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ABSTRACT

Colorectal cancer (CRC) is a common cancer with a high mortality rate and a rising incidence rate in the developed world.
The disease shows variable drug response and outcome. Molecular profiling techniques have been used to better understand
the variability between tumours as well as cancer models such as cell lines. Drug discovery programs use cell lines as a
proxy for human cancers to characterize their molecular makeup and drug response, identify relevant indications and discover
biomarkers. In order to maximize the translatability and the clinical relevance of in vitro studies, selection of optimal cancer
models is imperative. We have developed a deep learning based method to measure the similarity between CRC tumors and
other tumors or disease models such as cancer cell lines. Our method efficiently leverages multi-omics data sets containing
copy number alterations, gene expression and point mutations, and learns latent factors that describe the data in lower
dimension. These latent factors represent the patterns across gene expression, copy number, and mutational profiles which
are clinically relevant and explain the variability of molecular profiles across tumours and cell lines. Using these, we propose a
refined colorectal cancer sample classification and provide best-matching cell lines in terms of multi-omics for the different
subtypes. These findings are relevant for patient stratification and selection of cell lines for early stage drug discovery pipelines,
biomarker discovery, and target identification.

Introduction

Colorectal cancer (CRC) accounts for 10% of cancer related deaths1, amounting to aproximately 1.4 million new colorectal
cases and 693,900 deaths reported in 20122. CRC is not a homogenous disease and can be classified into different subtypes based
on molecular and morphological alterations3. The disease occurs when normal epithelium cells transform to cancer cells via
acquired genetic and epigenetic alterations. Mutations in the Wnt signalling pathway are thought to initiate the transformation
to cancer4, 5. This is followed by deregulation of other signalling pathways such as MAPK, TGF-β , and PI3K–AKT via
acquired mutations5, 6. Since the original description of the molecular pathogenesis of CRC, multiple additional pathways,
mutations, and epigenetic changes have been implicated in the formation of CRC7. Based on integrative analysis of genomic
aberrations observed in the TCGA samples, CRC tumors can be divided into hyper-mutated (≈ 16%) and non-hyper-mutated
(≈ 84%) cancers. The hyper-mutated cancers have microsatellite instability (MSI), resulting from defective mismatch repair
or DNA polymerase proof-reading mutations3. The microsatellite stable (MSS) cancers are characterized by chromosomal
instability (CIN), with high occurance of DNA copy number alterations, and mutations in the APC, TP53, KRAS and BRAF
genes3. In addition, most CRC tumors have aberrantly methylated genes, a subset of which could play a functional role in
CRC7. A further subset of CRC tumors display a CpG island methylator phenotype (CIMP), where some tumor suppressor
genes could be inactivated epigenetically8. The diversity of molecular disease mechanisms creates distinct molecular subtypes
in CRC with different survival rates and responses to therapy. The different subtype classification schemes based on gene
expression developed over the years were recently studied and summarized as the consensus molecular subtypes for CRC9. This
classification scheme designates four main subtypes called “consensus molecular subtypes” (CMS) with distinguishing features.
The CMS1 subtype is defined by hypermutation, microsatellite instability and strong immune activation; CMS2 is defined by
chromosomal instability, WNT and MYC signaling activation; CMS3 is defined by metabolic dysregulation; and CMS4 is
defined by growth factor β activation, stromal invasion, and angiogenesis9. However, 13% of the samples have mixed features
and cannot be reliably assigned to consensus subtype based on gene expression alone. These are considered to be subtypes with
mixed signatures or samples with intra-tumor heterogeneity. Although purely based on gene expression, follow up analysis of
the consensus molecular subtypes revealed distinct copy-number profiles, mutation frequencies and methylation profiles9.

Thus, in this study, we propose a multi-omics method that can incorporate gene expression, copy number, and mutation
data to identify CRC subtypes. In addition, our method is able to match cell lines to each subtype or collection of tumors,
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as well as matching new tumors to the ones already in the dataset. In the future, it can also be used to assign best-match
xenografts or organoid models to the study of each subtype. This would be highly useful, as these have been shown to predict
drug response in patients10. By leveraging multi-omics datasets, CRC samples that can not be associated to a CMS subtype
might also be assigned to an appropriate subtype. In addition, multi-omics signatures, incorporating gene expression programs,
point mutations and copy number alterations, are a direct output of the method, and will not need to be generated post-hoc, e.g.
by examining mutation rates in groups defined by gene expression profiles, as in the CMS. With these goals in mind, we used
deep-learning on multi-omics data in order to refine CRC subtypes in an unsupervised manner, and match them to cell lines.

Among unsupervised methods, latent factor analysis in the form of matrix factorization has been the workhorse for not only
multi-omics data analysis but also high-dimensional data analysis in general11. This is understandable since these methods
reduce the dimensionality and also provide latent factors that summarize the signals from data sets. These signals can be later
interpreted in the biological context, and dimensionality reduction helps with subsequent distance metrics and clustering12. The
latent factor analysis methods mostly revolve around concatenating the data sets to a single matrix and applying a well-known
matrix factorization algorithm sometimes with weighting the individual data sets. Multifactor analysis (MFA)13 and iCluster+14

are examples of such methods. These types of algorithms sometimes impose orthogonality of factors, i.e. that the factors explain
disjoint underlying processes, as in PCA. Orthogonality might be conceptually appealing, but is not a biological necessity.
Orthogonal latent factors may be the best for summarizing or reconstruction of a dataset, and still be biologically difficult to
interpret. On the other end of the spectrum, there are deep learning based methods which work as dimension reduction methods
that can deal with non-linearity and they can generalize well on different problems. In addition, they can be sparse, where
each latent factor only depends on a few of the input genes. Sparsity in the relationship between input genes and latent factors
simplifies the task of biological interpretation of the model, that is, implicating known biological processes as underlying the
values of the latent factors. The disentangled variational autoencoders (β -VAE)15 have the previously mentioned characteristics
and as a deep learning framework, they have flexible architectures that can work with most problem sets. A similar architecture
has been shown to be able to stratify cancers by their tissue type based on gene expression profiles16, and other autoencoder
architectures have been used to integrate multi-modal data in robotics17, as well as protein function prediction18.

We use a multi-modal, stacked β -VAE architecture for extracting latent factors that are important for defining subtypes
and predicting survival of the patients. We call the method, "Multi-omics Autoencoder Integration", or, maui. We compare
maui’s performance to state-of-the-art multi-omics analysis methods, and show that maui outperforms the traditional methods.
In addition, we are able to map CRC cell lines to the latent factor space defined by maui. This allows us to check the quality
of CRC cell lines, using patterns recognized by the autoencoder as significant in colorectal cancers to rank in-vitro models
suitability to study tumors. We then assign suitable cancer cell lines for drug target studies aimed at different colorectal cancer
subtypes.

Results
Refining CRC subtypes using multi-omics data
As the colorectal tumor samples in the TCGA data-set (n=519, See Materials and Methods) have been extensively studied and a
state-of-the-art subtyping scheme exists for these as the "Consensus Molecular Subtypes" or CMS9, we wanted to validate
the relevance of the latent factors we extract using maui, by checking how well they can recapitulate these subtypes. Table 1
summarizes the tumors’ subtype information.

CMS label Description # Samples
CMS1 MSI Immune 61
CMS2 Canonical 175
CMS3 Metabolic 60
CMS4 Mesenchymal 123
Total with CMS label 419
Without CMS label 100
Total 519

Table 1. Summary of TCGA tumors’ CMS labels

We extracted latent factors from the multi-omics data using maui, as well as other published methods for multi-omics
integration by dimensionality reduction: MOFA19, and iCluster+14. In order to quantify the relashionship between latent factor
representation and CMS subtype, and compare the methods, we trained regularized Support Vector Machines using 10-fold
cross-validation, at each time predicting the CMS out-of-sample from the latent factor representations. We then computed
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’Receiver Operating Characteristics’ for each CMS prediction, as well as the mean ROC to measure the performance of
classification schemes (See Methods). maui marginally outperforms MOFA on CMS2 prediction, and both maui and MOFA
dramatically out-perform iCluster+, showing that latent factors learned using both maui and MOFA allow a supervised learning
algorithm to recapitulate the CMS sub-types nearly perfectly (Figure 1A-B).

While the previous analysis is instructive about which latent factors allow a supervised learning task to separate the CMS,
maui has an unfair advantage over MOFA, as we ran it with 80 latent factors, whereas MOFA was only run with 20. In order to
assess which of the methods is best able to capture the CMS labels, without regard to the number of latent factors, we repeated
the previous exercise—predicting the CMS from the latent factors—using an unsupervised learning algorithm. We clustered the
samples with a well-defined CMS i using k-means on the latent factors and, for a set of K’s, computed the Adjusted Mutual
Information (AMI) of the clustering with the CMS subtype. We did this with latent factors learned by maui, MOFA, and
iCluster+. k-means clustering on the latent factors is able to capture more of the CMS labels with K values of 4–6, but only
using maui (Figure 1C). This clustering analysis shows that maui factors are more conductive to CMS prediction, in a fair
comparison, as k-means clustering is based on distances, whose computation does not benefit from higher dimensionality
(unlike supervised learning) — in fact, the opposite is true12.

Latent factors inferred by maui are reasonably predictive, using k-means, of the CMS sub-type, especially using K’s 4–6
(Figure 1C). In order to pick the best clustering result to focus on, we computed the log-rank statistic for significance of
differential survival rates between clusters. K = 6 results in the most statistically significant survival difference(P < 0.001,
Figure 1D). Note that the CMS sub-types on their own are not indicative of survival rates in the TCGA data, and that K = 4 and
K = 5, also produce clusters with significant differential survival (Figure S2). Notably, K = 6 is preferable to K = 4 and K = 5,
as it is able to tease out a cluster with particularly poor prognosis (cluster 3), which consists mostly of a subset of tumors with
the CMS2 designation (Figure S2).

A closer examination of the resulting clusters reveals how closely the maui clusters resemble the CMS sub-types, and
where they diverge. Figures 2A-C show that CMS1 is captured by cluster 2, CMS2 is split between clusters 3 and 5, CMS 3 is
captured by cluster 0, CMS4 overlaps with cluster 4, and cluster 1 is mixed. Figure S3 leads to a similar conclusion, based on
a set of molecular phenotypes introduced in9: CMS1 and cluster 2 show the hypermutated (Figure S3A), CIMP (S3B), and
microsatellite unstable tumors (Figure S3C). They also have similar mutation rates among TP53, APC, KRAS and BRAF, a set
of commonly mutated genes in colorectal cancers.

Figures 2C and S3 beg the question of why CMS2 was split into two clusters (3 and 5). In order to investigate whether it is
biologically plausible that the CMS group needs to be split into two, we performed a differential expression analysis, identifying
marker genes for each cluster. We then ran these lists through a gene set enrichment analysis (See Methods). Figure 2D shows
the top pathways associated with each maui cluster. It shows that each cluster is associated with dysregulation in a distinct set
of pathways. Specifically, cluster 3 is dominated by TGF-β signaling and leukocyte migration, while cluster 5 is dysregulated
in the ErbB, Hippo, and Wnt signaling pathways, demonstrating that these are indeed distinct groups with tumors driven by
different oncogenic processes. Further demonstrating this, Figure S1 shows Kaplan-Meier survival curve estimates for clusters
3 and 5, showing that cluster 3 presents a worse prognosis (log-rank P < 0.001).

The CMS subtyping scheme, as well as much of the work in the field, is based solely on gene expression profiles. In order
to examine whether maui gives better predictions of patient survival with the addition of mutations and copy number data,
we also trained a maui model based on gene expression alone. In order to benchmark the survival prediction ability of the
maui multi-omics model and the maui-expression-only model, as well as MOFA and iCluster+ models, we first selected, for
each model, those latent factors which are individually predictive of survival (See Methods). We then fit a full Cox model
using all of the clinically relevant factors. For the full Cox models based on clinically relevant latent factors, we computed
Harrell’s c-Index21 using 5-fold cross-validation (See Methods). The c-Index is an auc-like measure of prediction accuracy for
censored data, with a score of 0.5 being expected by random guessing, and a score of 1.0 being perfect. The maui model based
on expression alone achieves a lower score than a maui model with multi-omics data, even when given more genes as input
features, indicating that maui is indeed able to find patterns in multi-omics data to which are pertinent to patient survival. maui
using multi-omics data also outperforms iCluster+ and MOFA in survival prediction (Figure 1E). The clinically relevant latent
factors learned by maui are discussed further in the following section.

One of the advantages of maui over other methods such as iCluster+ and MOFA is that it is able to learn orders of magnitude
more latent factors, at a fraction of the computation time (Table 2). In order to compare the utility of maui to that of MOFA and
iCluster+, we used a feature-selected data-set with 1,300 genes for most of the analyses presented above (See Methods). We also
sought to demonstrate that maui is able to benefit from the computational scalability not offered by MOFA and iCluster+. We
repeated the analysis, this time training maui with 6,000 input genes, selecting clinically relevant latent factors, and computing
Harrell’s c. Figure 1E shows that maui trained using 6,000 genes outperforms maui traiend on 1,300 genes, demonstrating the
importance of computational scalability — being more computationally efficient enables learning from more input features,

iSome CRC samples do not have a consensus molecular subtype
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Figure 1. maui, MOFA, iCluster+, and the CMS labels. A) UMAP20 embeddings from latent factors inferred by maui, MOFA,
and iCluster+. Each dot represents a tumor, and they are colored by their CMS label. B) auROC’s for regularized SVM’s
predicting the CMS label from latent factors (out-of-sample, 10-fold CV). Colored lines are ROCs for each class, with the same
colors as in subfigure A. The dotted line is a mean ROC. C) The Adjusted Mutual Information (AMI) of clusters obtained from
latent factors inferred by maui, MOFA, and iCluster+, using k-means clustering with K ranging from 2 to 9. D) Kaplan-Meier
estimates and the log-rank statistic for differential survival of different clusters, for the CMS labels and for maui + k-means E)
Harrel’s c-Index for Cox regressions of iCluster+, MOFA, and different flavors of maui.

which brings clinical significance with it.
Finally, we investigated the applicability of using prior information from protein interaction networks for colorectal cancer

sub-typing. We and others previously incorporated gene-gene interactions using a method called network-smoothing22, 23.
Network-smoothing is done by allowing binary mutation values to diffuse over a gene network, a process which assigns
non-zero "mutation scores" rather than binary mutation values, to genes which either have mutations, or are network-adjacent
to mutated genes. We applied the netSmooth23 algorithm (see Methods) to the mutation data prior to passing it to maui and
computed Harrell’s C index, as above. Figure 1E shows that network smoothing mutations further improves the clinical
relevance of latent factors learned when integrating multi-omics data.
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Figure 2. Clustering the tumors using k-means on the latent factors from maui reproduces the CMS labels closely, with the
exception of CMS2 being split into two clusters, 3 and 5. A) UMAP embedding of tumors colored by CMS label, B) UMAP
embedding colored by k-means clusters on maui latent factors, C) Cluster diagram shows the correspondence between maui
clusters and the CMS sub-types: the two rows represent the different labeling schemes (maui clusters and CMS sub-types), and
each column represents a sample, which is colored according with its assignment in each row. The legend in subfigures A-B
applies to the color scheme in C as well. D) Pathways that are enriched in differentially expressed genes for each maui cluster.
Clusters show a disjoint set of dysregulated pathways, underlining the different oncogenic processes which underly each group.
Cluster 3 and 5 (which together make up the bulk of CMS2) are dominated by dysregulation of TGF-β signaling, and
ErbB/Wnt/Hippo signaling, respectively.

CRC latent factors are associated with processes related to tumour progression and development
maui is able to infer many latent factors from multi-omics data. This creates an opportunity to select the most interesting latent
factors and treat them as potential biomarkers. In order to demonstrate this, we fit Cox Proportional Hazards models24, fitting
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Method Notes # Factors Runtime
iCluster+ Bayesian, MCMC 10 ∼11hrs
MOFA Bayesian, variational 20 20mins
maui Multilevel Bayesian,

Stochastic Gradient
Descent

100 3 mins

Table 2. Summary of methods

one regression model for each factor, as above, selecting clinically relevant latent factors. Figure 3B shows the 95% confidence
interval of coefficients for these latent factors, showing that high values for some of these latent factors are predictive of a poor
prognosis (β > 0), while others are predictive of more favorable outcomes (β < 0). In general, these latent factors can be used
as biomarkers with a significant prognostic value.

Beyond the potential to use these latent factors values as biomarkers in order to prognosticate, it is important that we
are able to interpret what these potential biomarkers represent. maui is very powerful because it can learn highly non-linear
relationships in both the generative model x∼ p(x|z) and the inference model z∼ p(z|x). This comes at a certain cost of making
interpretation of the factors less straightforward than in a linear matrix factorization approach like PCA or MOFA. In those
algorithms, x =Wz, giving us direct access to the loading matrix, W , which allows easy interpretation of the drivers of variation
in each latent factor. In order to associate neural latent factors with input features, we correlated input features with neuron
activations (see Methods). Figure 3A shows the significant correlations (Pad j < 0.01, see Methods) of each input feature with
each latent factor. For instance, this shows that while most latent factors are active in the gene expression domain, most are
not significantly affected by mutation data. By correlating latent factors with input features in this way, we can overcome the
difficulties presented by the nonlinear relationships between factors and input features, and use the associations in order to find
biologically relevant interpretations for neural latent factors.

When we associated survival-related latent factors with gene ids we observed enrichment of pathways known to play a role
in CRC such as Wnt signalling and other APC mediated processes (Figure 3C). In addition, one of the the most significantly
survival associated factors are enriched in Neuronal growth factor (NGF) signalling associated genes. NGF signalling, which
controls neurogenesis, is associated with aggressive colorectal tumours25, 26. Survival-relevant latent factors also implicate
Platelet-Derived Growth Factor (PDGF) signalling which is also associated with stromal invasion and poor prognosis for
colorectal cancer patients27, 28. Thus, in addition to using latent factors as potential biomarkers for prognosis, we can also point
at the underlying biological processes that are uncovered by maui, potentially driving future drug-target studies.

Quality assessment of CRC cell lines as models for tumors
Cancer cell lines often differ significantly in their molecular profiles from tumors, as they face a selection pressure that is
different from the natural tumor micro-environment, and acquire genomic alterations necessary to adapt to cell culture29. As
such, not all colorectal-derived cancer cell lines may be appropriate as models for tumors. Further, as cancer cell lines are
maintained over time the risk of contamination and mis-labeling rises. For instance, cell lines which were originally annotated
as colorectal cell lines have been shown to be derived from other cancers altogether30. Therefore, it would be beneficial if we
could tell good models from ones which have diverged too much from tumors in their molecular makeup, or ones which have
been mis-labeled or contaminated. To that effect, we examined 54 cancer cell lines originating in colon cancer from the Cancer
Cell Line Encyclopedia (CCLE). We used maui to infer latent factor values for the cell lines, so that they could be characterized
in the same latent space as the tumors. In the latent space, for each cell line, we compiled a list of nearest neighbors, and
counted how many of its nearest neighbors are cell lines, as opposed to tumors. The underlying hypothesis is that cell lines are
ill-suited to model tumors if they are more similar to other cell lines than to tumors. This similarity we investigate in the space
defined by the latent factors from maui. About half of the colorectal cell lines cell lines belong to a "cell line cluster", meaning
a majority of their neighbors are other cell lines (Figure 4A). We singled out cell lines where this proportion is above half,
and found among them a mis-labeled cell line: COLO741, which has been shown to derive from melanoma and not colorectal
cancerii. This finding indicates that this method of flagging cell lines as poor models for tumors by the number of other cell
lines in their neighborhood has merit.

In order to further examine this method’s utility, in lieu of knowledge of other mis-labeled or otherwise inappropriate
colon-derived cancer cell lines, we artificially contaminated the data set by adding to the data random sample of 60 non-colon
cell lines, under the assumption that these are poorly suited to the study of colorectal cancer tumorsiii. We then repeated the
exercise of counting nearest-neighbors-that-are-cell-lines, with the additional cell lines. The introduction of these true positives

iiIn more recent versions of the CCLE annotations, this has been fixed.
iiiThe identities of these "known contaminant" cell lines are irrelevant, as we show later that the method works on 100 such random draws.
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Figure 3. Interpretation of maui latent factors. A) A heatmap showing the absolute correlation coefficients of the different
input features with the latent factors. Only input features with a mean absolute correlation above a threshold are shown in the
heatmap. The row annotation shows the type of input feature, i.e. expression value, mutation, or copy number. B) The
coefficients in a Cox Proportional Hazards regression, for those latent factors which have significant (P < 0.05) effects after
controlling for gender, age, and tumor stage. Coefficients also shown for those covariates. C) Pathway enrichment scores for
genes associated with the latent factors which carry prognostic value (have significant effects in Cox regression).

shows that more cell lines belong to a "cell line cluster" (Figure 4B), and nearly all non-colon derived cell lines have all 5
of their nearest neighbors be other cell lines, while the same is not true for colon-derived cell lines (Figure 4C). Hence, we
designated cell lines whose 5 nearest neighbors are other cell lines, as less suitable for the study of tumors (rejected), as these
appear to be more similar to other cell lines (even cell lines of other tissues) than to colorectal tumors. Cell lines that have at
least one tumor among their 5 nearest neighbors, we retain as suitable models. UMAP embedding of the latent factor space of
tumors (with CMS labels, n=419), colorectal cancer cell lines (n=54), and non-colorectal (artificial contamination, n=60) cancer
cell lines shows that most contamination (60±1) cell lines are rejected, as well as some of the colon cell lines, and that the
non-rejected cell lines are spread among all clusters (Figure 4D). We repeated the analysis with 100 more random draws of 60
additional contaminants, and, rejected any cell line whose 5 nearest neighbors are cell lines. This method consistently rejects
almost all known contaminants, as well as about half of the colorectal cell lines (Figure 4E). Note that it is not necessarily
a mistake to reject these cell lines; being correctly labeled as originating in colon cancer does not guarantee a cell line to be
a good genomic model for a tumor. Moreover, being more similar to non-colon-derived cancer cell lines than to colorectal
tumors, is certainly an indication that a particular cell line might not be suitable as a model for colorectal cancers, and the
evidence suggests this method successfully rejects almost all known contaminants, indicating that the rejected colon cell lines
are likely also poor models. Among the colorectal cell lines, CL40, SW1417, and CW2 are the best candidates, deemed most
suitable as models for CRC tumors (Figure 5). On the same scale, cell line COLO320 was one of the lowest ranking cell lines.
COLO320 lack mutations in major driver genes in CRC such as BRAF, KRAS, PIK3CA and PTEN, and it has actually a
neuroendocrine origin31, 32. Therefore, COLO320 is possibly a poor model for CRC.

A complete subtyping scheme for CRC and appropriate cell lines for the study of each subtype
The Consensus Molecular Subtyping (CMS) scheme9 is incomplete as it leaves many tumors without a CMS label. By repeating
the clustering analysis, and including also tumors that don’t have a CMS designation, as well as cancer cell lines, we were
able to use maui to assign subtypes to the remaining non-CMS tumors. By also including the cancer cell lines which were
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Figure 4. For each cell line, we compiled a list of 5 nearest neighbors in latent factor space, and counted the proportion of
those nearest neighbors who are cell lines (as opposed to tumors). Cell lines whose 5 nearest neighbors are all other cell lines,
are marked as bad models for tumors, as they are more similar to cell lines than to tumors. A) histogram of the proportion of
nearest neighbors of cell lines which are also cell lines, colorectal cancers only, B), histogram of the proportion of nearest
neighbors of cell lines which are also cell lines, colorectal cancers and non-colorectal cell lines C) KDEs of the proportion of
cell-line neighbors among all cell lines (colorectal and non-colorectal), broken down by tissue, D) UMAP embedding of tumors
and cell lines. Crosses are colon-derived cell lines, diamonds are artificial contamination (non-colon derived cancer cell lines).
Red cell lines are rejected, black ones are retained as good models. E) The proportions of colon and non-colon cell lines which
are rejected because their proportion of nearest-neighbor-cell-lines is above the threshold. Nearly all non-colon cell lines are
consistently rejected, as well as about half of the colon cell lines.

deemed to be suitable models (see above) in this clustering analysis, we present a novel subtyping scheme for CRC, which
covers the whole TCGA cohort (including tumors without a CMS designation), as well as an association of CRC cell lines with
these subtypes. We did this using a maui model trained on 6,000 input features, as it is more clinically relevant than the one
using 1,300 features (Figure 1E), and produces largely the same cluster assignments as the 1,300 gene model presented above
(Figure S4). The non-CMS samples are distributed roughly according to cluster size, as is to be expected for samples that lack a
consensus definition (Figure 6A-B), and all clusters have at least one associated cell line (Figure 6C). Table 3 lists the matching
cell lines to each cluster, and Figure 5 shows how many of the cell line’s nearest neighbors are cell lines, and which cluster it is
a best match for. We hope that it can be a useful resource for future drug discovery studies in colorectal cancers.

Discussion
Colorectal cancer (CRC) is a heterogeneous disease, with different sub-types being driven by different kinds of genomic
alterations, e.g. hypermutated tumors, tumors showing chromosomal instability, etc. Multi-omics data analysis has the potential
to increase the understanding of different subtypes of the disease, and new methods which scale computationally are necessary
as the amount of available data increases. Apart from stratifying patients into clinically relevant subgroups, it is necessary to
find potential drug targets specific to each subtype. Most drug target discovery studies use cancer models such as cell lines,
organoids, or xenografts, and it is thus necessary to match these cancer models to the appropriate subtype in each study, or if a
cancer model is inappropriate for the study of any subtype, to be able to flag it as such.
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Figure 5. For all colon-derived cell lines, we compiled lists of their 5 nearest neighbors. The barplot shows how many of
those 5 were other cell lines. Cell lines where all 5 nearest neighbors are other cell lines are rejected, those having at least one
nearest neighbor who is a tumor are kept and assigned to clusters, as shown in the table on the right.

We have developed an autoencoder-based method, called maui, for integrating data from multi-omics experiments, and
demonstrated it using RNA-seq, SNPs and CNVs. The autoencoder infers latent factors which explain the variation across
the different data modalities. The latent factors infered by maui capture important biology such as different gene expression
programs, gene-based mutational profiles, copy number profiles, and their interactions. We showed that, using maui to learn
latent factors in multi-omics data, we get latent factors which are predictive of previously described CRC subtypes (the
Consensus Molecular Subtypes, CMS), and outperforms the other methods we benchmarked it against, namely iCluster+ and
MOFA. maui also outperforms MOFA and iCluster+ in survival prediction regardless of the CMS subtypes. Performance-wise,
maui can extract more latent factors from larger datasets, at a fraction of the computational cost of both iCluster+ and MOFA,
making maui better suited to the analysis of the larger datasets we expect to see more of in the future. While maui reproduced
the CMS nearly perfectly, it revealed that one of the CMS subtypes, CMS2, is in fact two distinct tumor subtypes, with different
survival characteristics, and different underlying gene expression programs, pointing at distinct oncogenic processes.

The latent factors can also be individually associated with the genes they are driven by, as well as by their individual
relevance to survival prediction, and when we performed a pathway analysis on the latent factors which are individually most
predictive of patient survival, we observed enrichments of pathways which are known to play a role in CRC, such as WNT
signaling and other APC-mediated processes, NGF signaling, and PDGF signaling33. While the association of latent factors to
individual genes is not as straightforward using maui as it is using matrix factorization methods, the relevance of the implicated
pathways is promising. We also proposed a way to use the latent factors learned by maui to predict the fitness of cancer cell
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Figure 6. A) The sizes (number of samples) of the clusters, B) The number of non-CMS tumors assigned to each cluster, C)
the number of cancer cell lines associated with each cluster D) Cluster diagram shows the correspondence between maui
clusters and the CMS sub-types: the two rows represent the different labeling schemes (maui clusters and CMS sub-types), and
each column represents a sample, which is colored according with its assignment in each row. The NOLBL samples without a
defined CMS sub-type are distributed among all clusters, as are cancer cell lines (CCLE).

lines as models for CRC generally, as well as for specific subtypes. In order to address the first question, we hypothesized
that cell lines which are poor models for the study of CRC tumros will show higher similarity to other cell lines than to CRC
tumors. By including non-colorectal cell lines in the sample and computing for each cell line the proportion of samples in its
latent-space neighborhood which are also cell lines (as opposed to tumors), a simple threshold of that proportion is enough
to correctly predict that 98% of non-colorectal cell lines are poor models for CRC. The threshold method also predicts that
approximately 45% of the colorectal cell lines are poor models for CRC, a prediction which still needs to be validated by new
experiments. Using this approach, we were able to reject previously known inappropriate cell lines such as COLO 741 and
COLO32030–32. By including the predicted good model cell lines in the clustering analysis, we were also able to assign CRC
subtype specific cell lines, a finding with far reaching potential for subtype specific drug trials. We hope in the future it can be
tested whether our approach to predicting fitness of cancer cell lines as models for tumors can be verified, and extended to other
cancer models, such as organoids and xenografts. In that way, maui could become an indispensable part of drug discovery
pipelines and speed up new therapeutics.

The CRC subtypes we used as a starting point for this study were defined based on gene expression profiles alone. As we
wanted to use multi-omics data to refine these subtype definitions, we were limited to a subset of the tumors used in the CMS
definition. We used only samples from the TCGA which had measurements for both gene expression, mutations, and copy
numbers (n=519), while the CMS study used a larger cohort (n=4,151) and only gene expression profiles. Consequently, it is
unclear whether the splitting of the CMS2 subtype into two clusters which we have proposed above would hold when presented
with a larger dataset. Only once a larger multi-omics dataset is available will this question be answered.

While the autoencoder architecture of maui is able to do inference in larger data at a fraction of the time compared with
matrix factorization methods such as MOFA and iCluster+, the resulting model is more challenging to interpret biologically,
i.e. linking genes with latent factors is not as straightforward as in matrix factorization. We have proposed to solve this by
using correlations of the input genes and the latent factors, picking the most significant ones heuristically. While we were able
to show that such latent factor—gene relationships capture meaningful biology and recapitulate known associations between
dysregulation of certain pathways and patient survival, this method is potentially less robust than matrix factorization to these
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Cluster Description Cell lines

0 CMS3 (metabolic) SW948, CL14, SNU1197, RCM1, NCIH508, CL40, T84, SKCO1
1 Mixed type SNU283, MDST8
2 CMS1 (msi, immune) CW2, HT115, SNU1040, HCT15, SW48, HCT116, RKO, SNUC2A
3 CMS2-TGF-beta SW480
4 CMS4 (mesenchymal) OUMS23, SNU503, NCIH716
5 CMS2-ErbB-Hippo-Wnt SW403, LS1034, SW620, SW1417

Table 3. maui clusters and the cancer cell lines associated with them

associations, and might require more user involvement in the analysis pipeline.
In this study we have developed a deep learning based multi-omics integration method (maui) and shown that it can be used

to define clinically relevant subtypes of CRC, as well as predict the fitness of cancer cell lines as models for the study of tumors,
and an association of cell lines to CRC subtypes. The latent factors inferred by maui are also interpretable in biological context,
and predictive of patient survival, which enables the associations between underlying oncogenic processes, and patient survival.
We benchmarked maui against two state-of-the-art methods for multi-omics data integration, and showed that not only is it
more effective in defining clinically meaningful subtypes, it also does so with superior computational efficiency. Being orders
of magnitude faster will enable maui to be used in studies with larger cohorts and more omics types, as these experiments
become more abundant in the future. Further, maui is a general tool for multi-omics integrations, and may be used outside of
the cancer context as well, in basic biology studies.

Materials and Methods

Data
We obtained data for tumors from the TCGA-COAD and TCGA-READ project designations of the Genomic Data Commons iv

using the TCGAbiolinks R package34. We downloaded the CMS annotations for the TCGA tumors from the Colorectal Cancer
Subtyping Consortium (CRCSC) v. Table 1 summarizes the subtype information. The gene expression data (mRNA) is HTSeq
- FPKM. Mutations were downloaded as MAF files, filtered to include non-synonymous mutations only, and represented as
a binary mutation matrix where mi j = 1 if and only if gene i carries a non-synonymous mutation in sample j. Copy number
alterations are GISTIC calls by gene, represented as a real-valued matrix where ci j is the GISTIC segment mean for the segment
containing gene i in sample j.

Cancer Cell Line Encyclopedia data was obtained from the CCLE portal vi, and is the same data types as the TCGA data,
with the exception that transcriptome profiles are RPKM-normalized and not FPKM. We considered 54 cancer cell lines
originating from the colon.

We considered only tumors (from TCGA) and cancer cell lines (CCLE) which have "complete data", that is, available
measurements in all three assays: gene expression, SNVs, and CNVs.

We used gene-wise MAD statistic, computed directly on the raw data described above, in order to select the most informative
features. For the comparisons with MOFA and iCluster+, we used the 1,000 genes with the highest MAD for gene expression,
200 for mutations, and 100 for copy number alterations, for a total of 1,300 input features. We down-sampled the features so
strongly in order to make a comparison against iCluster+ viable, and with a larger feature space the runtime would become
untenable (Table 2).

For the final clustering analysis, we used a larger feature space, with 5,000 gene expression values, 500 mutations and 500
CNVs for a total of 6,000 features, taking advantage of maui’s neural network architecture which allows for larger feature
spaces to undergo feature selection as part of the training.

We fit the autoencoder using all TCGA samples, both with and without a CMS label (n=519, Table 1) as well as colon-
derived cancer cell lines (n=54), for a total training set size of 573. For the analysis that depends on a CMS label being available,
the input features were the latent factors, and the samples only those TCGA samples with a well-defined CMS label (n=419,
See Table 1).

ivhttps://portal.gdc.cancer.gov
vhttp://sagebionetworks.org/research-projects/colorectal-cancer-subtyping-consortium-crcsc/

vihttps://portals.broadinstitute.org/ccle
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Network-smoothing of multi-omics data
We applied netSmooth23 to the binary mutation matrix prior to feeding it into the neural network of maui. The method uses the
protein-protein interactome (PPI) in order to smooth noisy molecular assays, in effect incorporating prior data from countless
previous experiments, in order to improve the signal-to-noise-ratio. The intuition behind the method is that genes seldom act
alone, and genes in close neighborhoods in the PPI are expected to behave similarly. For instance, interacting proteins tend
to be co-expressed35, and somatic mutations or amplifications/deleteions in adjacent genes (in the PPI) may lead to similar
dysfunctions.

The algorithm is a simple Random Walks with Restarts diffusion process on the PPI, described by the iterative process

Ft+1 = αAFt +(1−α)F0,

where F is a data matrix (gene expression, mutations, etc.), A is the degree-normalized adjacency matrix of the PPI, and (1−α)
is the restart rate. The process is guaranteed to converge, and has a closed-form solution

F∞ = (I−αA)−1F0.

In order to pick the optimal α value , we performed a grid search over a range between 0 and 1, and picked the lowest α

value within 1 standard deviation of the highest score on the Harrel’s c-Index benchmark (Figure 1E).

Latent factor model for multi-omics data
Starting from different data matrices xi from different modalities, we call the full multi-omics data set x = [x1,x2, ...,xm].

We define a generative model x ∼ p(x|z). Graphically, our model looks like Figure 7a, a Bayesian latent variable
model where the variation in the data x is explained by the variation in a smaller set of latent factors, z. In order to
infer the latent variables z ∼ p(z|x), as p(z|x) is generally intractable, we proceed with a variational Bayes framework, i.e.
approximating p(z|x)≈ qθ (z|x), where qθ (z|x) is a simple class of distribution, and minimizing the Kullback-Leibler divergence
DKL(qθ (z|x)‖p(z|x)). This is equivalent to maximizing the Evidence Lower Bound (ELBO)36:

ELBO = Eq[log(pφ (x|z))]−DKL(qθ (z|x)‖pφ (z)).

We follow37 and re-parameterize zl
i as

zl
i = µi +σiεl

where

εl ∼N (0,I),

which allows us to construct the Autoencoder shown in Figure 7b.
The first half of the autoencoder, leading from x to z (the "encoder") is a neural network which will be trained to compute

qθ (z|x), that is, θ denotes the weights of the encoder network. The second half, the "decoder" network, is a neural network
which will be trained to compute pφ (x|z), so φ denotes the weights of the decoder network. Thanks to the reparametrization of
z, the path from x to x̂ is differentiable, via backpropagation, in θ and φ , and thus we can use gradient descent to optimize a
loss function that is differentiable in θ and φ .

Setting the loss function of the neural network to the negative ELBO

l =−Eq[log(pφ (x|z))]+DKL(qθ (z|x)‖pφ (z)),

we see that the first term is equivalent to the cross-entropy reconstruction loss, and the second term, the KL-divergence between
qθ (z|x) and the prior pφ (z) can be seen as a regularization term, which will push the z’s to their prior distribution.

Stacking autoencoders
The Variational Autoencoder described above is for a one-layer bayesian framework, i.e. Figure 7a. But Autoencoders may be
stacked38 to produce deeper neural network architectures. Deep architectures have more than one layer of nonlinearities, and
can thus more compactly capture highly nonlinear functions. We introduce a hidden layer to our Bayesian latent variable model
(Figure 7c).

Using the reparametrization trick as above, and specifying the full loss function, inference in the generative model (Figure 7c
can be done by backpropagation in the stacked variational autoencoder model (Figure 7d).
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(a) Plate model of latent factor
model; x∼ p(x|z).

(b) Visual representation of Variational Autoencoder.

(c) Plate model of stacked latent
factor model.

(d) Visual representation of Stacked Variational Autoencoder.

Figure 7. Graphical models and neural network
schematics of corresponding Autoencoders. a, b:
latent variable model. c, d: multilevel latent
variable model.
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Model regularization
Deep neural networks have many parameters, making them very flexible. This flexibility, however, comes at a cost—deep
models are prone to over-fitting: the generation of models which explain the training data well, but generalize poorly to new
data. In addition, deep nets are prone to producing complex relationships between many variables. In the case of a latent
variable model, that means latent factors that change with the variation of any of a large number of input features, a property
which makes the task of interpreting the biological meaning of those latent factors difficult. In technical terms, we wish to
enforce sparsity in qθ (z|x), so that each latent factor will depend on fewer of the inputs.

In order to address the first issue of potential over-fitting, we use Batch Normalization39. When fitting the model, we
segment the data into mini-batches, at each iteration computing derivatives and making updates to the model based on that
sample. Using Batch Normalization, each feature is scaled and centered in each mini-batch. We feed all of the training examples
to the model fitting procedure until the entire training set is exhausted, and then we segment it into new minibatches and
repeat the process, for a specified number of epochs. This way, each time a training sample is passed to the model, it will be
slightly different, which is roughly equivalent to adding noise, which has been shown to work as a regularizer in Denoising
Autoencoders40 and prevent over-fitting. Further, Batch Normalization addresses another issue - that of Internal Covariate Shift.
Internal Covariate Shift happens when the distributions of activations of internal nodes in the neural network changes while
training. Reducing Internal Covariate Shift enables us to pick higher learning rates, and thus speeds up inference considerably.

The second mode of regularization, encouraging disentangled representations where latent factors depend only on a few
input features, is partially achieved by the KL term in the loss function, as that penalizes distributions of z’s which are far from
the Gaussian prior. However, it has been shown that the reconstruction loss (the first term in the loss function) is generally
much greater than the KL loss15. We therefore use their proposed method and add a multiplier to the loss function, allowing us
to weigh the relative importance of the terms:

l =−Eq[log(pφ (x|z))]+βDKL(qθ (z|x)‖pφ (z))

In order to ensure the network finds a good representation before it starts regularizing, we use the method proposed by41,
where β is initially 0, and is gradually increased by β = β +κ until its value reaches 1.

Model selection
The stacked VAE presented above is a class of models which are parameterized by the number of hidden units (the dimensionality
of h), Nhidden, and the number of latent factors, Nlatent . In order to pick the optimal model, we searched the space spanend by
(Nhidden,Nlatent) and computed a compound benchmark score at each point. The compound benchmark score is the average of
the scores of: the AUC in the supervised CMS prediction task, the AMI in the unsupervised CMS sub-type prediction task,
the −log10 p of the multivariate log-rank test for differential survival statistics, and the c-index21 from the Cox proportional
hazards model. The results are presented in Figure 8, where the optimal benchmark score is achieved at Nhidden = 1500 and
Nlatent = 80. Note that the general trend of the score profile is towards better scores at higher Nlatent , but the optimum we found
breaks with that trend, indicating that this level of model complexity achieves a compromise between the most latent factors,
and "the curse of dimensionality" which applies to larger latent spaces, and hurts some of the metrics.

Model implementation
We implemented the model using Keras (v2.1.5) using a Tensorflow (v1.6.0) backend. We used Rectified Linear Units for
all activations except for the last layer which is Sigmoids, for all features. We trained our network for 600 epochs using
mini-batches of size 100 and κ = .01. We used the Adam optimizer42.

Association of latent factors with genomic features
The Stacked Variational Autoencoder model described above computes latent factors z = f (x) where f (x) is a nonlinear
function which may not necessarily be well-approximated by a linear z≈Wx, as in models such as MOFA or iCluster+. The
architecture and depth of the neural network also makes it nontrivial to associate the input genomic features (gene expression,
mutations, etc.) with the different latent factors. However, in order to make biological sense of the latent factors, it is necessary
to make that association. In order to do that, we computed Pearson’s ρ for each latent factor with each input feature, and call a
latent factor associated with an input feature if p < 0.001.

Gene set enrichment
In order to find out if the genes associated with latent factors (Figure 3), or with clusters (Figure 2) belong to known pathways,
we used Enrichr43, 44 via the python package gseapy vii. We used pathways (gene sets) defined by KEGG45–47.

viiversion 0.9.4, available from PyPI https://pypi.org/project/gseapy
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Figure 8. The composite benchmark score in the space defined by Nhidden, the number of hidden units, and Nlatent , the number
of latent factors in a model. The optimal parameters are Nhidden = 1500 and Nlatent = 80

Survival analysis
We rely on overall survival data from the TCGA annotations for all survival analyses.

In order to assess the prognostic value of latent factors inferred by our deep learning approach, we fit a Cox Proportional
Hazards model24,

ln
h(t)
ho(t)

= ∑
i

βixi,

where the left hand side is the logarithm of the hazard ratio, and x’s are co-variates. We assess the predictive value of each
latent factor separately, while controlling for the patient’s age, gender, and tumor stage at diagnosis. We compute confidence
intervals for the coefficient β associated with the latent factor, and pick the latent factors with FDR-correction and α = 0.95.

In order to compare the prognostic value of different models, we compute the c-index48–50 and use 5-fold cross-validation51.
The log-rank statistics reported in Figure 1D and Figure S2 are multivariate log-rank test, under a null hypothesis that all

groups have the same survival function, with an alternative hypothesis that at least one group has a different survival function.
All survival analysis was done using the python package lifelines viii.

Comparing models’ survival-predictive value
In order to compare maui to MOFA and iCluster+ (as well as to a gene expression only-based maui model), we used Harrell’s
C21 in a Cox Proportional Hazards24 regression model. The c-Index was computed for Cox models based only on clinically
relevant factors, which we select using individual, unregularized Cox models, one per factor, while controlling for patient age,
sex, and tumor stage. In those individual factor models, we used Efron’s method to compmute confidence intervals, and only
kep the latent factors with statistically significant (adjusted P-value < 0.05) nonzero coefficients in the individual Cox models.
Having selected clinically relevant latent factors from each model (maui, MOFA, iCluster+, maui-expression, maui-netsmooth),
we fit a full Cox regression using those, and ran a cross validated out-of-sample c-Index calculation using regularized Cox PH
regression, searching for the optimal result among the regularizers 1,10,100,1000,10000. The results reported in Figure 1F
are the best regularized model for each of the methods.

viiihttps://lifelines.readthedocs.io/en/latest/
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Quality assessment of CRC cell lines for modeling tumors
In order to assess the fitness of different cancer cell lines as models for tumors, we computed the pairwise euclidean distance
between each of the samples (TCGA and CCLE), in the space of the latent factors derived from maui. Then, we computed, for
each cell line, the proportion of its 5 nearest neighbors which are also cell lines, the working hypothesis being that cell lines
that form "cell line clusters" are more cell-line like than tumor like, and likely less fit as models for tumors. The choice of
K = 5 for the number of nearest neighbors is immaterial, as the method is largely insensitive to the choice of K among a wide
range (Figure S5).
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Figure S1. Kaplan-Meier curves for maui clusters 3 and 5. Cluster 3 appears to be more aggressive tumors with a worse
prognosis (P < 0.001).
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Figure S2. Kaplan Meier curves and log-rank tests for differential survival statistics for the CMS sub-types, as well as maui
clusters using k-means with different K’s.
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Figure S3. Molecular markers and their distribution in CMS sub-types (left column) and maui clusters (right column). A)
utational load, B) CIMP phenotype, C) Microsatellite instability, and D) the prevalence of mutations in a key set of colorectal
cancer genes.
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Figure S4. Correspondence of maui clusters when training using 1,300 genes and 6,000 genes. Each column is a sample, and
they are colored by their cluster assignment. Clusters are mostly the same when using more input features, with some
refinements taking place.
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Figure S5. We repeated the exercise of Figure 4E, that is, adding non-colon cell lines to the mix, and calculating the
proportion of each cell line’s K nearest neighbors, that are also cell lines (as opposed to tumors). Setting the threshold at 0.95,
the method correctly identifies most non-colon cell lines as bad models for colorectal tumors. The recall rate is
predicted bad models among non-colon cell lines

number of non-colon cell lines , and is largely insensitive to the choice of K.
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