spatial topography of the dynamic relationship 

Next, we sought to characterize the spatial topography of co-dynamics beyond the above-described 

all-encompassing relation between EEG and fMRI dFC. Specifically, we assessed how the connections 

for which fMRI dFC was most strongly linked to EEG dFC were distributed over canonical neurocognitive 

ICNs (11) and across EEG frequency bands. To this end, the contrast of EEG-fMRI mutual information 

in real against null data was subjected to network based statistics (NBS) (45) separately for each EEG 

frequency band. The initial element-wise t-threshold was chosen so that NBS would identify the 

connected set of 200 connections with strongest mutual information between EEG and fMRI dynamics. 

The connection-wise threshold and the ensuing NBS cluster-corrected significance corresponding to 

the top-200 cutoff are listed in Table 1. For both datasets the top 200 connections are consistently 

drawn from connections that have high mutual information (see SI Results). 

Table 1: Statistical comparison (NBS, 5000 iterations) of mutual information between EEG- and fMRI-derived dFC against 

mutual information from the null model. The t-threshold (one-sided) was chosen to identify the connected set of 200 

connections with strongest EEG-fMRI relationship. The ensuing top 200 connections are visualized in Fig. 4. 

Main dataset T P (NBS-corrected) 

δEEG-fMRI vs. δEEG-fMRI Null 9.133 <0.0002 

θEEG-fMRI vs. θEEG-fMRI Null 8.056 <0.0002 

αEEG-fMRI vs. αEEG-fMRI Null 7.411 <0.0002 

βEEG-fMRI vs. βEEG-fMRI Null  6.243 <0.0002 

γEEG-fMRI vs. γEEG-fMRI Null 5.715 <0.0002 

Generalization dataset     

δEEG-fMRI vs. Null  9.605 <0.0002 

θEEG-fMRI vs. θEEG-fMRI Null 8.265 <0.0002 

αEEG-fMRI vs. αEEG-fMRI Null  7.443 <0.0002 

βEEG-fMRI vs. βEEG-fMRI Null  6.646 <0.0002 

γEEG-fMRI vs. γEEG-fMRI Null  7.157 <0.0002 

 

Fig. 4 visualizes the networks of the respective top-200 connections linked between fMRI dFC and EEG 

dFC for each canonical oscillation band. To understand the distribution of the top 200 connections with 

respect to ICNs, we mapped the connections to an atlas of seven canonical networks ((11), Fig 4a). The 

number of connections between any given pair of canonical networks is visualized in Fig 4b. This 

distribution of pairwise network connection density was strongly correlated across primary and 

generalization datasets for all bands (δ/θ/α/β/γ: r=0.82/0.83/0.93/0.85/0.85). To test if the top-200 

connections were distributed across the canonical ICNs in a similar fashion for both datasets we 

randomly permuted the top-200 connections in both datasets. We observed no significant difference 

between datasets in this permutation analysis (n=100,000 iterations, p>0.0018 for all EEG frequency 

bands, Bonferroni corrected for multiple comparisons at 28 network pairs). Thus, while we observed 

connection-wise generalization for δ/θ/α but not β/γ bands (Fig. 3), the results in Fig. 4 support 

generalization for all bands at the coarser ICN-wise resolution.  
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Fig. 4: Spatial characterization of linked EEG-fMRI connectivity dynamics. a) Topographical distribution of the 200 

connections with the strongest EEG-fMRI relationship (determined by NBS, 5000 iterations, cf. Table 1). Connections are 

color-coded according to the seven major canonical intrinsic networks (11). Individual region labels are listed in table S7. b) 

Mapping of those 200 connections to the intrinsic networks. The color scale depicts the count of connections falling between 

a given pair of canonical intrinsic networks. For all EEG frequency bands, the top 200 connections are dominated by within- 

and between-network connections of the DMN. Results are visualized for the primary dataset, while a strongly correlated 

distribution over intrinsic networks was observed in the generalization dataset (Tables S2-S6). 

Interestingly, for all EEG frequencies, this distributed network of strongest cross-modal dynamics 

aligned with the Default Mode Network (DMN). We established that this distribution of the top 200 

connections and the ensuing DMN-dominance were not driven by the number of ICN nodes or other 

potential biases. For each network pair (e.g. DMN-VIS) we tested whether the number of connections 

was significantly higher than chance by randomly selecting (n=100,000) 200 connections from the main 

dataset (Tables S2-S6). Additional frequency-specific connections were observed beyond DMN-

dependent connectivity, most notably for δ: FP-VIS; θ: VA-SM, FP-VS; α: SM-VA, β: FP-F, and γ:  VA-L 

(Fig. 4b, Tables S2-S6).  

In summary, while our first analysis showed a widespread significant relationship between fMRI and 

EEG for virtually all connections and irrespective of oscillation frequency, the connections of the 

strongest (top 200) cross-modal relationship showed a dominant role of the DMN.  

Frequency-specificity of the dynamic relationship 

Finally, we sought to directly and statistically corroborate the frequency specificity of the cross-modal 

relationship on a connection-wise basis. To this end, we combined the EEG-fMRI mutual information 

matrices for all EEG bands into an ANOVA (5 levels for 5 frequency bands). Statistical testing indicated 

a main effect of EEG band (F-test, p=0.041, NBS corrected). Exploratory post-hoc t-tests revealed that 

both delta- and gamma-band dFC are organized in a frequency specific network of increased mutual 

information to fMRI dynamics relative to all other frequencies (p<0.05, NBS-corrected, Table 2). Fig. 5a 

visualizes this frequency-specific network for delta and gamma bands in physical brain space, and Fig. 

5b maps the connections according to canonical ICNs (we report the connected set of top 100 

connections). Confirming the observation described above (Fig. 4b), both networks of frequency 

specific cross-modal dynamics consisted predominantly of DMN connections to the rest of the brain; 

the delta-specific set showed a strong preference for Limbic-DMN connections whereas the gamma 

specific set shared a preference between DMN-Ventral-attention and DMN-Limbic connections (Fig. 

5c). 
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Table 2: Table 2: NBS (5000 iterations) shows a network of significantly increased mutual information for δEEG-fMRI and 

γEEG-fMRI (connection-wise T-threshold is chosen to limit the network size to 100 connections, one sided t-test  one band to 

all the others). The ensuing top 100 connections are visualized in Fig. 5. 

Main dataset T P (NBS-corrected) 

δEEG-fMRI > All other bands 1.867 0.024 

γEEG-fMRI > All other bands 1.875 0.023 

Generalization dataset     

δEEG-fMRI > All other bands 2.27 0.006 

βEEG-fMRI > All other bands 2.375 <0.0002 

γEEG-fMRI > All other bands 2.075 0.0162 

 

 

Fig. 5: Frequency-specificity of linked EEG-fMRI connectivity dynamics. a) Topographical distribution of the top-100 

connections in which connectivity dynamics were more strongly linked between fMRI and δEEG than other EEG bands (left) 

and between fMRI and γEEG compared to other bands (determined by NBS, 5000 iterations, cf. table 2). Color code and 

region labels correspond to Fig. 4. b) The count of connections among the top 100 falling between a given pair of canonical 

intrinsic networks. The δ-dominated set of connections tie the DMN to the Limbic network, whereas the γ-dominated set of 

connections predominantly tie the DMN to the Ventral Attention and Limbic networks. Results are visualized for the 

primary dataset, while spatial specificity for δ and γ bands was likewise observed in the generalization dataset (table 2). 

In the generalization dataset the F-test and NBS analysis likewise showed a significant main effect of 

frequency (F<0.0002). Exploratory post-hoc analysis replicated a set of connections with significantly 

higher mutual information for δEEG-fMRI and γEEG-fMRI, and additionally for βEEG-fMRI (Table 2). To 

conclude, when contrasted directly across frequency bands, frequency-specificity of the EEG-fMRI 

relationship was confirmed with a DMN dominance. 

  

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 7, 2018. ; https://doi.org/10.1101/464438doi: bioRxiv preprint 

https://doi.org/10.1101/464438


Discussion 
Dynamics of intrinsic brain activity are necessary for human behavior, which is inherently flexible. 

While these dynamics are most commonly studied using fMRI, the relationship between BOLD 

dynamics and their underlying neurophysiological basis is still unclear. In this study, we demonstrated 

that dFC derived from fMRI shares mutual information with EEG-derived dFC in all canonical frequency 

bands. Importantly, this applies to the whole connectome. Further, the relative contribution of each 

EEG frequency band to BOLD connectivity dynamics varies across space. These results shed new light 

on the relationship between electrophysiological and BOLD connectivity dynamics and in particular 

provide strong evidence that BOLD-derived dFC is directly linked to neurophysiological dynamics with 

corresponding spatial organization. 

Static connectivity 

In line with prior work, the spatial pattern of static EEG and fMRI connectomes were significantly 

correlated. Only two prior studies have investigated whole-brain connectomes in concurrent EEG and 

fMRI (3, 8), and the current study confirms this important observation. However, the two prior studies 

were restricted to static relationships, while the true advantage of concurrent as opposed to separately 

recorded EEG and fMRI connectivity lies in its potential to reveal dynamics co-fluctuating across 

modalities.  

Dynamic connectivity 

Dynamic FC has been shown to exist both on slow hemodynamic (14) and fast electrophysiological 

timescales (31, 32). Regarding the relationship between EEG and fMRI, Chang et al. (33) and Allen et 

al. (35) showed that BOLD FC dynamics are linked to band-limited EEG global field power. The current 

study advances to spatially resolved EEG connectomes, demonstrating the link between slow dynamics 

of fast electrophysiological connectivity and the slow BOLD connectivity dynamics.  

This finding has implications for the interpretation of fMRI-derived dFC. Since physiological and non-

physiological noise heavily contribute to fMRI-derived dFC, the degree to which such dynamics reflect 

changes in neural communication is difficult to assess; choosing an appropriate null model can be 

challenging (15, 22). Instead of comparing fMRI dFC to a null model, we chose to compare fMRI 

dynamics to direct measures of neural dynamics such as MEG or EEG. Our approach of concurrently 

assessing dFC in EEG provides evidence that veridic dynamics can indeed be derived from fMRI, as they 

are directly related to slow changes in the underlying electrophysiological connectivity. Another 

important advantage of our approach is the independence of outcomes from both EEG- and fMRI-

related artefacts (e.g. eye movements in EEG or magnetic field inhomogeneities in fMRI), since 

spurious dynamics due to random noise in each modality will cancel each other out in the joint model 

we utilized. Comparing a global EEG parameter to local fMRI connections is an approach prone to 

spurious cross-modal links stimming from a connection-unspecific global shift (e.g. breathing(46)). In 

contrast, our approach comparing both modalities on a connection-wise level is unlikely to be impacted 

by averaged global patterns.  

Our results also have important implications for neurophysiological connectivity dynamics with respect 

to methodological reliability and observed timescales. Due to concerns regarding the ill-posed nature 

of EEG source localization, connectivity approaches in whole-brain parcellation space are underused 

(30). The close connection-wise relationship to fMRI-derived dFC provides strong support for the 

relevance of source-localized EEG to the study of the whole-brain functional connectome. With respect 

to timescales, prior MEG-based whole-brain investigations have established fast dynamics in 

interregional connectivity at ~50-100ms (31, 32). Connectivity dynamics at these fast timescales in EEG 

have been shown to correlate with the slow changes observed in fMRI, albeit in EEG sensor space 
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rather that reconstructed brain parcellations (47, 48). Concurrent EEG-fMRI studies investigating 

neurophysiological dynamics at infraslow speeds (typically defined as < 0.1Hz (49, 50)) have been 

either limited to a coarse global field average of connectivity across EEG electrode pairs (27, 28), or 

have focused solely on signal fluctuations (Hiltunen et al. (49)). Extending beyond these important 

studies, we show that connectivity derived from fast oscillation phase synchrony in EEG exhibits 

meaningful fluctuations in the infraslow range.  

Spatial distribution of the cross-modal dynamics 

We found the strongest relationship between EEG and fMRI dynamics in cortico-DMN connections. 

The dominance of DMN interactions with other ICNs has been previously demonstrated for dynamic 

connectivity derived from MEG (51). Similarly, Vidaurre et al. (32) observed increased MEG within-

network coherence in the DMN as opposed to visual and sensorimotor areas. More generally, the DMN 

has been proposed to form a central hub that integrates multisensory input from different brain 

regions (52). As such, it is no surprise that we observed connections between DMN and the visual and 

motor systems to show some of the strongest relations between EEG and fMRI.  

Interestingly, connections with the strongest interrelation between EEG and fMRI connectivity 

predominantly spanned the canonical intrinsic networks. While we found that the vast majority of 

connections were dynamically linked between EEG and fMRI, the cross-modal relation was weaker 

within as compared to across networks with the exception of DMN-DMN connectivity. This finding may 

seem counterintuitive since the investigation of amplitude fluctuations (as opposed to connectivity) 

shows a strong link between EEG and fMRI within ICNs (53, 54), suggesting a strong static within-

network connectivity. Similarly, de Pasquale et al. (51) observed strong within-network connectivity 

dynamics for αand βbands alongside between-network connectivity dynamics. One possible 

explanation for our results is that within-network connections are less dynamic than connections 

between different intrinsic networks. This is in line with the observation that DMN regions are among 

the most dynamic, as measured by fMRI-derived dFC (15).  

Frequency specificity of the cross-modal dynamics 

We observed both a delta dominance in DMN-limbic connections and γ-dominance in VA-DMN 

connections (Fig. 4). The relationship between static MEG and fMRI connectivity has been shown to 

vary across connections depending on neurophysiological frequency (5). Likewise, spatially distinct 

patterns of frequency-specific connectivity dynamics have been observed in MEG (32). As such, 

Vidaurre et al. (32) have suggested a division of the DMN into a low-frequency and a high-frequency 

subnetwork. Although the network subdivisions used by Vidaurre et al. (32) do not directly map to the 

spatial distribution of the canonical ICN networks that we chose, our results for delta vs. γ-are in line 

with a low and high frequency-specific contribution of connections encompassing the DMN. This 

suggests a differential organization of frequencies in the DMN, which are synced between EEG and 

fMRI dynamics.  

Methodological considerations and limitations  

The relatively low spatial resolution (number of regions) of the selected Desikan atlas was imposed by 

the number of 64 EEG electrodes. While it has been shown that a parcellation adapted to the actual 

EEG montage  improves the quality of the source reconstruction (55), it is unclear if the fMRI signal 

would suffer from a parcellation scheme imposed by the EEG montage. A future approach could be 

extending the MR-compatible EEG setup to 128 or 256 electrodes (56) to gain data quality comparable 

to MEG recordings (57). Regarding temporal resolution, the sliding window approach has been 

previously criticized for assuming slowly changing dynamics as opposed to fast instantaneous switches 

(see (21) for review). While the timescale of observable dynamics depends on the choice of window 
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length, a comparative analysis of the optimal windowing parameters to derive dFC was beyond the 

scope of this study. Importantly, we show that results from the chosen parameter set generalize across 

two independent datasets. 

Our focus on common patterns generalizing across datasets resulted in a stringent statistical threshold 

(cf. Table 1) that comes at the cost of being insensitive to small effects. This was primarily a result of 

the limited power of the generalization dataset (smaller sample size and shorter recordings). In 

particular, β-and γ-connectivity seem to be influenced by the low signal-to-noise ratio of the 

generalization dataset (with 45.52% and 68.88% of βEEG- and γEEG-derived connections sharing no 

significant dynamics with fMRI, as opposed to virtually no insignificant connections in the primary 

dataset). Beyond the signal-to-noise limitations in human concurrent EEG-fMRI, there is evidence that 

γ-and β-band connectivity may contain information complementary to fMRI-derived connectivity. A 

weaker relation to fMRI connectivity has been reported for β and low-γ compared to other bands in 

intracranial electrophysiological recordings in humans (38, 58) and in animals (59, 60). The weaker 

relationship for β-and low γ-bands likely reflects a general property of the electrophysiology-fMRI 

relationship. This interpretation is also in line with our previous finding that γ-connectivity shows a 

unique relationship to structural connectivity not shared by fMRI-derived connectivity (8). Importantly, 

at the coarser ICN-wise (Fig. 4) as compared to connection-wise resolution (Fig. 3), the results 

generalized across all bands including β and γ. The generalization of effects in this study is especially 

supportive of the robustness of the EEG-fMRI dFC relationship in light of substantial differences across 

the two datasets (3T vs. 1.5T MRI field strength, eyes-closed vs. eyes-open resting-state and differences 

in fMRI sequences and subject demographics).  

Conclusion 

We observed a link between electrophysiological and fMRI-derived dynamic functional connectivity 

which demonstrates, on a connection-wise level across the whole brain, that fMRI-derived connectivity 

entails slow dynamics of fast electrophysiological connectivity. While this link exists across all canonical 

electrophysiological frequency bands, the strength of the cross-modal relationship varies over 

connections in a frequency-specific manner, especially for δ-and γ-bands. In conclusion, this study 

provides strong multimodal evidence of slow time varying connectivity dynamics of intrinsic brain 

activity. 
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Methods 
We analyzed a primary dataset (n=26) and tested for generalizability across a different sample by using 

an independent dataset (n=16) from a different site. The generalization dataset is openly available at 

https://osf.io/94c5t/ and described in detail in Deligianni et al. (3, 61). 

Primary Dataset 

Subjects 

We recruited 26 healthy subjects (8 females, mean age 24.39, age range 18-31) with no history of 

neurological or psychiatric illness. Ethical approval has been obtained from the local Research Ethics 

Committee (CPP Ile de France III) and informed consent has been obtained from all subjects. 

Data Acquisition 

We acquired three runs of 10 minutes eyes-closed resting-state in one concurrent EEG-fMRI session 

(Tim-Trio 3T, Siemens). FMRI parameters comprised 40 slices, TR=2.0s, 3.0x3.0x3.0mm, TE = 50ms, 

field of view 192, FA=78°. EEG was acquired using an MR-compatible amplifier (BrainAmp MR, sampling 

rate 5kHz), 62 electrodes (Easycap), referenced to FCz, 1 ECG electrode, and 1 EOG electrode. Scanner 

clock was time-locked with the amplifier clock (62). Additionally, an anatomical T1-weighted MPRAGE 

sequence was acquired (176 slices, 1.0x1.0x1.0 mm, field of view 256, TR=7min).   

The acquisition was part of a study with two additional naturalistic film stimulus of 10 minutes not 

analyzed in the current study, and acquired after runs 1 and 2 of the resting state as described in 

Morillon et al. (63). The three runs resulted in a total length of 30 minutes of resting-state fMRI per 

subject. Subjects wore earplugs to attenuate scanner noise and were asked to stay awake, avoid 

movement and close their eyes during resting-state recordings. In three subjects, one of three rest 

sessions each was excluded due to insufficient EEG quality. 

Data processing 

Atlas 

T1-weighted images were used to delineate 68 cortical regions of the Desikan atlas (39, 40) and to 

extract a gray matter mask (recon-all, Freesurfer suite v6.0.0, http://surfer.nmr.mgh.harvard.edu/).  

fMRI 

The BOLD timeseries were corrected for slice timing and spatially realigned using the SPM12 toolbox 

(revision 6906, http://www.fil.ion.ucl.ac.uk/spm/software/spm12). Mean white matter and 

cerebrospinal fluid timecourses were extracted from a manually defined spherical 5mm ROIs using 

MarsBaR (v0.44, http://marsbar.sourceforge.net/). Using the FSL toolbox (v5.0, 

https://fsl.fmrib.ox.ac.uk/fsl/) the scull-stripped T1 image (fsl-bet), Desikan atlas, and grey matter 

delineation were linearly coregistered into the subject space of the T2* images (fsl-flirt v6.0). The fMRI 

timeseries were averaged for each of the 68 atlas regions, and the six movement parameters (from 

realignment), CSF, white matter and grey matter global signal were regressed out of the region-wise 

timeseries. The resulting timeseries were bandpass-filtered at 0.009-0.08 Hz (64). 

EEG 

EEG was corrected for the gradient artefact induced by the scanner using the template subtraction and 

adaptive noise cancelation followed by lowpass filtering at 75Hz, downsampling to 250Hz (65) and 

cardiobalistic artefact template subtraction  (66) using EEGlab v.7 (http://sccn.ucsd.edu/eeglab) and 

the FMRIB plug-in (https://fsl.fmrib.ox.ac.uk/eeglab/fmribplugin/). Data then was analyzed with 

Brainstorm software (43), which is documented and freely available under the GNU general public 

license (http://neuroimage.usc.edu/brainstorm, version 10th August 2017). Bandpass-filtering was 
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carried out at 0.3-70 Hz. Data was segmented according to TR of the fMRI acquisition (2s epochs). 

Epochs containing head motion artifacts in EEG were visually identified after semi-automatically 

preselecting epochs where signal in any channel exceeded the mean channel timecourse by 4 std. 

These segments were excluded from the analysis. Electrode positions and T1 were coregistered by 

manually moving the electrode positions onto the electrode artifacts visible in the T1 image. Using the 

OpenMEEG BEM model, a forward model of the skull was calculated based on the individual T1 image 

of each subject (42, 67). 

The EEG signal was projected into source space using the Tikhonov-regularized minimum norm  (41) 

with the Tikhonov parameter set to 10% (brainstorm 2016 implementation, assumed SNR ratio 3.0, 

using current density maps, constrained sources normal to cortex, depth weighting 0.5/max amount 

10). Source activity was averaged to the regions of the Desikan atlas. For each epoch (length 2s) 

imaginary coherence of the source activity was calculated between each regions pair (68) at 2Hz 

frequency resolution. The 2Hz bins were averaged for 5 canonical frequency bands: delta (0.5-4Hz), 

theta (4-8Hz), alpha (8-12Hz), beta (12-30Hz), gamma (30-60Hz). 

Joint motion scrubbing 

For all analyses, both fMRI volumes and EEG epochs were excluded for time periods where motion was 

identified in either modality. Time periods with motion were defined as volumes exceeding the 

framewise displacement threshold FD=0.5 in fMRI (69), and by visual inspection in EEG as described 

above. Additionally, for sliding window connectivity (see section Sliding window connectivity below), 

windows with more than 10% of their datapoints (>3 fMRI volumes or >3 EEG epochs) removed by this 

motion scrubbing procedure were excluded from dynamic connectivity analysis. The joint motion 

scrubbing approach resulted in a mean of 544 out of 870 sliding windows (range 262-813) for the main 

dataset and 216 out of 272 sliding windows (range 112-259) for the generalization dataset.  

Connectivity 

Static connectivity 

Static connectivity was estimated for fMRI data by calculating Pearson’s correlation of the BOLD 

timecourse between each region pair over the duration of each run and averaged across the 3 runs. 

For EEG, the connectivity (imaginary coherence) calculated for each 2s epoch was averaged across all 

runs (Fig. 1a). 

Sliding window connectivity 

dFC matrices were calculated using a rectangular sliding window of 1 min (using imaginary coherence 

for EEG and Pearson’s correlation for fMRI, this resulted in 30 datapoints per window). The window 

length was chosen as a tradeoff between maximizing the number of datapoints without discarding 

relevant dynamic BOLD frequencies (19, 64, 70) while also taking into account the theoretical 

limitations of shorter window lengths to reliably detect dFC (24, 71). Most importantly we show that 

the chosen parameter set reliably replicated across two independent datasets. 

Normalized mutual information defined by ���;�� =
��	�
����

��	,��
 with H(M), H(N) being the entropies 

of observations N and M and H(M,N) the joint entropy (72, 73) was calculated for the resulting EEG 

and fMRI dFC matrices, building a new connectivity matrix of joint EEG-fMRI, based on mutual 

information strength between the modalities (for each EEG frequency band). In contrast to linear 

measures such as correlation, mutual information is an information theoretic measure which is able to 

also capture cross-modal relationships in connectivity dynamics without assuming linearity or Gaussian 

constraints (74). Mutual information has previously been shown to be helpful when combining EEG 

and fMRI (75). 
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Null model 

For each connection, mutual information was then compared to a null model of EEG-fMRI mutual 

information using spatially phase-randomized EEG matrices (8, 44). In brief, we applied the approach 

of phase-randomization proposed by Prichard and Theiler (76) to whole-brain connectomes by 

extracting the Eigenvectors of the EEG connectome at each sliding window. Subsequently each 

Eigenvector was Fourier transformed and the phases of this transformation were then randomly 

shifted. The result of the phase-shift then was back-transformed using the inverse Fourier transform, 

and the phase shifted Eigenvectors were used to reverse the Eigen-decomposition. This approach has 

been shown to generate pseudo-connectomes uncorrelated to the original matrix while keeping a 

similar spatial structure (such as interhemispheric connections and ordering in ICN-like networks) and 

constant global mean comparable to the original connectome (44)(Fig. 1b).  

An explicit test for dynamics is not needed as spurious dynamics are implicitly excluded by combining 

the two modalities: in the scenario that the previously established static link across the modalities (8) 

is driving a window-wise constant connectivity in both modalities the entropy of the cross-modal 

relation - dominated by random noise – would be low, resulting in spurious mutual information close 

to zero. Spurious dynamics in one modality resulting e.g. from physiological artifacts or sampling error 

are unlikely to co-occur in the other modality. Exceptions, such as head motion that may affect both 

modalities at the same time, likely have a spatially distributed impact on many connections of the 

connectome, and are controlled for by our null model that would preserve such “mass” connectivity 

changes. The randomization process was carried out 50 times for the EEG connectome, and mutual 

information to the unaltered fMRI connectome was calculated for each iteration. For final statistical 

comparison of this null model to the original EEG-fMRI mutual information, we calculated an average 

mutual information matrix from the 50 iterations for each subject. 

To assess the connected set with the strongest EEG-fMRI relationship in each EEG frequency band, we 

additionally subjected the connection-wise tests against the null model to Network Based Statistics 

(NBS  https://sites.google.com/site/bctnet/comparison/nbs, Version 1.2, correcting for multiple 

comparisons; (45)). NBS controls the family-wise error rate of the mass-univariate testing at every 

connection. This method is a non-parametric cluster-based approach to finding connected sets of 

nodes that significantly differ across thresholded connectivity matrices. 

Frequency specific analysis 

To test for frequency specificity, we included frequency-specific mutual information matrices of all 

bands (δEEG-fMRI, θEEG-fMRI, etc.) and for all subjects in an ANOVA (frequency band as 1 factor with 

5 levels), while discarding the pseudo-matrices generated for the first statistical analysis. Using NBS an 

F-Test was carried out to determine if the EEG-bands contributed differentially to the mutual 

information with fMRI-derived dFC. Posthoc t-tests between one band vs. all the other bands were 

carried out to explore if any EEG band expressed a network of stronger mutual information than 

observed in the other bands.  

Intrinsic network analysis 

To further interpret outcomes in the context of neurocognitive networks, we mapped the extracted 

200 connections to 7 canonical intrinsic networks (Visual, Somato-Motor, Default Mode, Fronto-

Parietal, Ventral Attention (largely corresponding to Cingulo-opercular (Dosenbach et al. 2006)), Dorsal 

Attention and Limbic) as described in Yeo et al. (11). The number of connections falling into each 

network pair were counted (e.g. DMN to Visual). To assure that the observed connectivity pattern did 

not arise from random sampling into the different networks, we also created 100,000 random 
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networks of 200 connections to derive the probability that a connection randomly falls into one of the 

network pairs.  

Generalization dataset 

Subjects 

This dataset comprises 17 healthy adults. Ethical approval has been obtained from the UCL Research 

Ethics Committee (project ID:4290/001) and informed consent has been obtained from all subjects. 

One subject was excluded as T1 data quality was not sufficient to run the Freesurfer recon-all 

command, resulting in a final group of 16 subjects (6 females, mean age: 32.41, range 22-53). 

Data Acquisition 

We used one session of 10 minutes 48 seconds eyes-open resting-state (Avanto 1.5T, Siemens, 30 

slices, TR=2.16s, slice thickness 3mm + 1mm gap, effective voxels size 3.3x3.3x4.0mm, TE = 30ms, field 

of view 210, flip angle 75 degrees) concurrent EEG-fMRI (63 scalp electrodes BrainCap MR, referenced 

to FCz, 1 electrode ECG). Scanner clock was timelocked with the MR-compatible amplifier (BrainAmp 

MR, sampling rate 1kHz) clock . A T1-weighted structural image was also obtained (176 slices, 

1.0x1.0x1.0 mm, field of view 256, TR=11min). During the resting-state run, the subjects had their eyes 

open and were asked to remain awake and fixate on a white cross presented on a black background. 

Their head was immobilized using a vacuum cushion during scanning. 

Data processing 

The fMRI data was processed as described for the primary dataset with the exception that no slice-

time correction was carried out (in accordance with the original processing in Deligianni (3)). EEG was 

corrected for the gradient artefact using the template subtraction and adaptive noise cancelation 

followed by a downsampling to 250Hz and cardiobalistic artefact template subtraction using the Brain 

Vision Analyzer 2 software (Brain Products, Gilching, Germany). Due to apparent low frequency drift 

artefacts in several subjects, EEG data was high pass filtered at 0.05Hz instead of the 0.03Hz used in 

the primary dataset. Because of the differing TR the sliding window for 1 minute was now consisting 

of 28 volumes (28*2.16s = 60.48s). EEG data processing was equivalent to the primary dataset, with 

the epochs being 2.16s instead of 2s to match the fMRI TR. 

All following analysis steps were identical to the primary dataset. 
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Supplementary Information 

SI: Results 

Mutual information strength  

The top-200 connections (Fig. 4) were selected by the difference in mutual information magnitude 

compared to the null model. It remains unclear whether the average mutual information of the top-

200 connections was higher in the significant connection cluster selected by NBS compared to non-

selected values. Indeed, across both datasets and for all EEG bands, we found stronger mutual 

information within the top-200 compared to non-selected connections (one sided t-test, main data; 

fMRI vs. δ/θ/α/β/γ: p=8.57*10-23/3.17*10-15/2.25*10-14/3.61*10-18/8.20*10-16, generalization data; 

fMRI vs. δ/θ/α/β/γ: p=2.95*10-14/2.49*10-26/1.46*10-18/4.35*10-9/4.72*10-16, p<0.05).  

We further confirmed that the MI magnitude difference between the top 200 connections and the rest 

of the connections is consistent across the two datasets. We performed an analogous test between 

the two datasets by masking the generalization data with the top-200 connections of the main dataset. 

MI was generally increased as compared to the rest of the connections for MI between fMRI and δ/θ/α 

but not increased for MI between fMRI and β/γ (one-sided ttest, fMRI vs. δ/θ/α/β/γ: p=5.00*10-

7/3.71*10-8/0.012/0.053/0.428, p<0.05). 

When assessing generalization at a connection-wise resolution, we observed correlation of 

connection-wise EEG-fMRI mutual information for δ, θ, and α bands but not for β and γEEG (Fig. 3). To 

assess whether this discrepancy was due to lower signal to noise ratio in the higher frequencies, we 

investigated whether replication within each dataset would show a similar pattern. We divided the 

primary dataset (respectively the generalization dataset) into two groups of 8 subjects each (taking 

only the first 16 subjects of the primary dataset). Indeed, we observed a within dataset correlation of 

fMRI vs. δ/θ/α connection-wise mutual information, whereas no correlation between fMRI vs. β/γ was 

observed (Table S1). 

Table S1: Within group correlation of mutual information when splitting up the subjects into two groups of 8 (for main 

dataset the first 16 subjects were taken to create equal groups of 8) 

 Delta-

fMRI 

Theta-

fMRI 

Alpha-

fMRI 

Beta-

fMRI 

Gamma-

fMRI 

Main dataset 0.43 0.27 0.17 0.03 0.03 

Generalization Data 0.36 0.29 0.21 0.04 0.001 

 

Mutual information strength of frequency specific networks 

Within the subnetworks selected by NBS (Fig. 5), we further tested for connection-wise correlation of 

mutual information strength between the two datasets. When masked by the top-100 connections of 

the ‘δ > other bands’ contrast of the main dataset (Table 2), the correlation between mutual 

information (averaged across all subjects) across the two datasets was: r=0.56 (p=2.0*10-9), a value 

qualitatively higher than for the whole brain (r=0.48). Contrarily, masking the top-100 connections of 

the ‘γ > other bands’ contrast r=-0.0785 was not significant (p=0.44, in line with the missing relationship 

between connection-wise MI correlation in gamma; Fig. 3).  

When counting the number of the top-100 significant connections over the seven canonical networks, 

the count of delta and gamma networks were correlated across datasets: δEEG-fMRI/γEEG-fMRI: 

r=0.90/0.68, p=2.9*10-8/6.1*10-4. 
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Generalization of MI distribution across canonical intrinsic networks 

We established that this distribution of the top 200 connections and the ensuing DMN-dominance 

were not driven by the number of ICN nodes or other potential biases. For each network pair (e.g. 

DMN-VIS) we tested whether the number of connections was significantly higher than chance by 

randomly selecting (n=100,000 iterations) 200 connections from the main dataset (Table S2-S6). 

 

Table S2: p-values of comparing the number of top-200 most significant δEEG-fMRI connections falling within an ICN-ICN 

pair as compared to randomly sampling 200 connections of the brain (100.000 iterations); significant connections are 

highlighted in green and yellow p<0.0018 (p<0.05, Bonferroni corrected for 28 connections, yellow cell did not replicate at 

uncorrected threshold p<0.05 in generalization dataset). 

 VIS SM DA VA L FP DMN 

VIS 0,0399 0,0425 0,5069 0,9526 0,0123 0,0011 0,0004 

SM  0,2022 0,1143 0,1068 0,0099 0,5647 0,0008 

DA   1 0,1133 0,0511 0,0269 0,1208 

VA    1 0,0647 0,1137 0,0008 

L     0,7785 0,3319 0,0004 

FP      1 0,0059 

DMN       0,0003 

 

Table S3: p-values of comparing the number of top-200 most significant θEEG-fMRI connections falling within an ICN-ICN 

pair as compared to randomly sampling 200 connections of the brain (100.000 iterations); significant connections are 

highlighted in green p<0.0018 (p<0.05, Bonferroni corrected for 28 connections). 

 VIS SM DA VA L FP DMN 

VIS 0,2969 0,1826 0,5129 0,0086 0,1349 0,0062 0 

SM  0,008 0,0375 0 0,1943 0,0098 0,0022 

DA   1 0,0291 0,1449 0,1434 0,0506 

VA    0,0567 0,6972 0,7022 0,0009 

L     0,9436 0,6114 0,0248 

FP      0,0238 0,0186 

DMN       0,0136 

 

Table S4: p-values of comparing the number of 200 most significant αEEG-fMRI connections falling within an ICN-ICN pair as 

compared to randomly sampling 200 connections of the brain (100.000 iterations); significant connections are highlighted in 

green p<0.0018 (p<0.05, Bonferroni corrected for 28 connections). 

 VIS SM DA VA L FP DMN 

VIS 0,1209 0,017 0,0874 0,1725 0,2431 0,0886 0,0018 

SM  0,0279 0,284 0,0012 0,1955 0,0021 0 

DA   1 0,3326 0,6106 0,0039 0,0019 

VA    1 0,6957 1 0,0149 

L     0,9431 0,3327 0,0821 

FP      1 0,0506 

DMN       0 

 

Table S5: p-values of comparing the number of top-200 most significant βEEG-fMRI connections falling within an ICN-ICN 

pair as compared to randomly sampling 200 connections of the brain (100.000 iterations); significant connections are 

highlighted in green and yellow p<0.0018 (p<0.05, Bonferroni corrected for 28 connections, yellow cell did not replicate at 

uncorrected threshold p<0.05 in generalization dataset). 

 VIS SM DA VA L FP DMN 

VIS 0,1202 0,5011 0,8227 0,9518 0,3994 0,5101 0,0003 

SM  0,415 0,5629 0,4113 0,0036 0,2875 0,0001 
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DA   1 0,1128 0,0149 0,1477 0,0514 

VA    1 0,1428 0,7049 0,0725 

L     0,5344 0,1485 0 

FP      0,0013 0,0527 

DMN       0 

 

Table S6: p-values of comparing the number of top-200 most significant γEEG-fMRI connections falling within an ICN-ICN 

pair as compared to randomly sampling 200 connections of the brain (100.000 iterations); significant connections are 

highlighted in green and yellow p<0.0018 (p<0.05, Bonferroni corrected for 28 connections, yellow cell did not replicate at 

uncorrected threshold p<0.05 in generalization dataset). 

 VIS SM DA VA L FP DMN 

VIS 0,0393 0,1826 0,5118 0,027 0,012 0,0861 0,0018 

SM  0,0276 0,5603 0,4127 0,0237 0,5622 0,0001 

DA   1 0,1128 0,6088 1 0,6656 

VA    0,2241 0,0002 0,3323 0 

L     0,1455 0,61 0,0001 

FP      1 0,2511 

DMN       0,0025 

 

Atlas and ICN labels 

 

Table S7: Regions of the Desikan atlas (39) and their mapping to the canonical ICN networks (11) 

 
Region name Short name ICN 

1  left cuneus lCUN  Visual 

2  left fusiform lFUS  Visual 

3  left lateraloccipital lLOG  Visual 

4  left lingual lLING  Visual 

5  left pericalcarine lperiCAL  Visual 

6  right cuneus rCUN  Visual 

7  right fusiform rFUS  Visual 

8  right lateraloccipital rLOG  Visual 

9  right lingual rLING  Visual 

10  right pericalcarine rperiCAL  Visual 

11  left paracentral lparaC  Somato Motor 

12  left postcentral lpostC  Somato Motor 

13  left precentral lpreC  Somato Motor 

14  left superiortemporal lSTG  Somato Motor 

15  left transversetemporal lTT  Somato Motor 

16  right paracentral rparaC  Somato Motor 

17  right postcentral rpostC  Somato Motor 

18  right posteriorcingulate rPCC  Somato Motor 

19  right precentral rpreC  Somato Motor 

20  right superiortemporal rSTG  Somato Motor 

21  right transversetemporal rTT  Somato Motor 

22  left caudalmiddlefrontal lcMFG  Dorsal Attention 

23  left superiorparietal lSPL  Dorsal Attention 

24  right caudalmiddlefrontal rcMFG  Dorsal Attention 

25  right superiorparietal rSPL  Dorsal Attention 

26  left caudalanteriorcingulate lcACC  Ventral Attention 
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27  left parsopercularis lpOPER  Ventral Attention 

28  left supramarginal lSMAR  Ventral Attention 

29  left insula lINS  Ventral Attention 

30  right caudalanteriorcingulate rcACC  Ventral Attention 

31  right supramarginal rSMAR  Ventral Attention 

32  right insula rINS  Ventral Attention 

33  left entorhinal lENT  Limbic 

34  left inferiortemporal lITG  Limbic 

35  left lateralorbitofrontal lLOF  Limbic 

36  left medialorbitofrontal lMOF  Limbic 

37  left frontalpole lFP  Limbic 

38  left temporalpole lTP  Limbic 

39  right entorhinal rENT  Limbic 

40  right inferiortemporal rITG  Limbic 

41  right lateralorbitofrontal rLOF  Limbic 

42  right medialorbitofrontal rMOF  Limbic 

43  right frontalpole rFP  Limbic 

44  right temporalpole rTP  Limbic 

45  left rostralmiddlefrontal lrMFG  Fronto Parietal 

46  right parsopercularis rpOPER  Fronto Parietal 

47  right parstriangularis rpTRI  Fronto Parietal 

48  right rostralmiddlefrontal rrMFG  Fronto Parietal 

49  left bankssts lBSTS  Default Mode 

50  left inferiorparietal lIPL  Default Mode 

51  left isthmuscingulate liCC  Default Mode 

52  left middletemporal lMTG  Default Mode 

53  left parsorbitalis lpORB  Default Mode 

54  left parstriangularis lpTRI  Default Mode 

55  left posteriorcingulate lPCC  Default Mode 

56  left precuneus lPCUN  Default Mode 

57  left rostralanteriorcingulate lrACC  Default Mode 

58  left superiorfrontal lSFG  Default Mode 

59  right bankssts rBSTS  Default Mode 

60  right inferiorparietal rIPL  Default Mode 

61  right isthmuscingulate riCC  Default Mode 

62  right middletemporal rMTG  Default Mode 

63  right parsorbitalis rpORB  Default Mode 

64  right precuneus rPCUN  Default Mode 

65  right rostralanteriorcingulate rrACC  Default Mode 

66  right superiorfrontal rSFG  Default Mode 

67  left parahippocampal lPARH  Default Mode 

68  right parahippocampal rPARH  Default Mode 
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