A genome-wide algal mutant library reveals a global

2 view of genes required for eukaryotic photosynthesis

3

Xiaobo Li^{1,2,†}, Weronika Patena^{1,2}, Friedrich Fauser^{1,2}, Robert E. Jinkerson^{2,†}, Shai 4 Saroussi², Moritz T. Meyer¹, Nina Ivanova², Jacob M. Robertson^{1,2}, Rebecca Yue², 5 Ru Zhang^{2,†}, Josep Vilarrasa-Blasi², Tyler M. Wittkopp^{2,3,†}, Silvia Ramundo⁴, Sean 6 R. Blum², Audrey Goh¹, Matthew Laudon⁵, Tharan Srikumar¹, Paul A. Lefebvre⁵, 7 Arthur R. Grossman², and Martin C. Jonikas^{1,2*} 8 9 ORCID IDs: 0000-0003-3951-9646 (X.L.); 0000-0001-8516-2591 (M.T.M.); 0000-0002-4860-10 11 7800 (R.Z.); 0000-0003-4328-4798 (J.V.-B.); 0000-0001-7061-0611 (T.M.W.); 0000-0002-3747-5881 (A.R.G.); 0000-0002-9519-6055 (M.C.J.) 12 ¹Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA. 13 ²Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA. 14 15 ³Department of Biology, Stanford University, Stanford, California 94305, USA. ⁴Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA. 16 17 ⁵Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108, USA, [†]Present addresses: School of Life Sciences, Westlake University, Hangzhou, 18 19 Zhejiang Province 310064, China (X.L.); Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA (R.E.J); Donald 20 Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132, USA (R.Z.); 21 Salk Institute for Biological Studies, La Jolla, California 92037, USA (T.M.W.). *e-mail: 22

23 mjonikas@princeton.edu

1

2 Photosynthetic organisms provide food and energy for nearly all life on Earth, yet half of their protein-coding genes remain uncharacterized^{1,2}. Characterization of 3 these genes could be greatly accelerated by new genetic resources for unicellular 4 organisms that complement the use of multicellular plants by enabling higher-5 6 throughput studies. Here, we generated a genome-wide, indexed library of mapped 7 insertion mutants for the flagship unicellular alga Chlamydomonas reinhardtii (Chlamydomonas hereafter). The 62,389 mutants in the library, covering 83% of 8 9 nuclear, protein-coding genes, are available to the community. Each mutant contains unique DNA barcodes, allowing the collection to be screened as a pool. We 10 leveraged this feature to perform a genome-wide survey of genes required for 11 photosynthesis, which identified 303 candidate genes. Characterization of one of 12 these genes, the conserved predicted phosphatase CPL3, showed it is important for 13 14 accumulation of multiple photosynthetic protein complexes. Strikingly, 21 of the 43 highest-confidence genes are novel, opening new opportunities for advances in our 15 understanding of this biogeochemically fundamental process. This library is the first 16 17 genome-wide mapped mutant resource in any unicellular photosynthetic organism, and will accelerate the characterization of thousands of genes in algae, plants and 18 animals. 19

Among unicellular photosynthetic organisms, the green alga Chlamydomonas has long been employed for genetic studies of eukaryotic photosynthesis because of its rare ability to grow in the absence of photosynthetic function³. In addition, it has made extensive contributions to our basic understanding of light signaling, stress acclimation, and metabolism of carbohydrates, lipids, and pigments (Fig. 1a)⁴⁻⁶. Moreover,

1 Chlamydomonas retained many genes from the plant-animal common ancestor, which allowed it to reveal fundamental aspects of the structure and function of cilia and basal 2 bodies^{7,8}. Like *Saccharomyces cerevisiae*, Chlamydomonas can grow as a haploid, 3 4 facilitating genetic studies. However, until now, the value of Chlamydomonas has been limited by the lack of mutants in most of its nuclear genes. 5 In the present study, we sought to generate a genome-wide collection of 6 Chlamydomonas mutants with known gene disruptions to provide mutants in genes of 7 8 interest for the scientific community, and then to leverage this collection to reveal genes 9 with roles in photosynthesis. To reach the necessary scale, we chose to use random insertional mutagenesis and built on advances in insertion mapping and mutant 10 propagation from our pilot study⁹. To enable mapping of insertion sites and screening 11 pools of mutants on a much larger scale, we developed new tools leveraging unique DNA 12 13 barcodes in each transforming cassette. 14 We generated mutants by transforming haploid cells with DNA cassettes that randomly insert into the genome and inactivate the genes they insert into. We maintained 15 16 the mutants as indexed colony arrays on agar media containing acetate as a carbon and

17 energy source to allow recovery of mutants with defects in photosynthesis. Each DNA

18 cassette contained two unique barcodes, one on each side of the cassette (Supplementary

19 Fig. 1a-d). For each mutant, the barcode and genomic flanking sequences on each side of

20 the cassette were initially unknown (Supplementary Fig. 1e). We determined the

21 sequence of the barcode(s) in each mutant colony by combinatorial pooling and deep

sequencing (Supplementary Fig. 1f). We then mapped each insertion by pooling all

23 mutants and amplifying all flanking sequences together with their corresponding

1	barcodes followed by deep sequencing (Supplementary Fig. 1g). The combination of
2	these datasets revealed the insertion site(s) in each mutant. This procedure yielded 62,389
3	mutants on 245 plates, with a total of 74,923 insertions that were largely randomly
4	distributed over the chromosomes (Fig. 1, b and c, and Supplementary Table 5).
5	This library provides mutants for ~83% of all nuclear genes (Fig. 2a-d).
6	Approximately 69% of genes are represented by an insertion in a 5' UTR, an exon or an
7	intron – regions most likely to cause an altered phenotype when disrupted. Many gene
8	sets of interest to the research community are well represented, including genes encoding
9	proteins phylogenetically associated with the plant lineage (GreenCut2) ¹ , proteins that
10	localize to the chloroplast ¹⁰ , or those associated with the structure and function of flagella
11	or basal bodies ^{11,12} (Fig. 2b). Mutants in this collection are available through the website
12	https://www.chlamylibrary.org/. Over 1,800 mutants have already been distributed to
13	over 200 laboratories worldwide in the first 18 months of pre-publication distribution
14	(Fig. 2e). These mutants are facilitating genetic investigation of a broad range of
15	processes, ranging from photosynthesis and metabolism to cilia structure and function
16	(Fig. 2f).

To identify genes required for photosynthesis, we screened our library for mutants deficient in photosynthetic growth. Rather than phenotyping each strain individually, we pooled the entire library into one culture and leveraged the unique barcodes present in each strain to track its abundance after growth under different conditions. This feature enables genome-wide screens with speed and depth unprecedented in photosynthetic eukaryotes. We grew a pool of mutants photosynthetically in light in minimal Tris-Phosphate (TP) medium with CO_2 as the sole source of carbon, and heterotrophically in

1	the dark in Tris-Acetate-Phosphate (TAP) medium, where acetate provides fixed carbon
2	and energy ³ (Fig. 3a). To quantify mutant growth under each condition, we amplified and
3	deep sequenced the barcodes from the final cell populations. We then compared the
4	ability of each mutant to grow under photosynthetic and heterotrophic conditions by
5	comparing the read counts of each barcode from each condition (Supplementary Table
6	10; Methods). Mutant phenotypes were highly reproducible (Fig. 3b and Supplementary
7	Fig. 5, a and b). We identified 3,109 mutants deficient in photosynthetic growth (Fig. 3c
8	and Methods).
9	To identify genes with roles in photosynthesis, we developed a statistical analysis
10	framework that leverages the presence of multiple alleles for many genes. This
11	framework allows us to overcome several sources of false positives that have been
12	difficult to identify with previous methods, including cases where the phenotype is not
13	caused by the mapped disruption. For each gene, we counted the number of mutant
14	alleles with and without a phenotype, and evaluated the likelihood of obtaining these
15	numbers by chance given the total number of mutants in the library that exhibit the
16	phenotype (Supplementary Table 11; Methods).
17	We identified 303 candidate photosynthesis genes based on our statistical analysis
18	above. These genes are enriched for membership in a diurnally regulated photosynthesis-
19	related transcriptional cluster ¹³ ($P < 10^{-11}$), are enriched for upregulation upon dark-to-light
20	transitions ¹⁴ (P <0.003), and encode proteins enriched for predicted chloroplast
21	localization ($P < 10^{-8}$). As expected ¹⁵ , the candidate genes also encode a disproportionate
22	number of GreenCut2 proteins ($P < 10^{-8}$), which are conserved among photosynthetic

1	organisms but absent from non-photosynthetic organisms ¹ : 32 GreenCut2 proteins are
2	encoded by the 303 candidate genes (11%), compared to \sim 3% in the entire genome.
3	Photosynthesis occurs in two stages: the light reactions and carbon fixation. The
4	light reactions convert solar energy into chemical energy, and require coordinated action
5	of Photosystem II (PSII), Cytochrome $b_6 f$, Photosystem I (PSI), ATP synthase
6	complexes, a plastocyanin or cytochrome c_6 metalloprotein, as well as small molecule
7	cofactors ¹⁶ . PSII and PSI are each assisted by peripheral light-harvesting complexes
8	(LHCs) known as LHCII and LHCI, respectively. Carbon fixation is performed by
9	enzymes in the Calvin-Benson-Bassham cycle, including the CO ₂ -fixing enzyme
10	Rubisco. In addition, most eukaryotic algae have a mechanism to concentrate CO ₂ around
11	Rubisco to enhance its activity ¹⁷ .
12	Sixty-five of the genes we identified encode proteins that were previously shown
13	to play a role in photosynthesis or chloroplast function in Chlamydomonas or vascular
14	plants (Fig. 3f). These include three PSII-LHCII subunits (PSBP1, PSBP2, and PSB27)
15	and seven PSII-LHCII biogenesis factors (CGL54, CPLD10, HCF136, LPA1, MBB1,
16	TBC2, and Cre02.g105650), two cytochrome $b_6 f$ complex subunits (PETC and PETM)
17	and six cytochrome $b_6 f$ biogenesis factors (CCB2, CCS5, CPLD43, CPLD49, MCD1, and
18	MCG1), five PSI-LHCI subunits (LHCA3, LHCA7, PSAD, PSAE, and PSAL) and nine
19	PSI-LHCI biogenesis factors (CGL71, CPLD46, OPR120, RAA1, RAA2, RAA3, RAT2,
20	Cre01.g045902, and Cre09.g389615), one protein required for ATP synthase function
21	(PHT3), plastocyanin (PCY1) and two plastocyanin biogenesis factors (CTP2 and PCC1),
22	12 proteins involved in the metabolism of photosynthesis cofactors or signaling
23	molecules (CHLD, CTH1, CYP745A1, DVR1, HMOX1, HPD2, MTF1, PLAP6,

1	UROD3, Cre08.g358538, Cre13.g581850, and Cre16.g659050), three Calvin-Benson-
2	Bassham Cycle enzymes (FBP1, PRK1, and SEBP1), two Rubisco biogenesis factors
3	(MRL1 and RMT2), three proteins involved in the algal carbon concentrating mechanism
4	(CAH3, CAS1, and LCIB), as well as proteins that play a role in photorespiration
5	(GSF1), CO ₂ regulation of photosynthesis (Cre02.g146851), chloroplast morphogenesis
6	(Cre14.g616600), chloroplast protein import (SDR17), and chloroplast DNA, RNA, and
7	protein metabolism (DEG9, MSH1, MSRA1, TSM2, and Cre01.g010864) (Fig. 3h and
8	Supplementary Table 12). We caution that not all genes previously demonstrated to be
9	required for photosynthetic growth are detectable by this approach, especially the ones
10	with paralogous genes in the genome, such as RBCS1 and RBCS2 that encode the small
11	subunit of Rubisco ¹⁸ . Nonetheless, the large number of known factors recovered in our
12	screen is a testament to the power of this approach.
13	In addition to recovering these 65 genes with known roles in photosynthesis, our
14	analysis revealed 238 candidate genes with no previously reported role in photosynthesis
15	(Methods). These 238 genes represent a rich set of targets to better understand
16	photosynthesis. Because our screen likely yielded some false positives, we divided all
17	genes into "higher-confidence" (P<0.0011; FDR< 0.27) and "lower-confidence" genes
18	based on the number of alleles that supported each gene's involvement in photosynthesis
19	(Fig. 3d-f; Tables 1 and 2; Methods). The 21 higher-confidence genes with no previously
20	reported role in photosynthesis are enriched in chloroplast localization (9/21, P<0.011;
21	Fig. 3g) and transcriptional upregulation during dark to light transition (5/21, P <0.005),
22	similar to the known photosynthesis genes. Thus, these 21 higher-confidence genes are
23	particularly high-priority targets for the field to pursue.

1	Functional annotations for 15 of the 21 higher-confidence genes suggest that these
2	genes could play roles in regulation of photosynthesis, photosynthetic metabolism, and
3	biosynthesis of the photosynthetic machinery. Seven of the genes likely play roles in
4	regulation of photosynthesis: GEF1 encodes a voltage-gated channel, Cre01.g008550 and
5	Cre02.g111550 encode putative protein kinases, CPL3 encodes a predicted protein
6	phosphatase, TRX21 contains a thioredoxin domain, Cre12.g542569 encodes a putative
7	glutamate receptor, and Cre13.g586750 contains a predicted nuclear importin domain.
8	Six of the genes are likely involved in photosynthetic metabolism: the Arabidopsis
9	homolog of Cre10.g448950 modulates sucrose and starch accumulation ¹⁹ ,
10	Cre11.g467712 contains a starch-binding domain, Cre02.g073900 encodes a putative
11	carotenoid dioxygenase, VTE5 encodes a putative phosphatidate cytidylyltransferase,
12	Cre10.g429650 encodes a putative alpha/beta hydrolase, and Cre50.g761497 contains a
13	magnesium transporter domain. Finally, two of the genes are likely to play roles in the
14	biogenesis and function of photosynthesis machinery: EIF2 has a translation initiation
15	factor domain, and CDJ2 has a chloroplast DnaJ domain. Future characterization of these
16	genes by the community is likely to yield fundamental insights into our understanding of
17	photosynthesis.
18	As an illustration of the value of genes identified in this screen, we sought to
19	explore the specific function of one of the novel higher-confidence hits, CPL3
20	(Conserved in Plant Lineage 3, Cre03.g185200), which encodes a putative protein

phosphatase (Fig. 4a and Supplementary Fig. 6e). Many proteins in the photosynthetic
apparatus are phosphorylated, but the role and regulation of these phosphorylations are

23 poorly understood²⁰. In our screen, three mutants in *CPL3* exhibited a deficiency in

1	photosynthetic growth (Fig. 3c and Supplementary Table 13). We chose to examine one
2	allele (LMJ.RY0402.153647, referred to hereafter as cpl3; Fig. 4a and Supplementary
3	Fig. 6a) for phenotypic confirmation, genetic complementation, and further studies.
4	Consistent with the pooled growth data, cpl3 showed a severe defect in
5	photosynthetic growth on agar, which was rescued under heterotrophic conditions (Fig.
6	4b). We confirmed that the CPL3 gene is disrupted in the cpl3 mutant and found that
7	complementation with a wild-type copy of the CPL3 gene rescues the phenotype,
8	demonstrating that the mutation in CPL3 is the cause of the growth defect of the mutant
9	(Supplementary Note and Supplementary Fig. 6a-d).
10	We then examined the photosynthetic performance, morphology of the
11	chloroplast, and the composition of photosynthetic pigments and proteins in <i>cpl3</i> .
12	Photosynthetic electron transport rate was decreased under all light intensities, suggesting
13	a defect in the photosynthetic machinery (Fig. 4c). The chloroplast morphology of <i>cpl3</i>
14	appeared similar to the wild type based on chlorophyll fluorescence microscopy
15	(Supplementary Fig. 7a). However, we observed a lower chlorophyll <i>a/b</i> ratio in <i>cpl3</i>
16	than in the wild type (Supplementary Fig. 7b), which suggests a defect in the
17	accumulation or composition of the protein-pigment complexes involved in the light
18	reactions ²¹ . Using whole-cell proteomics, we found that <i>cpl3</i> was deficient in
19	accumulation of all detectable subunits of the chloroplast ATP synthase (ATPC, ATPD,
20	ATPG, AtpA, AtpB, AtpE, AtpF), some subunits of PSII (D1, D2, CP43, CP47, PsbE,
21	PsbH), and some subunits of PSI (PsaA and PsaB) (FDR<0.31 for each subunit, Fig. 4d,
22	Fig. 4f, and Supplementary Table 14). We confirmed these findings by western blots on
23	CP43, PsaA, and ATPC (Fig. 4e). Our results indicate that CPL3 is required for normal

accumulation of thylakoid protein complexes (PSII, PSI, and ATP synthase) involved in
 the light reactions of photosynthesis.

3	Our finding that 21/43 of the higher-confidence photosynthesis hit genes were
4	uncharacterized suggests that nearly half of the genes required for photosynthesis remain
5	to be characterized. This finding is remarkable, considering that genetic studies on
6	photosynthesis extend back to the 1950s ²² . Our validation of CPL3's role in
7	photosynthesis illustrates the value of the uncharacterized hit genes identified in this
8	study as a rich set of candidates for the community to pursue.
9	More broadly, it is our hope that the mutant resource presented here will serve as
10	a powerful complement to newly developed gene editing techniques ²³⁻²⁸ , and that
11	together these tools will help the research community generate fundamental insights in a
12	wide range of fields, from organelle biogenesis and function to organism-environment
13	interactions.

14

15 Acknowledgments

16 We thank Olivier Vallon for helpful discussions; Matthew Cahn and Garret Huntress for developing and 17 improving the CLiP website; Xuhuai Ji at the Stanford Functional Genomics Facility and Ziming Weng at 18 the Stanford Center for Genomics and Personalized Medicine for deep sequencing services; Alan Itakura 19 for help in library pooling; Shriya Ghosh, Kyssia Mendoza, and Matthew LaVoie for technical assistance; 20 Kathryn Barton, Winslow Briggs, and Zhi-Yong Wang for providing lab space; Joseph Ecker, Liz Freeman 21 Rosenzweig and Moshe Kafri for constructive suggestions on the manuscript; and the Princeton Mass 22 Spectrometry Facility for proteomics services. This project was supported by a grant from the National 23 Science Foundation (MCB-1146621) awarded to M.C.J. and A.R.G., grants from the National Institutes of 24 Health (DP2-GM-119137) and the Simons Foundation and HHMI (55108535) awarded to M.C.J., a

1	German Academic Exchange	Service (DAAD)) research fellowshir	to F.F., S	Simons Foundatior	ı fellowshir
-	Gorman / readenine Exchange		/ icocurcii iciic wonin	,	Junons i Gundunon	1 10110

- 2 of the Life Sciences Research Foundation to R.E.J. and J.V.-B., EMBO long term fellowship (ALTF 1450-
- 3 2014 and ALTF 563-2013) to J.V.-B and S.R., and a Swiss National Science Foundation Advanced
- 4 PostDoc Mobility Fellowship (P2GEP3 148531) to S.R.
- 5

6 Author contributions

- 7 X.L. developed the method for generating barcoded cassettes; R.Y. and S.R.B. optimized the mutant
- 8 generation protocol; R.Y., N.I., and X.L. generated the library; J.M.R., N.I., A.G., and R.Y. maintained,
- 9 consolidated, and cryopreserved the library; X.L. developed the barcode sequencing method; N.I., X.L.,
- 10 R.Y., and W.P. performed combinatorial pooling and super-pool barcode sequencing; X.L. performed
- 11 LEAP-Seq; W.P. developed mutant mapping data analysis pipeline and performed data analyses of barcode
- 12 sequencing and LEAP-Seq; W.P. analyzed insertion coverage and hot/cold spots; R.Z. and J.M.R.
- 13 performed insertion verification PCRs and Southern blots; F.F., R.E.J., and J.V.-B. developed the library
- screening protocol; F.F., J.V.-B., and X.L. performed the photosynthesis mutant screen and barcode
- 15 sequencing; R.E.J. and W.P. developed screen data analysis methods and implemented them for the
- 16 photosynthesis screen; X.L. and T.M.W. annotated the hits from the photosynthesis screen; X.L., J.M.R.,
- 17 and S.R. performed growth analysis, molecular characterizations, and complementation of *cpl3*; S.S. and
- 18 T.M.W. performed physiological characterizations of *cpl3*; M.T.M. and S.S. performed western blots on
- 19 the photosynthetic protein complexes; M.T.M. performed microscopy on *cpl3*; X.L., W.P., and T.S.
- 20 performed proteomic analyses; M.L. and P.A.L. maintained, cryopreserved, and distributed mutants at the
- 21 Chlamydomonas Resource Center; X.L., W.P., A.R.G., and M.C.J. wrote the manuscript with input from
- 22 all authors; M.C.J. and A.R.G. conceived and guided the research and obtained funding.

23

24 **Competing interests**

25 The authors declare no competing interests.

1 Supplementary Information:

- 2 Methods
- 3 Supplementary Note
- 4 Supplementary Figures 1-7
- 5 Supplementary Tables 1-14 (as separate excel or text files)

1 Figures

Fig. 1 | A genome-wide library of Chlamydomonas mutants was generated by

4 random insertion of barcoded cassettes and mapping of insertion sites. a,

5 Chlamydomonas reinhardtii is used for studies of various cellular processes and

- 6 organism-environment interactions. **b**, Our library contains 62,389 insertional mutants
- 7 maintained as 245 plates of 384-colony arrays. Each mutant contains at least one
- 8 insertion cassette at a random site in its genome; each insertion cassette contains one

1	unique barcode at each end (Supplementary Fig. 1a-c). c, The insertion density is largely
2	random over the majority of the genome. This panel compares the observed insertion
3	density over the genome (the left column above each chromosome number) to three
4	simulations with insertions randomly distributed over all mappable positions in the
5	genome (the three narrow columns to the right for each chromosome). Areas that are
6	white throughout all columns represent regions where insertions cannot be mapped to a
7	unique genomic position due to highly repetitive sequence. See also Supplementary Fig.
8	4.

1

2 Fig. 2 | The library covers 83% of Chlamydomonas genes. a, 83% of all

3 Chlamydomonas genes have one or more insertions in the library. **b**, In various functional

- 4 groups, more than 75% of genes are represented by insertions in the library. c, The
- 5 number of insertions per gene is roughly correlated with gene length. Box heights

1	represent quartiles, whiskers represent 1 st and 99 th percentiles, and outliers are plotted as
2	crosses. Box widths are proportional to the number of genes in each bin. d, Insertion
3	density varies among different gene features, with the lowest density in exons. e, More
4	than 1,800 mutants were distributed to approximately 200 laboratories in the world
5	during the first 18 months of its availability. f, Distributed mutants are being used to
6	study a variety of biological processes. Only genes with some functional annotation are
7	shown.

2 Fig. 3 | A high-throughput screen using the library identifies many genes with

known roles in photosynthesis and reveals many novel components. a, Unique
barcodes allow screening mutants in a pool. Mutants deficient in photosynthesis can be
identified because their barcodes will be less abundant after growth in photosynthetic
(TP-light) relative to after growth in heterotrophic (TAP-dark) conditions. b, Biological
replicates were highly reproducible, with a Spearman's correlation of 0.982. Each dot

represents one barcode. See also Supplementary Fig. 5 and Methods. c, The phenotype of 1 each insertion was determined by comparing its read count under TAP-dark and TP-light 2 conditions. Insertions that fell below the phenotype cutoff were considered to show a 3 defect in photosynthesis. *cpl3* alleles are highlighted in red squares or triangles. **d**, 4 Insertion phenotypes vary depending on the gene feature disrupted: exon and intron 5 insertions are most likely to show strong phenotypes, while 3'UTR insertions rarely 6 do. The plot is based on all insertions for the 43 higher-confidence genes. e, The TP-7 light/TAP-dark ratio of all the alleles are shown for hit and control genes. Each column is 8 9 a gene; each horizontal bar is an allele, color-coded by feature. f, The 303 candidate genes were categorized according to (1) whether or not they were previously known to 10 11 play a role in photosynthesis, and (2) whether the screen data yielded higher or lower confidence that mutation of that gene causes a defect in photosynthetic growth. g. Known 12 13 higher-confidence genes, novel higher-confidence genes, and lower-confidence genes are 14 all enriched in predicted chloroplast-targeted proteins (P < 0.011). **h**, Twenty-two of the higher-confidence genes and 43 of the lower-confidence genes were previously known to 15 have a role in processes related to photosynthesis. The screen additionally identified 21 16 17 higher-confidence and 217 lower-confidence genes that were not previously known to be 18 involved in photosynthesis.

1

2 Fig. 4 | CPL3 is required for photosynthetic growth and accumulation of

photosynthetic protein complexes in the thylakoid membranes. a, The *cpl3* mutant
 contains cassettes inserted in the first exon of *CPL3*. The locations of conserved protein

5 phosphatase motifs are indicated (see Supplementary Fig. 6e). Black boxes indicate

1	exons; gray boxes indicate UTRs. b, cpl3 is deficient in growth under photosynthetic
2	conditions. The growth deficiency is rescued upon complementation with a wild-type
3	copy of the CPL3 gene (comp1-3 represent three independent complemented lines). c,
4	cpl3 has a lower relative photosynthetic electron transport rate than the wild-type strain
5	(WT) and comp1. Error bars indicate standard deviation ($n \ge 3$). d , Whole-cell
6	proteomics indicate that <i>cpl3</i> is deficient in the accumulation of PSII, PSI, and the
7	chloroplast ATP synthase. Each gray dot represents one Chlamydomonas protein. The
8	subunits of PSII, PSI and ATP synthase are highlighted as black or red symbols. See also
9	Supplementary Table 14. e, Western blots show that CPL3 is required for normal
10	accumulation of the PSII subunit CP43, the PSI subunit PsaA, and the chloroplast ATP
11	synthase subunit ATPC. α -tubulin was used as a loading control. f , A schematic summary
12	of the protein abundance of subunits in the light reactions protein complexes or enzymes
13	in the CBB cycle in <i>cpl3</i> relative to the wild type based on proteomics data. The relative
14	abundance is shown as a heatmap. Depicted subunits that were not detected by
15	proteomics are filled with gray. Nuclear-encoded proteins are labeled in black font while
16	chloroplast-encoded subunits are labeled in red font. A stack of horizontal ovals indicates
17	different isoforms for the same enzyme, such as FBA1, FBA2, and FBA3. Cyt,
18	cytochrome.

1 Tables

2 Table 1 | Higher-confidence genes from the photosynthesis screen that had a

3 previously known role in photosynthesis.

Category	Gene	Defline/	PredA	Alleles in two		i two	At homolog ^e	Reference and the
		description in	lgo ^a	replicates		S		corresponding
		Phytozome ¹²		+ ^b	_ ^c	FDR ^d	-	organism(s)
Calvin-	Cre03.g18	Sedoheptulose-	С	3	0	0.021	AT3G55800.	Arabidopsis ²⁹
Benson-	5550	1,7-		3	0	0.018	1 (SBPASE)	
Bassham	(SEBP1)	bisphosphatase						
cycle	Cre12.g52	Rubisco small	0	3	0	0.021	AT3G07670.	Pisum ³⁰
	4500	subunit N-		3	0	0.018	1	
	(<i>RMT2</i>)	methyltransferase						
	Cre06.g29	Pentatricopeptide	С	1	1	1.000	AT4G34830.	Chlamydomonas
	8300	repeat protein,		2	0	0.239	1 (MRL1)	and Arabidopsis ³¹
	(MRL1)	stabilizes rbcL						
		mRNA						
Carbon	Cre12.g49	Rhodanese-like	С	2	0	0.260	AT5G23060.	Chlamydomonas ³²
concentrati	7300	Ca-sensing		2	0	0.239	1 (<i>CaS</i>)	
ng	(CAS1)	receptor						
mechanism	Cre10.g45	Low-CO2-	С	2	0	0.260	-	Chlamydomonas ³³
	2800	inducible protein		1	1	1.000	-	
	(LCIB)							
Chloroplast	Cre14.g61	-	М	4	3	0.021	AT1G03160.	Arabidopsis ³⁴
and	6600			4	3	0.018	1 (FZL)	
thylakoid								
morphogen								
esis								
Cofactor	Cre13.g58	-	М	5	5	0.010	AT4G31390.	Arabidopsis ³⁵

					-		I	
				2	8	1.000		
	Cre10.g42	Heme oxygenase	С	3	0	0.021	AT1G69720.	Chlamydomonas ¹⁴
	3500			3	0	0.018	1 (HO3)	
	(HMOX1)							
	Cre03.g18	Plastid lipid	С	3	1	0.070	AT5G09820.	Arabidopsis ³⁶
	8700	associated		3	1	0.056	2	
	(PLAP6)	protein, Fibrillin						
	Cre16.g65	-	С	4	6	0.098	AT1G68890.	Chlamydomonas ³⁷
	9050			4	6	0.075	1	
PSI protein	Cre12.g52	Predicted protein	С	2	0	0.260		Synechocystis ³⁸ ;
synthesis	4300			2	0	0.239	AT1G22700	Arabidopsis ³⁹ ;
and	(CGL71)						1	Chlamydomonas ⁴⁰
assembly	Cre01 g04	-	С	1	1	1 000	AT3G24430	Arabidopsis ^{41,42}
	5902		0	2	0	0.230	1 (HCE101)	11401409010
	5902			2	0	0.239		
PSI RNA	Cre09.g38	-	M	5	0	0.0002	AT3G17040.	Chlamydomonas ⁴³ ;
splicing and	9615			5	0	0.0002	1 (HCF107)	Arabidopsis ^{42,44,1}
stabilization	Cre01.g02	DEAD/DEAH-	М	5	1	0.0004	AT1G70070.	Arabidopsis ⁴⁵
	7150	box helicase		5	1	0.0003	1 (EMB25,	
	(CPLD46)						ISE2,	
							<i>PDE317</i>)	
	Cre09.g39	-	М	5	1	0.0004	-	Chlamydomonas ⁴⁶
	4150			5	1	0.0003		
	(RAA1)							
	Cre12.g53	PsaA mRNA	С	3	0	0.021	-	Chlamydomonas ⁴⁷
	1050	maturation factor		3	0	0.018	1	
	(RAA3)	3						
	Cre10.g44	-	С	2	0	0.260	-	Chlamydomonas ^{48,}
	0000			2	0	0.239	-	49
	(OPR120)							
PSII protein	Cre13.g57	Similar to	С	3	3	0.260	AT1G16720.	Arabidopsis ^{42,50,51}
		•	•					•

			3	3	0.208		
Cre02.g07	Predicted protein	С	2	0	0.260	AT1G05385.	Arabidopsis ⁵²
3850			2	0	0.239	1 (<i>LPA19</i> ,	
(CGL54)						Psb27-H1)	
Cre02.g10	-	С	2	0	0.260	AT5G51545.	Arabidopsis ⁵³
5650			2	0	0.239	1 (LPA2)	
Cre06.g27	-	С	2	0	0.260	AT5G23120.	Arabidopsis ⁴² ;
3700			1	1	1.000	1 (HCF136)	Synechocystis ⁵⁴
(HCF136)							
Cre10.g43	-	С	2	0	0.260	AT1G02910.	Arabidopsis ⁵⁵
0150			1	1	1.000	1 (LPA1)	
(LPA1)							
							•

1

^aPrediction of protein localization by PredAlgo⁵⁶: C = chloroplast, M = mitochondrion, SP = secretory pathway, O =

3 other.

4 ^bThe number of exon/intron/5'UTR mutant alleles for that gene that satisfy our requirement of minimum 50 reads and

5 showed at least 10X fewer normalized reads in the TP-light sample compared to the TAP-dark sample.

6 ^cThe number exon/intron/5'UTR mutant alleles for that gene that satisfy our minimum read count requirement but did

7 not satisfy the at least 10X depletion in TP-light criterion.

⁸ ^dthe FDR for that gene compared to all alleles for all genes (see Methods).

⁹ ^eArabidopsis homolog, obtained from the "best_arabidopsis_TAIR10_hit_name" field in Phytozome¹².

10 ^fAT3G17040.1 is required for functional PSII in Arabidopsis whereas Cre09.g389615 was shown to be involved in PSI

11 accumulation in Chlamydomonas.

1 Table 2 | Higher-confidence genes from the photosynthesis screen with no previously

2 known role in photosynthesis.

Gene	Defline/description in PredAlgo Alleles in two		7 0	At homolog		
	Phytozome		repli	cates		
			+	-	FDR	-
Cre01.g008550	Serine/threonine kinase-related	0	2	0	0.260	AT1G73450.1
			1	1	1.000	
Cre01.g014000	-	С	3	0	0.021	-
			3	0	0.018	
Cre01.g037800	ATP binding protein; thioredoxin	0	3	3	0.260	AT2G18990.1
(TRX21)	domain		1	5	1.000	(TXND9)
Cre02.g073900	All-trans-10'-apo-beta-carotenal	С	3	1	0.070	AT4G32810.1
	13,14-cleaving dioxygenase		3	1	0.056	(ATCCD8, CCD8,
						MAX4)
Cre02.g111550	Serine/threonine kinase-related	SP	10	8	< 10 ⁻⁶	AT4G24480.1
			6	12	0.015	
Cre03.g185200	Metallophosphoesterase/metallo-	С	3	4	0.260	AT1G07010.1
(CPL3)	dependent phosphatase		3	4	0.239	-
Cre06.g259100	-	С	1	4	1.000	-
			3	2	0.117	
Cre06.g281800	Domain of unknown function	С	3	0	0.021	-
	(DUF1995)		3	0	0.018	
Cre07.g316050	Chloroplast DnaJ-like protein	М	2	0	0.260	AT5G59610.1
(CDJ2)			1	1	1.000	
Cre07.g341850	Translation initiation factor IF-2,	С	2	0	0.260	AT1G17220.1 (FUG1)
(EIF2)	chloroplastic		2	0	0.239	
Cre08.g358350	Fast leu-rich domain-containing ^a	С	3	2	0.152	-
(TDA1)			3	2	0.117	1
Cre09.g396250	Phosphatidate cytidylyltransferase	SP	2	0	0.260	AT5G04490.1 (VTE5)

			1	1	1.000	
Cre10.g429650	Alpha/beta hydrolase family	0	2	0	0.260	-
	(Abhydrolase_5)		1	1	1.000	
Cre10.g448950	Nocturnin	С	1	1	1.000	AT3G58560.1
			2	0	0.239	
Cre11.g467712	Structural maintenance of	М	7	7	0.0003	AT5G05180.1
	chromosomes smc family		7	7	0.0003	
	member; starch-binding domain					
Cre12.g542569	Ionotropic glutamate receptor	0	0	2	1.000	AT1G05200.1
			2	0	0.239	(ATGLR3.4, GLR3.4,
						GLUR3)
Cre13.g566400	Fast leu-rich domain-containing ^a	М	4	2	0.018	-
(<i>OPR55</i>)			4	2	0.015	
Cre13.g574000	Voltage-gated chloride channel	0	1	11	1.000	AT5G26240.1
(GEF1)			4	8	0.144	(ATCLC-D, CLC-D)
Cre13.g586750	Transportin 3 and importin	0	3	4	0.260	AT5G62600.1
			2	5	1.000	
Cre16.g658950	-	C	2	2	0.909	-
			3	1	0.056	
Cre50.g761497	Magnesium transporter mrs2	М	2	0	0.260	AT5G22830.1
	homolog, mitochondrial		2	0	0.239	(ATMGT10, GMN10,
						MGT10, MRS2-11)

1

² ^aThe annotation of "fast leu-rich domain-containing" cannot be confirmed by BLASTp analysis at NCBI⁵⁷.

1 References

3 4 5	1.	Karpowicz, S.J., Prochnik, S.E., Grossman, A.R. & Merchant, S.S. The GreenCut2 resource, a phylogenomically derived inventory of proteins specific to the plant lineage. <i>J Biol Chem</i> 286 , 21427-39 (2011)
6 7	2.	Krishnakumar, V. <i>et al.</i> Araport: the Arabidopsis information portal. <i>Nucleic Acids Res</i> 43 , D1003-9 (2015).
8 9	3.	Levine, R.P. Genetic Control of Photosynthesis in Chlamydomonas Reinhardi. <i>Proc Natl Acad Sci U S A</i> 46 , 972-8 (1960).
10 11	4.	Gutman, B.L. & Niyogi, K.K. Chlamydomonas and Arabidopsis. A dynamic duo. <i>Plant Physiol</i> 135 , 607-10 (2004)
12	5.	Harris, E.H., Stern, D.B. & Witman, G.B. <i>The Chlamvdomonas Sourcebook</i> . (Academic Press.
13		2009).
14	6.	Rochaix, J.D. Chlamydomonas reinhardtii as the photosynthetic veast. Annu Rev Genet 29, 209-30
15		(1995).
16	7.	Li, J.B. <i>et al.</i> Comparative genomics identifies a flagellar and basal body proteome that includes
17		the BBS5 human disease gene. Cell 117, 541-52 (2004).
18	8.	Silflow, C.D. & Lefebvre, P.A. Assembly and motility of eukaryotic cilia and flagella. Lessons
19		from Chlamydomonas reinhardtii. Plant Physiol 127, 1500-7 (2001).
20	9.	Li, X. et al. An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological
21		Processes in Chlamydomonas reinhardtii. Plant Cell 28, 367-87 (2016).
22	10.	Terashima, M., Specht, M. & Hippler, M. The chloroplast proteome: a survey from the
23		Chlamydomonas reinhardtii perspective with a focus on distinctive features. Curr Genet 57, 151-
24		68 (2011).
25	11.	Pazour, G.J., Agrin, N., Leszyk, J. & Witman, G.B. Proteomic analysis of a eukaryotic cilium. J
26		<i>Cell Biol</i> 170 , 103-13 (2005).
27	12.	Merchant, S.S. et al. The Chlamydomonas genome reveals the evolution of key animal and plant
28		functions. Science 318, 245-251 (2007).
29	13.	Zones, J.M., Blaby, I.K., Merchant, S.S. & Umen, J.G. High-Resolution Profiling of a
30		Synchronized Diurnal Transcriptome from Chlamydomonas reinhardtii Reveals Continuous Cell
31		and Metabolic Differentiation. Plant Cell (2015).
32	14.	Duanmu, D. et al. Retrograde bilin signaling enables Chlamydomonas greening and phototrophic
33		survival. Proc Natl Acad Sci US A 110, 3621-6 (2013).
34	15.	Dent, R.M. et al. Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic
35		functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants.
36		<i>Plant J</i> 82 , 337-351 (2015).
37	16.	Allen, J.F., de Paula, W.B., Puthiyaveetil, S. & Nield, J. A structural phylogenetic map for
38		chloroplast photosynthesis. Trends Plant Sci 16, 645-55 (2011).
39	17.	Giordano, M., Beardall, J. & Raven, J.A. CO2 concentrating mechanisms in algae: mechanisms,
40		environmental modulation, and evolution. Annu Rev Plant Biol 56, 99-131 (2005).
41	18.	Goldschmidt-Clermont, M. & Rahire, M. Sequence, evolution and differential expression of the
42		two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase in
43	10	Chlamydomonas reinhardtii. J Mol Biol 191, 421-32 (1986).
44	19.	Suzuki, Y., Arae, T., Green, P.J., Yamaguchi, J. & Chiba, Y. AtCCR4a and AtCCR4b are
45		Involved in Determining the Poly(A) Length of Granule-bound starch synthase 1 Transcript and
46		Modulating Sucrose and Starch Metabolism in Arabidopsis thaliana. <i>Plant Cell Physiol</i> 56 , 863-74
47	•	(2015).
48	20.	Wang, H. <i>et al.</i> The global phosphoproteome of Chlamydomonas reinhardtii reveals complex
49 50		organeitar phosphorylation in the flagella and thylakoid membrane. <i>Mol Cell Proteomics</i> 13,
50	21	2557-55 (2014). Dessi D. Seen, S.V. Frank, C. Zaker, H. & Deskai, J.D. Characteristics, COld. 1, 11, 75
51 52	21.	Bassi, K., Soen, S.Y., Frank, G., Zuber, H. & Kochaix, J.D. Characterization of Chlorophyll-a/B
32 52		riotenis of rhotosystem-1 from Chiamydomonas-Keinnardtil. J Biol Chem 201, 25/14-25/21
55		(1992).

1	22.	Sager, R. & Zalokar, M. Pigments and photosynthesis in a carotenoid-deficient mutant of
2		Chlamydomonas. Nature 182, 98-100 (1958).
3	23.	Baek, K. et al. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9
4		ribonucleoproteins. Sci Rep 6, 30620 (2016).
5	24.	Jiang, W., Brueggeman, A.J., Horken, K.M., Plucinak, T.M. & Weeks, D.P. Successful transient
6		expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot Cell 13,
7		1465-9 (2014).
8	25.	Shin, S.E. et al. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas
9		reinhardtii. Sci Rep 6, 27810 (2016).
10	26.	Slaninová, M., Hroššová, D., Vlček, D. & Wolfgang, W. Is it possible to improve homologous
11		recombination in Chlamydomonas reinhardtii? Biologia 63, 941-46 (2008).
12	27.	Greiner, A. et al. Targeting of Photoreceptor Genes in Chlamydomonas reinhardtii via Zinc-finger
13		Nucleases and CRISPR/Cas9. Plant Cell (2017).
14	28.	Ferenczi, A., Pyott, D.E., Xipnitou, A. & Molnar, A. Efficient targeted DNA editing and
15		replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded
16		DNA. Proc Natl Acad Sci U S A (2017).
17	29.	Liu, X.L., Yu, H.D., Guan, Y., Li, J.K. & Guo, F.Q. Carbonylation and loss-of-function analyses
18		of SBPase reveal its metabolic interface role in oxidative stress, carbon assimilation, and multiple
19		aspects of growth and development in Arabidopsis. Mol Plant 5, 1082-99 (2012).
20	30.	Klein, R.R. & Houtz, R.L. Cloning and developmental expression of pea ribulose-1,5-
21		bisphosphate carboxylase/oxygenase large subunit N-methyltransferase. <i>Plant Mol Biol</i> 27, 249-
22		61 (1995).
23	31.	Johnson, X. <i>et al.</i> MRL1, a conserved Pentatricopeptide repeat protein, is required for stabilization
24		of rbcL mRNA in Chlamydomonas and Arabidopsis. <i>Plant Cell</i> 22 , 234-48 (2010).
25	32.	Wang, L. et al. Chloroplast-mediated regulation of CO2-concentrating mechanism by Ca2+-
26		binding protein CAS in the green alga Chlamydomonas reinhardtii. <i>Proc Natl Acad Sci U S A</i> 113 .
27		12586-12591 (2016).
28	33.	Wang, Y. & Spalding, M.H. An inorganic carbon transport system responsible for acclimation
29		specific to air levels of CO2 in Chlamydomonas reinhardtii. <i>Proc Natl Acad Sci U S A</i> 103 . 10110-
30		5 (2006).
31	34.	Gao, H., Sage, T.L. & Ostervoung, K.W. FZL, an FZO-like protein in plants, is a determinant of
32		thylakoid and chloroplast morphology. <i>Proc Natl Acad Sci U S A</i> 103 , 6759-64 (2006).
33	35.	Martinis, J. <i>et al.</i> ABC1K1/PGR6 kinase: a regulatory link between photosynthetic activity and
34		chloroplast metabolism. <i>Plant J</i> 77, 269-83 (2014).
35	36.	Kim, E.H., Lee, Y. & Kim, H.U. Fibrillin 5 Is Essential for Plastoquinone-9 Biosynthesis by
36		Binding to Solanesyl Diphosphate Synthases in Arabidopsis. <i>Plant Cell</i> 27 , 2956-71 (2015).
37	37.	Lefebyre-Legendre, L. <i>et al.</i> Loss of phylloquinone in Chlamydomonas affects plastoquinone pool
38	011	size and photosystem II synthesis <i>J Biol Chem</i> 282 13250-63 (2007)
39	38	Wilde A Lunser K Ossenbuhl F Nickelsen J & Borner T Characterization of the
40	20.	cvanobacterial vcf37 [·] mutation decreases the photosystem I content <i>Biochem J</i> 357 211-6 (2001)
41	39	Stockel J Bennewitz S Hein P & Oelmuller R The evolutionarily conserved tetratrico
42	07.	peptide repeat protein pale vellow green7 is required for photosystem I accumulation in
43		Arabidopsis and conjurifies with the complex <i>Plant Physiol</i> 141 870-8 (2006)
44	40	Heinnickel M <i>et al.</i> Tetratricopentide repeat protein protects photosystem I from oxidative
45		disruption during assembly <i>Proc Natl Acad Sci U S A</i> 113 2774-9 (2016)
46	41	Lezhneva L. Amann K & Meurer I. The universally conserved HCF101 protein is involved in
47		assembly of [4Fe-4S]-cluster-containing complexes in Arabidonsis thaliana chloroplasts <i>Plant J</i>
48		37 174-85 (2004)
49	42	Meurer I Meierhoff K & Westhoff P Isolation of high-chloronhyll-fluorescence mutants of
50	12.	Arabidonsis thaliana and their characterisation by spectroscopy immunohlotting and northern
51		hybridisation <i>Planta</i> 198 385-96 (1996)
52	43	Douchi D et al A Nucleus-Encoded Chloronlast Phosphonrotein Governs Expression of the
53	т.Э.	Photosystem I Subunit PsaC in Chlamydomonas reinhardtii <i>Plant Coll</i> 28 1182-00 (2016)
54	44	Felder S $\rho t dl$ The nucleus-encoded HCF107 gene of Arabidonsis provides a link between
55	- 1	intercistronic RNA processing and the accumulation of translation competent nebH transcripts in
56		chloroplasts <i>Plant Call</i> 13 2127-41 (2001)
50		(1010) (2001) (2001)

1 2 3	45.	Carlotto, N. <i>et al.</i> The chloroplastic DEVH-box RNA helicase INCREASED SIZE EXCLUSION LIMIT 2 involved in plasmodesmata regulation is required for group II intron splicing. <i>Plant Cell Environ</i> 39 , 165-73 (2016)
4	46	Perron K Goldschmidt-Clermont M & Rochaix ID A factor related to pseudouridine
5	40.	synthases is required for chloronlast group II intron trans-splicing in Chlamydomonas reinhardtii
6		<i>EMBO J</i> 18 6481-90 (1999)
7	47	Rivier C. Goldschmidt-Clermont M & Rochaix ID Identification of an RNA-protein complex
8	17.	involved in chloroplast group II intron trans-splicing in Chlamydomonas reinhardtii <i>EMBO J</i> 20
9		1765-73 (2001)
10	48	Jacobs J et al Identification of a chloroplast ribonucleoprotein complex containing trans-splicing
11		factors, intron RNA, and novel components. <i>Mol Cell Proteomics</i> 12 , 1912-25 (2013).
12	49.	Marx, C., Wunsch, C. & Kuck, U. The Octatricopeptide Repeat Protein Raa8 Is Required for
13		Chloroplast trans Splicing. Eukaryot Cell 14, 998-1005 (2015).
14	50.	Link, S., Engelmann, K., Meierhoff, K. & Westhoff, P. The atypical short-chain dehydrogenases
15		HCF173 and HCF244 are jointly involved in translational initiation of the psbA mRNA of
16		Arabidopsis. Plant Physiol 160, 2202-18 (2012).
17	51.	Schult, K. et al. The nuclear-encoded factor HCF173 is involved in the initiation of translation of
18		the psbA mRNA in Arabidopsis thaliana. Plant Cell 19, 1329-46 (2007).
19	52.	Wei, L. et al. LPA19, a Psb27 homolog in Arabidopsis thaliana, facilitates D1 protein precursor
20		processing during PSII biogenesis. J Biol Chem 285, 21391-8 (2010).
21	53.	Ma, J. et al. LPA2 is required for efficient assembly of photosystem II in Arabidopsis thaliana.
22		Plant Cell 19, 1980-93 (2007).
23	54.	Komenda, J. et al. The cyanobacterial homologue of HCF136/YCF48 is a component of an early
24		photosystem II assembly complex and is important for both the efficient assembly and repair of
25		photosystem II in Synechocystis sp. PCC 6803. J Biol Chem 283, 22390-9 (2008).
26	55.	Peng, L. et al. LOW PSII ACCUMULATION1 is involved in efficient assembly of photosystem II
27		in Arabidopsis thaliana. Plant Cell 18, 955-69 (2006).
28	56.	Tardif, M. et al. PredAlgo: a new subcellular localization prediction tool dedicated to green algae.
29		<i>Mol Biol Evol</i> 29 , 3625-39 (2012).
30	57.	Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search
31		programs. Nucleic Acids Res 25, 3389-402 (1997).

1 SUPPLEMENTARY INFORMATION 2 3 4 5 A genome-wide algal mutant library reveals a global 6 view of genes required for eukaryotic photosynthesis 7 8 Xiaobo Li, Weronika Patena, Friedrich Fauser, Robert E. Jinkerson, Shai Saroussi, 9 Moritz T. Meyer, Nina Ivanova, Jacob M. Robertson, Rebecca Yue, Ru Zhang, 10 Josep Vilarrasa-Blasi, Tyler M. Wittkopp, Silvia Ramundo, Sean R. Blum, Audrey 11 Goh, Matthew Laudon, Tharan Srikumar, Paul A. Lefebvre, Arthur R. Grossman, 12 and Martin C. Jonikas^{*} 13 14

15 *e-mail: <u>mjonikas@princeton.edu</u>

16 Table of Contents

1	7
н	1
-	'

18	Methods 4
19	Supplementary Note
20	Accuracy of insertion mapping and number of insertions per mutant
21	Deletions, duplications, and junk fragments associated with insertions are small37
22	Insertion sites are randomly distributed with mild cold spots and a small number of hot
23	spots
24	Absence of insertions identifies over 200 genes potentially essential for growth under
25	the propagation conditions used
26	Deleterious mutations rather than differential chromatin configuration are the major
27	cause of insertion density variation40
28	Disruption of CPL3 is the cause of the photosynthetic deficiency in the cpl3 mutant40
29	Supplementary Figures 42
30	Captions for Supplementary Table 1 to S14 55
31	References

33 Other supplementary materials for this manuscript (provided as

34 separate excel or text files):

35	Supplementary Table 1. Primers and experimental design for all PCRs related to
36	library generation and mapping.
37	Supplementary Table 2. Binary codes for plate super-pooling.
38	Supplementary Table 3. Binary codes for colony super-pooling.
39	Supplementary Table 4. Read counts for each barcode in each combinatorial
40	super-pool.
41	Supplementary Table 5. List of all mapped mutants in the library.
42	Supplementary Table 6. Primers and results of PCRs used to verify the insertion
43	sites of randomly-picked mutants from the mutant library.
44	Supplementary Table 7. Statistically significant insertion hot spots and cold spots.
45	Supplementary Table 8. Statistically significant depleted functional terms.
46	Supplementary Table 9. Candidate essential genes.
47	Supplementary Table 10. Read counts of barcodes before and after pooled growth
48	in the photosynthesis screen.
49	Supplementary Table 11. Statistics of the pooled growth data for all genes.
50	Supplementary Table 12. Summary of previous characterizations of higher- and
51	lower-confidence genes' roles in photosynthesis.
52	Supplementary Table 13. Read counts of <i>cpl3</i> exon and intron alleles in the
53	pooled screens.
54	Supplementary Table 14. Proteomic characterization of the <i>cpl3</i> mutant.
55	

56 Methods

57	Generation of the indexed and barcoded mutant library: a conceptual overview. A
58	three-step pipeline was developed for the generation of an indexed, barcoded library of
59	insertional mutants in Chlamydomonas (Fig. 1b and Supplementary Fig. 1).
60	To generated mutants, CC-4533 ¹ ("wild type" in text and figures) cells were
61	transformed with DNA cassettes that randomly insert into the genome, confer
62	paromomycin resistance for selection, and inactivate the genes they insert into. Each
63	cassette contained two unique 22 nucleotide barcodes, one at each end of the cassette
64	(Supplementary Fig. 1a-d). Transformants were arrayed on agar plates and each insertion
65	in a transformant would contain two barcodes. The barcode sequences as well as the
66	insertion site were initially unknown (Supplementary Fig. 1e).
67	To determine the sequences of the barcodes in each colony, combinatorial pools
68	of the individual mutants were generated, with DNA extracted, and barcodes amplified
69	and deep-sequenced. The combinatorial pooling patterns were designed so that each
70	colony was included in a different combination of pools, allowing us to determine the
71	barcode sequences associated with individual colonies based on which pools the
72	sequences were found in (Supplementary Fig. 1f and Supplementary Fig. 2a-e; Methods).
73	This procedure was similar in concept to the approach we used in our pilot study ² , but it
74	consumed significantly less time because we used a simple PCR amplifying only the
75	barcodes instead of a multi-step flanking sequence extraction protocol (ChlaMmeSeq ¹)
76	on each combinatorial pool.
77	To determine the insertion site associated with each barcode, the library was

78 pooled into a single sample or six separate samples. The barcodes and their flanking

79	genomic DNA were PCR amplified using LEAP-Seq ² (Supplementary Fig. 1g and
80	Supplementary Fig. 2f-j; Methods). The flanking sequences associated with each barcode
81	were obtained by paired-end deep sequencing ^{3,4} . The final product is an indexed library
82	in which each colony has known flanking sequences that identify the genomic insertion
83	site, and barcode sequences that facilitate pooled screens in which individual mutants can
84	be tracked by deep sequencing (Fig. 3a).
85	Experimental details for this pipeline are described in paragraphs below.
86	
87	Generation of insertion cassettes. The insertion cassette designated <u>C</u> assette containing
88	Internal Barcodes 1 (CIB1) was generated in four steps: (1) generating double-stranded
89	DNAs containing random sequences (Supplementary Fig. 1a); (2) digesting the double-
90	stranded DNAs to yield cassette ends (Supplementary Fig. 1a); (3) obtaining the
91	backbone from digestion of plasmid pMJ016c that contains the sequences between the
92	two barcodes (Supplementary Fig. 1b); (4) ligating the two cassette ends with the cassette
93	backbone (Supplementary Fig. 1c).
94	Step 1: To generate each end of the cassette that contains barcodes, a long
95	oligonucleotide primer (Supplementary Fig. 1a and Supplementary Table 1) containing a
96	random sequence region of 22 nucleotides was used as a template for the extension of a
97	shorter oligonucleotide primer. Each 50- μ L reaction mixture contained 32 μ L H ₂ O, 10
98	μL Phusion GC buffer, 1.5 μL DMSO, 1 μL 10 mM dNTP, 2.5 μL 10 μM long oligo, 2.5
99	μL 10 μM short oligo, and 0.5 μL Phusion HS II DNA polymerase (F549L, Thermo
100	Fisher). The reaction mixtures were subjected to a single thermal cycle: 98°C for 40 sec,
101	97°C to 63°C ramp (-1°C every 10 sec), 63°C for 30 sec, 72°C for 5 min.

102	Step 2: The double-stranded product yielded from Step 1 was digested using BsaI
103	(R0535L, New England Biolabs). For the 5' side primer extension product, the digestion
104	yielded two bands of 87 bp (plus 4 nt of overhang) and 31 bp (plus 4 nt of overhang). For
105	the 3' side, they were 68 bp and 31 bp. The larger band from each digestion was purified
106	from a 2.5% agarose gel using D-tubes (71508-3, EMD Millipore) as previously
107	described ¹ (Supplementary Fig. 1a).
108	Step 3: The synthesized plasmid pMJ016c, which contains the HSP70-RBCS2
109	promoter, the paromomycin resistance gene AphVIII, and the PSAD and RPL12
110	terminators, was digested using BsaI. Two bands of 2064 bp and 3363 bp were obtained.
111	The 2064 bp band (cassette backbone) was purified from a 0.8% agarose gel using the
112	QIAquick Kit (28106, Qiagen) according to the manufacturer's instructions
113	(Supplementary Fig. 1b).
114	
	Step 4: The two fragments and the cassette backbone were ligated using T4 DNA
115	Step 4: The two fragments and the cassette backbone were ligated using 14 DNA ligase (M0202L, New England Biolabs) (Supplementary Fig. 1c). Each 30-µL reaction
115 116	Step 4: The two fragments and the cassette backbone were ligated using 14 DNA ligase (M0202L, New England Biolabs) (Supplementary Fig. 1c). Each 30-µL reaction mixture contained 38 ng 5' cassette end, 30 ng 3' cassette end, 305 ng cassette backbone,
115 116 117	Step 4: The two fragments and the cassette backbone were ligated using 14 DNA ligase (M0202L, New England Biolabs) (Supplementary Fig. 1c). Each $30-\mu$ L reaction mixture contained 38 ng 5' cassette end, 30 ng 3' cassette end, 305 ng cassette backbone, 3 μ L ligase buffer, and 0.5 μ L ligase. The double-stranded product of 2,223 bp was gel
115 116 117 118	Step 4: The two fragments and the cassette backbone were ligated using T4 DNA ligase (M0202L, New England Biolabs) (Supplementary Fig. 1c). Each 30- μ L reaction mixture contained 38 ng 5' cassette end, 30 ng 3' cassette end, 305 ng cassette backbone, 3 μ L ligase buffer, and 0.5 μ L ligase. The double-stranded product of 2,223 bp was gel purified using D-tubes and used for mutant generation. The sequence of the CIB1 cassette
115 116 117 118 119	Step 4: The two fragments and the cassette backbone were ligated using 14 DNA ligase (M0202L, New England Biolabs) (Supplementary Fig. 1c). Each $30-\mu$ L reaction mixture contained 38 ng 5' cassette end, 30 ng 3' cassette end, 305 ng cassette backbone, 3 μ L ligase buffer, and 0.5 μ L ligase. The double-stranded product of 2,223 bp was gel purified using D-tubes and used for mutant generation. The sequence of the CIB1 cassette generated (Supplementary Fig. 1d) has been uploaded to the mutant ordering website:
 115 116 117 118 119 120 	Step 4: The two fragments and the cassette backbone were ligated using T4 DNA ligase (M0202L, New England Biolabs) (Supplementary Fig. 1c). Each 30- μ L reaction mixture contained 38 ng 5' cassette end, 30 ng 3' cassette end, 305 ng cassette backbone, 3 μ L ligase buffer, and 0.5 μ L ligase. The double-stranded product of 2,223 bp was gel purified using D-tubes and used for mutant generation. The sequence of the CIB1 cassette generated (Supplementary Fig. 1d) has been uploaded to the mutant ordering website: https://www.chlamylibrary.org/showCassette?cassette=CIB1.
 115 116 117 118 119 120 121 	Step 4: The two fragments and the cassette backbone were ligated using 14 DNA ligase (M0202L, New England Biolabs) (Supplementary Fig. 1c). Each 30- μ L reaction mixture contained 38 ng 5' cassette end, 30 ng 3' cassette end, 305 ng cassette backbone, 3 μ L ligase buffer, and 0.5 μ L ligase. The double-stranded product of 2,223 bp was gel purified using D-tubes and used for mutant generation. The sequence of the CIB1 cassette generated (Supplementary Fig. 1d) has been uploaded to the mutant ordering website: https://www.chlamylibrary.org/showCassette?cassette=CIB1.
 115 116 117 118 119 120 121 122 	Step 4: The two fragments and the cassette backbone were ligated using 14 DNA ligase (M0202L, New England Biolabs) (Supplementary Fig. 1c). Each 30-μL reaction mixture contained 38 ng 5' cassette end, 30 ng 3' cassette end, 305 ng cassette backbone, 3 μL ligase buffer, and 0.5 μL ligase. The double-stranded product of 2,223 bp was gel purified using D-tubes and used for mutant generation. The sequence of the CIB1 cassette generated (Supplementary Fig. 1d) has been uploaded to the mutant ordering website: https://www.chlamylibrary.org/showCassette?cassette=CIB1.

under 100 μ mol photons m⁻² s⁻¹ light (measured at the periphery) to a density of 1-1.5x

10⁶ cells/mL. Cells were collected by centrifugation at 300-1,000g for 4 min. Pellets were 125 washed once with 25 mL TAP medium supplemented with 40 mM sucrose, and then 126 resuspended in TAP supplemented with 40 mM sucrose at $2x \ 10^8$ cells/mL. 250 µL of 127 128 cell suspension was then aliquoted into each electroporation cuvette (Bio-Rad) and incubated at 16°C for 5-30 min. For each cuvette, 5 µL DNA cassette CIB1 at 5 ng/µL 129 was added to the cell suspension and mixed by pipetting. Electroporation was performed 130 immediately as previously described¹. After electroporation, cells from each cuvette were 131 diluted into 8 mL TAP supplemented with 40 mM sucrose and shaken gently in dark for 132 133 6 h. After incubation, cells were plated on TAP containing 20 µg/mL paromomycin (800 μ L per plate) and incubated in darkness for approximately two weeks before colony 134 picking. 135

Approximately 210,000 total mutants were picked using a Norgren CP7200 136 colony picking robot and maintained on 570 agar plates, each containing a 384-colony 137 array. We propagated this original, full library by robotically passaging the mutant arrays 138 to fresh 1.5% agar solidified TAP medium containing 20 μ g/mL paromomycin using a 139 Singer RoToR robot (Singer Instruments)². The full collection was grown in complete 140 darkness at room temperature and passaged every four weeks. In this collection, 127,847 141 of the mutants were mapped. Colonies that failed to yield barcodes or flanking sequences 142 may contain truncated insertion cassettes¹ that have lost the primer binding sites used for 143 144 barcode amplification or LEAP-Seq analysis. By removing the mutants that were not mapped, mutants that did not survive propagation, and some of the mutants in genes with 145 20 or more insertions, we consolidated 62,389 mutants into 245 plates of 384-colony 146 147 arrays for long-term robotic propagation.

The TAP medium was prepared as previously reported⁵. The TP medium used in this research was similar to TAP except that HCl instead of acetic acid was used to adjust the pH to 7.5.

151

Combinatorial pooling. For combinatorial pooling and barcode determination for each 152 mutant colony, 570 plate-pools (each containing all mutants on one plate) and 384 153 colony-pools (each containing all mutants in the same colony position across all plates) 154 were generated from two separate sets of the library as previously described². Binary 155 error-correcting codes were used to design combinatorial pooling schemes, as previously 156 described². The existence of suitable binary error-correcting codes and their mathematical 157 construction methods were checked using an online database⁶. For colony super-pooling, 158 the same 384-codeword subset of the [20,10,6] code as previously employed² was used. 159 For plate super-pooling, the [21,11,6] code was generated by triple shortening of the 160 [24, 14, 6] code⁷. In order to ensure detection of cases of two colonies derived from a 161 single mutant, which could otherwise cause incorrect colony locations to be identified for 162 such mutants, the subset of codewords with a bit sum of 10 (708 codewords) was taken 163 from the [21,11,6] code, using the choose codewords by bit sum function. Both subsets 164 of codewords were checked for the possibility of such sister colony conflicts using the 165 clonality conflict check function: no conflicts were detected up to 2 errors, meaning any 166 167 incorrect result due to a sister colony case would have at least 2 differences compared to any expected correct result. The final subset of 570 codewords for plate super-pooling 168 was chosen as previously². The final codeword lists are provided as Supplementary 169 170 Tables 2 and 3.
171	Generation of plate-super-pools and colony-super-pools from the plate-pools and
172	colony-pools was performed using the Biomek FX liquid handling robot (Beckman
173	Coulter) as previously described ² . The instruction files for the Biomek robot were
174	generated using the robotic_plate_transfer.py program.
175	
176	Barcode amplification from super-pools. DNA was extracted from super-pool samples
177	as previously described ¹ and the barcodes were amplified (Supplementary Fig. 1f) using
178	the Phusion HSII PCR system. For either 5' or 3' barcode amplifications, one primer (5'
179	R1 or 3' R1; sequences provided in Supplementary Table 1) used in the PCR was
180	common for all super-pools; the other primer (5' R2-1, 5' R2-2,; 3' R2-1, 3' R2-2,;)
181	contained an index sequence that allows multiplexed sequencing, i.e. combining of
182	multiple samples in one sequencing lane. Each 50 μ L PCR mixture contained 125 ng
183	genomic DNA, 10 μ L GC buffer, 5 μ L DMSO, 1 μ L dNTPs at 10 mM, 1 μ L (for 5') or 2
184	μL (for 3') MgCl_2 at 50 mM, 2.5 μL of each primer at 10 $\mu M,$ and 1 μL Phusion HSII
185	polymerase. The reaction mixtures were incubated at 98°C for 3 min, followed by 10
186	three-step cycles (10 sec at 98°C, 25 sec at 58°C or 63°C for 5' and 3' barcodes
187	respectively, and 15 sec at 72°C), and then 8 two-step cycles (10 sec at 98°C, and 40 sec
188	at 72°C). Similar amount of products from three to eight super-pools were combined,
189	purified using MinElute columns (28006, Qiagen), and the product bands (235 bp for 5'
190	and 209 bp for 3') were gel purified. The purified products were sequenced using the
191	Illumina HiSeq platform from a single end with a custom primer (5' Seq and 3' Seq,
192	Supplementary Table 1).

Deconvolution of super-pool sequencing data. The barcode sequences were extracted
from the Illumina sequencing data from each super-pool using the cutadapt commandline program⁸, with a 13 bp expected cassette sequence, allowing 1 alignment error, and
taking the trimmed barcode reads between 21 and 23 bp in length. The command for 5'
sequences was "cutadapt -a GGCAAGCTAGAGA -e 0.1 -m 21 -M 23", and for 3'
sequences "cutadapt -a TAGCGCGGGGCGT -e 0.1 -m 21 -M 23". A barcode was found
in 97-99% of the sequences in each super-pool.

The reads for each distinct barcode sequence in each super-pool were counted 201 202 (Supplementary Table 4). Many of the sequenced barcodes are likely to contain PCR or sequencing errors. Such barcodes were left uncorrected, because they are very unlikely to 203 appear in enough super-pools to be deconvolved and included in the final data. The 204 deconvolution based on the read count table was performed as previously described², for 205 5' and 3' data separately. A single set of optimized (N, x) parameters was chosen for each 206 dataset, with m = 0 in all cases: N = 8 and x = 0.14 for 5' plate-super-pool data, N = 8207 and x = 0.16 for 3' plate-super-pool data, N = 6 and x = 0.12 for 5' colony-super-pool 208 data, N = 6 and x = 0.1 for 3' colony-super-pool data. Note that data for colony-super-209 pool 14 are missing for plates 351-570, which caused imperfections in the deconvolution 210 process, but the missing data were dispensable due to the error-correction capability built 211 into the pooling scheme. 212

213

LEAP-Seq. To connect the flanking sequence with the corresponding barcode for each insertion, we performed LEAP-Seq as reported before² except that barcodes in addition to the flanking sequences were included in the amplicons (Supplementary Fig. 1g, and

217 Supplementary Fig. 2f). Genomic DNA of mutants in the library was used as the template for the extension of a biotinylated primer that anneals to the insertion cassette. The 218 primer extension products were purified by binding to streptavidin-coupled magnetic 219 220 beads and then ligated to a single-stranded DNA adapter. The ligation products were then used as templates for PCR amplification. The PCR products were gel-purified before 221 222 being submitted for deep sequencing. We tried different combinations of primers and attempted to perform LEAP-Seq 223 either on six sub-pools (each containing mutants from one-sixth of the library) separately 224 225 or on the entire library in a single reaction (Supplementary Table 1). Sequencing results from all the samples were used in the analyses below. 226 227 **Basic LEAP-Seq data analysis.** The LEAP-Seq samples were sequenced with Illumina 228 Hi-Seq, yielding paired-end reads. Each read pair has a proximal side, containing the 229 230 barcode, a part of the cassette sequence, and the immediate genomic flanking sequence; and a distal side, containing the genomic sequence a variable distance away 231 (Supplementary Fig. 2f-j). 232 233 A newly developed method was used to separate cassette sequence from the proximal reads and thus identify the barcode and genomic flanking sequence even in 234 cases where the cassette was truncated. This was done using the 235 deepseq strip cassette.py script, which uses local bowtie2 alignment⁹ to detect short 236 cassette sequence. A bowtie2 alignment was performed against the expected cassette 237 238 sequence (GGAGACGTGTTTCTGACGAGGGCTCGTGTGACTAGTGAGTCCAAC 239 for 5' reads and

240 ACTGACGTCGAGCCTTCTGGCAGACTAGTTGCTCCTGAGTCCAAC for 3' reads),

using the following bowtie2 options: "--local --all --ma 3 --mp 5,5 --np 1 --rdg 5,3 --rfg 241 4,3 --score-min C,20,0 -N0 -L5 -i C,1,0 -R5 -D30 --norc --reorder". The alignments for 242 243 each proximal read were filtered to only consider cases where the cassette aligns after a 21-23 bp barcode, at most 5 bp of expected initial cassette sequence are missing, and at 244 least 10 bp of expected cassette sequence are aligned with at most 30% errors. Out of the 245 filtered alignments, the best one was chosen in a maximally deterministic manner, in 246 order to ensure that multiple reads of the same insertion junction yield the same result. 247 248 The alignment with the highest alignment score is chosen (the bowtie scoring function was customized to distinguish between as many cases as possible); if there were multiple 249 alignments with the same score, the one with the longer alignment was chosen. 250 251 The resulting cassette alignment was then removed from each proximal read, with the section before the cassette being considered the barcode and the section after the 252 cassette being considered the genomic flanking region. The resulting genomic proximal 253 reads and the raw genomic distal reads were trimmed to 30 bp using the fast trimmer 254 command-line utility (http://hannonlab.cshl.edu/fastx toolkit), aligned to the 255 Chlamydomonas genome (version 5.5 from Phytozome¹⁰) and the cassette, and the 256 alignments were filtered to yield a single result using deepseq alignment wrapper.py, as 257

The barcode sequences and proximal and distal alignment results were merged into a single dataset, with data grouped into insertion junctions based on the barcode, using the add_RISCC_alignment_files_to_data function. Data relating to barcodes that were not present in the combinatorial deconvolution results were discarded. The gene-

previously described¹.

258

- related information for each insertion junction was added using the
- find_genes_for_mutants and add_gene_annotation functions. All functions in this
- 265 paragraph are methods of the Insertional_mutant_pool_dataset class in the
- 266 mutant_IB_RISCC_classes.py module.
- 267
- 268 Detecting pairs of flanking sequences that correspond to two sides of the same
- insertion (confidence levels 1 or 2). Pairs of insertion junctions likely derived from two
- sides of the same insertion were identified using the
- deconvolution_utilities.get_matching_sides_from_table function, using the method
- previously described², with an additional distance bin of 1-10 kb. The resulting pair
- 273 counts were as follows:

	0 bp	1-10 bp	11-100	101 bp -	1-10 kb	10+ kb
			bp	1 kb		
Inner-cassette	3935	17708	7866	737	339	540
(toward-facing)						
Outer-cassette	-	5010	188	560	58	494
(away-facing)						
Same-direction	13	17	40	158	133	1520

274

Additionally, there were 22,247 pairs in which the two junctions were mapped to

276 different chromosomes.

The number of inner-cassette pairs is significantly larger than 50% of the number of same-direction pairs in all size ranges up to 10 kb, implying that most of the inner279 cassette pairs in those size ranges are derived from a single insertion with a genomic deletion corresponding to the distance. This can be further confirmed by looking at the 280 indicators of the probability of correct mapping for the insertion junctions: insertions with 281 282 both sides mapped to the same region are almost certainly correctly mapped, and therefore independent indications of their correct mapping should be higher than for other 283 284 insertions. As expected, the inner-cassette pairs up to 10 kb have a higher fraction of very high confidence insertion pairs (with both sides having 70% or more read pairs mapping 285 to the same locus, and 500 bp or higher longest distance spanned by such read pairs): for 286 287 size ranges up to 10 kb, 37-41% of the pairs are very high confidence, while for 10+kbthe number is only 16%. 288

The number of outer-cassette pairs is significantly larger than 50% of the number 289 290 of same-direction pairs in size ranges between 1 bp and 1 kb, implying that most of the outer-cassette pairs in those size ranges are derived from a single insertion. There are two 291 possible physical interpretations of a single insertion yielding an outer-cassette pair of 292 insertion junctions: (1) an insertion with a genomic duplication causing the same genomic 293 294 DNA sequence to be present on both sides of the cassette (potentially due to single-strand repair); and (2) an insertion of two cassettes flanking a "junk" fragment of genomic 295 DNA. The 1-10 bp cases must be a genomic duplication, since a 1-10 bp "junk" fragment 296 could not yield a 30 bp flanking sequences aligning to the genome. This is confirmed by 297 298 41% of the pairs being very high confidence. The 101 bp-1 kb cases are almost certainly 299 insertions of two cassettes flanking a "junk" fragment, based on only 3.8% of them being very high confidence. The 188 11-100 bp cases, with a 27% very high confidence, are 300 likely split between the two categories; based on previous analysis¹ we used 30 bp as the 301

cutoff between cases 1 and 2 for outer-cassette pairs. The case 2 pairs, i.e. insertions of
two cassettes flanking a junk fragment, were used to determine the typical range of
lengths of junk fragments (Supplementary Fig. 3f).

Based on this analysis, all insertion junction pairs likely to be derived from two sides of the same insertion (inner-cassette up to 10 kb and outer-cassette up to 30 bp) were categorized as confidence level 1 (extremely likely to be correctly mapped) because their mapping position is derived from two independent flanking sequences. They were annotated in Supplementary Table 5 as confidence level 1, and the "if_both_sides" column was set to "perfect" for the 0 bp distance cases, "deletion" for the remaining inner-cassette cases, and "duplication" for the outer-cassette cases.

A similar type of analysis was performed to look for pairs of insertion junctions 312 313 derived from two sides of an insertion with a junk fragment. For each pair of insertion junctions in one colony (except pairs of insertion junctions already identified as two sides 314 of the same insertion), we looked at the distance and relative orientation between the 315 proximal read of the first junction and each distal read from the second junction; cases 316 where the distal read was mapped to within 10 kb of the proximal read were counted as 317 matches. We repeated the process with the first and second junctions swapped. To 318 simplify the analysis, two cases were ignored: colonies with matches between more than 319 two insertions ($\sim 12\%$ of match cases), and insertion pairs where the proximal read of one 320 321 insertion was a match to multiple distal reads of the other insertion with different orientations ($\sim 3\%$ of match cases). We then took the distance to the closest distal read, 322 and counted the cases by orientation and distance, as before: 323

	0-10 bp	11-100 bp	101 bp - 1	1-10 kb
			kb	
Inner-cassette (toward-facing)	11	5072	5787	289
Outer-cassette (away-facing)	28	140	152	82
Same-direction	6	185	283	195

324

Note that the distances are expected to be higher in this case, because if we are looking at a case of two sides of one insertion with a junk fragment, the distal read will be a variable distance away from the junk-genome junction which is the actual insertion location. So even for insertions with no genomic deletion/duplication, the distance between the proximal read on one side and the nearest distal read on the other side will not be 0 bp.

The number of inner-cassette cases up to 1 kb is more than 10x larger than the number of same-direction cases, so these insertion pairs are extremely likely to be two sides of one insertion with a junk fragment (and possibly a genomic deletion). Thus, all the pairs in this category were identified as confidence level 2, which are extremely likely to be correctly mapped.

The number of inner-cassette cases with a distance of 1-10 kb and the number of outer-cassette cases with a distance of 0-10 bp is also higher than the expected 50% of the same-direction cases, suggesting that many of them are also two sides of the same insertion, but the differences are less dramatic and thus the number of false positives would be too high for us to be comfortable identifying all these pairs as confidence level 2.

342	The insertion position information for junk fragment sides of confidence level 2
343	insertions originally reflected the junk fragment rather than the actual genomic insertion
344	position. We corrected it to show the nearest distal read matching the non-junk side: the
345	flanking sequence and position was changed to that of that distal read; the
346	"LEAPseq_distance" field was changed to the longest distance between two distal reads
347	that mapped to the presumed real insertion position (i.e. to the same region as the
348	proximal read of the insertion junction from the other side); the remaining LEAPseq
349	fields were likewise changed to reflect the numbers of distal reads and positions mapped
350	to the presumed real insertion position. For confidence level 2 insertions, the
351	"if_both_sides" column was set to "with-junk"; for the sides with a junk fragment, the
352	"if_fixed_position" column was set to "yes_nearest_distal", and for the sides without a
353	junk fragment it was kept as "no".
354	The confidence level 1 and 2 insertions (counting only the non-junk side of the
355	confidence level 2 insertions) appear to be of high quality (Supplementary Fig. 2h).
356	
357	Categorizing the remaining insertions and correcting junk fragments (confidence
358	levels 3 and 4). After identifying the highest-confidence insertion junctions, i.e. those
359	with two matching sides of the same insertion, we sought to separate the remaining
360	insertions (with only one side mapped) into a set with a high likelihood of having
361	correctly mapped genomic insertion positions and a set with insertion positions likely to
362	reflect junk fragments. We considered two factors to separate these two sets: (1) the
363	percentage of read pairs that map to the same locus, and (2) the longest distance spanned
364	by such a read pair (Supplementary Fig. 2, i and j). We decided to solely use the first

365 factor based on the fact that nearly all of the insertions with low distances but high percentage of read pairs mapped to the same locus were ones with relatively few LEAP-366 367 Seq reads, indicating that their short distances spanned are likely due to them having few reads (and thus a lower chance of a long read) rather than to a junk fragment. Therefore 368 we decided to use the percentage of read pairs mapping to the same locus as the only 369 factor in distinguishing the higher and lower confidence insertion sets, because that factor 370 is independent of the number of reads. To determine what cutoff would be appropriate, 371 we took advantage of the already known confidence level 1 insertions. We calculated the 372 373 fraction of confidence level 1 pairs among all the colonies with exactly two insertions (two insertions are required for a confidence level 1 pair) as an approximate lower bound 374 on the number of correctly mapped insertions. Over the entire dataset, this fraction is 375 376 65%; when calculated only on insertions with at least 50% read pairs mapping to the same locus, it's 78%; for insertions with at least 60%, 70%, 80% and 90% read pairs 377 mapping to the same locus, it is 79%. Thus it is clear that using a cutoff anywhere in the 378 50-90% range significantly improves the quality of the dataset, regardless of the exact 379 380 position of the cutoff. This makes sense, because the 50-90% range constitutes a very 381 small fraction of all insertions. We opted to use 60% as the cutoff for confidence level 3, i.e. insertions with only one mapped side but with LEAP-Seq data indicating very likely 382 correct mapping. 383

The remaining insertions, with below 60% read pairs mapping to the same locus and thus with the proximal LEAP-Seq read likely to be part of a junk fragment, were analyzed further to identify the most likely true insertion position. The same analysis was applied to all insertions with the proximal LEAP-Seq read with no genomic

388 alignment (possibly due to a very short junk fragment resulting in the 30 bp proximal read being a hybrid of the junk fragment sequence and genomic sequence from the real 389 insertion position, or simply due to PCR or sequencing errors yielding an unmappable 390 391 sequence), or with multiple equally good genomic alignments (which could be derived from the real genomic location, but in a non-unique region of the genome, requiring the 392 use of distal reads to determine the correct insertion location), or mapped to the insertion 393 cassette (indicating a second cassette fragment inserted between the first cassette and the 394 genome, which can be treated the same way as a junk genomic DNA fragment). 395

396 In order to determine the best method of identifying the true insertion location based on the full distal LEAP-Seq read data, we grouped the distal LEAP-Seq reads for 397 each insertion into regions no more than 3 kb in size. For each such group, we calculated 398 399 three measures that we thought might be the best method of identifying the real insertion location: (1) the number of reads in the group, (2) the number of unique genomic 400 positions to which reads in the group were mapped, and (3) the distance spanned by the 401 reads. LEAP-Seq reads mapped to the insertion cassette, or with no unique mapping to 402 403 the genome, were excluded. In order to determine which method was the best, we used 404 the junk fragment sides of confidence level 2 insertions, since for those the distal reads corresponding to the true genomic insertion locations had already been determined by an 405 independent method (i.e. by matching the proximal read of the other side of the 406 407 insertion). For each of the three methods listed above, the insertion location predicted by the method was compared to the known insertion location of each confidence level 2 408 insertion with a junk fragment. The results were as follows: 90% of the known insertion 409 410 positions were correctly predicted by taking the region with the most total distal reads,

84% by taking the region with the most unique mapping positions, and 84% by taking the
region with the longest distance spanned by the reads. Thus, the total number of distal
reads was chosen as the most likely measure to yield the correct genomic insertion
position of insertions with a junk fragment.

This method was then applied to all the insertions listed in the previous paragraph, 415 416 yielding the most likely true location for each insertion; insertions with only a single LEAP-Seq distal read in each region were excluded, because one read did not provide 417 enough data to determine the insertion position with any confidence. For some insertions, 418 419 the region with the most distal LEAP-Seq reads also included the proximal LEAP-Seq read - in those cases, the original insertion position based on the proximal LEAP-Seq 420 read was left unchanged. It is still possible that this position reflects a relatively long junk 421 422 fragment rather than the true genomic insertion position, but we did not have enough data to distinguish those cases from high confidence. Likewise, it is possible that the corrected 423 position with the most distal LEAP-Seq reads that do not match the proximal read reflects 424 a second long junk fragment inserted after the first junk fragment which contains the 425 proximal read (we know that insertions with multiple junk fragments can happen), but 426 427 given the limited length of Illumina-sequenced LEAP-Seq reads, we cannot detect those cases with certainty, and have to limit ourselves to finding putative insertion positions 428 that have a reasonably high probability of being correct. 429

Additionally, it turned out that many corrected positions for insertions originally mapped to the insertion cassette did not appear to be high-quality, with only a small fraction of distal reads mapped to the putative real insertion position. After looking at several such cases in detail, we concluded that they had not been analyzed correctly.

434 They had single LEAP-Seq reads mapped to multiple distant locations on many chromosomes, compared to 100+ reads mapped to many cassette locations, with the 435 putative real insertion position identified due to two or three single LEAP-Seq reads 436 mapped close together on one chromosome. The uniformly low read numbers of genome-437 mapped reads compared with the high read numbers of cassette-mapped reads led us to 438 conclude that the genome-mapped reads were results of PCR or sequencing errors or 439 other artifacts, rather than being derived from real LEAP-Seq products, which should 440 441 usually yield more than one read. Thus, those appeared to be cases where no LEAP-Seq 442 products sequenced past the additional cassette fragment - this could be expected, because the full cassette is >2.2 kb in length, whereas vanishingly few LEAP-Seq reads 443 are over 1.5 kb. In contrast, junk genomic DNA fragments are mostly smaller than 500 bp 444 445 and all identified ones were below 1 kb, so this problem would not be expected to be common in genomic junk fragment cases. Indeed a cluster of low-matching-read-percent 446 insertions was not observed in the corrected insertion positions in that category. We 447 decided to exclude this category of incorrectly mapped insertions by only including 448 449 corrected originally cassette-mapped insertions if >50% of the distal LEAP-Seq reads 450 mapped to the putative correct insertion location.

All the insertions included in the final results of this analysis were annotated as confidence level 4. The final confidence level 4 insertions are of a relatively high quality (Supplementary Fig. 2j). The positions, flanking sequences and LEAP-Seq data of the corrected confidence level 4 insertions in Supplementary Table 5 were changed to reflect the new insertion position, in the same way as for the junk fragment sides of the confidence level 2 insertions above. An additional complication of the new corrected

457	insertion positions was presented by the fact that the position of the nearest distal LEAP-
458	Seq read is always at some distance from the true insertion position, depending on the
459	length of the LEAP-Seq read. We attempted to correct for this by using confidence level
460	1 insertions to determine the average distance between the proximal read (reflecting the
461	true insertion position) and the nearest distal read, separately for 5' and 3' datasets,
462	depending on the total number of LEAP-Seq reads for the insertion (binned into ranges:
463	1, 2, 3, 4-5, 6-10, 11-20, 21+ total reads). For each confidence level 4 insertion with a
464	corrected position, the position was further adjusted by the average distance for the
465	correct side and number of reads as calculated above. This distance was appended as a
466	number to the value in the "if_fixed_position" field for each insertion in Supplementary
467	Table 5.

468

Insertion verification PCR. The PCR reactions were performed in two steps to verify 469 the insertion site² (Supplementary Table 6): (1) Genomic locus amplification: genomic 470 primers that are ~ 1 kb away from the flanking genomic sequence reported by LEAP-Seq 471 were used to amplify the genomic locus around the flanking sequence. If wild type 472 produced the expected PCR band but the mutant did not produce it or produced a much 473 larger product, this indicated that the genomic locus reported by LEAP-Seq may be 474 disrupted by the insertional cassette and we proceeded to the second step; (2) Genome-475 476 cassette junction amplification: one primer binding to the cassette (omj913, GCACCAATCATGTCAAGCCT, for the 5' side and omj944, 477 GACGTTACAGCACACCCTTG, for the 3' side) and the other primer binding to 478 479 flanking Chlamydomonas genomic DNA (one of the genomic primers from the first step) were used to amplify the genome-cassette junction. If the mutant produced a PCR band with expected size that was confirmed by sequencing but wild type did not produced the expected PCR band, we categorized this insertion as "confirmed." In some mutants, genomic primers surrounding the site of insertion did not yield any PCR products in wild type or the mutant even after several trials, possibly due to incorrect reference genome sequence or local PCR amplification difficulties. These cases were grouped as "failed PCR" and were not further analyzed.

72 mutants (24 insertions each for confidence levels 1 and 2, confidence level 3
and confidence level 4) were chosen randomly from the library and tested. The genomic
DNA template was prepared from a single colony of each mutant using the DNeasy Plant
Mini Kit (69106, Qiagen). The PCRs were performed using the Taq PCR core kit
(201225, Qiagen) as described before¹. PCR products of the expected size were verified
by Sanger sequencing.

493

Southern blotting. Southern blotting was performed as previously described in detail². 494 495 Genomic DNA was digested with StuI enzyme (R0187L, New England Biolabs) and 496 separated on a 0.7% Tris-borate-EDTA (TBE) agarose gel. The DNA in the gel was depurinated in 0.25 M HCl, denatured in a bath of 0.5 M NaOH, 1M NaCl, neutralized in 497 a bath of 1.5 M Tris-HCl, pH 7.4, 1.5 M NaCl, and finally transferred onto a Zeta-probe 498 499 membrane (1620159, Bio-Rad) overnight using the alkaline transfer protocol given in the manual accompanying the membrane. On the next day, the membrane was gently washed 500 with saline-sodium citrate (2xSSC: 0.3 M NaCl, 0.03 M sodium citrate), dried with paper 501 502 towel, and UV cross-linked twice using the Stratalinker1800 (Stratagene). For probe

503 generation, the AphVIII gene on CIB1 was amplified using primers oMJ588

504 (GACGACGCCCTGAGAGCCCT) and oMJ589

505 (TTAAAAAAATTCGTCCAGCAGGCG). The PCR product was purified and labeled

according to the protocol of Amersham Gene Images AlkPhos Direct Labeling and

507 Detection System (RPN3690, GE Healthcare). The membrane was hybridized at 60°C

overnight with10 ng probe/mL hybridization buffer. On the next day, the membrane was

509 washed with primary and secondary wash buffers and then visualized using a CL-

510 XPosure film (34093, Thermo Fisher).

511

Analyses of insertion distribution and identification of hot/cold spots. A mappability 512 metric was defined to quantify the fraction of all possible flanking sequences from any 513 genomic region that can be uniquely mapped to that region¹. Calculation of mappability, 514 hot/cold spot analysis and simulations of random insertions were performed as described 515 previously¹, except that a 30 bp flanking sequence lengths instead of a mix of 20 bp and 516 21 bp was used (because we now use 30 bp flanking sequence data derived from LEAP-517 Seq, rather than 20/21 bp ChlaMmeSeq sequences), and the v5.5 Chlamydomonas 518 genome instead of the v5.3 genome was used¹⁰. This analysis was done on the original 519 full set of mapped insertions, to avoid introducing bias from the choice of mutants into 520 the consolidated set. The hot/cold spot analysis was performed on confidence level 1 521 522 insertions only, to avoid introducing bias caused by junk fragments and their imperfect correction. The full list of statistically significant hot/cold spots is provided in 523 Supplementary Table 7. 524

525

526 Identification of underrepresented gene ontology (GO) terms. For each GO category, we calculated the total number of insertions in all genes annotated with the GO term and 527 528 the total mappable (mappability defined in the Supplementary Note) length of all such genes, and compared them to the total number of insertions in and total mappable length 529 of the set of flagellar proteome genes¹¹. We compared these numbers using Fisher's exact 530 test, and did correction for multiple comparisons¹² to obtain the false discovery rate 531 (FDR). This analysis was done on the original full set of mapped insertions to avoid 532 introducing bias from the choice of mutants into the consolidated set. We decided to use 533 534 the flagellar proteome as the comparison set because flagellar genes are very unlikely to be essential; we did not use intergenic insertions or the entire genome because we know 535 that the overall insertion density differs between genes and intergenic regions. The 536 537 statistically significant results are listed in Supplementary Table 8.

538

539 Prediction of essential genes. To predict essential genes in Chlamydomonas, we sought 540 to generate a list of genes that have fewer insertions than would be expected randomly 541 was generated. Among them, those with 0 insertion are considered candidate essential 542 genes.

To achieve these, for each gene, we calculated the total number of insertions in that gene and the total mappable length of that gene, and compared them to the total number of insertions in and total mappable length of the set of flagellar proteome genes¹¹, as what we have performed on each GO category. The resulting list of genes with statistically significantly fewer insertions than expected is discussed in the Supplementary Note and shown in Supplementary Table 9: this includes 203 genes with

549	no insertions, and 558 genes with at least one insertion. However, only genes 5 kb or
550	longer yield an false discovery rate (FDR) of 0.05 or less when they have no insertions -
551	our overall density of insertions is not high enough to detect smaller essential genes.
552	
553	Pooled Screens. Library plates that were replicated once every four weeks onto fresh
554	medium were switched to a 2-week replication interval to support uniform colony growth
555	before pooling. Cells were pooled from 5-days-old library plates: first, for each set of
556	eight agar plates, cells were scraped using the blunt side of a razor blade (55411-050,
557	VWR) and resuspended in 40 mL liquid TAP medium in 50-mL conical tubes. Second,
558	cells clumps were broken up by pipetting, using a P200 pipette tip attached to a 10-mL
559	serological pipette. In addition, cells were pipetted through a 100 μ m cell strainer
560	(431752, Corning). Third, these sub-pools were combined as the master pool representing
561	the full library.
562	The master pool was washed with TP, and resuspended in TP. Multiple aliquots
563	of 2 x 10^8 cells were pelleted by centrifugation (1,000 <i>g</i> , 5 min, room temperature) and the

supernatant was removed by decanting. Some aliquots were used for inoculation of

565 pooled cultures, whereas other aliquots were frozen at -80 °C as initial pool samples for

566 later barcode extraction to enable analysis of reproducibility between technical replicates.

567 For pooled growth, 20 L TAP or TP in transparent Carboy containers (2251-0050,

568 Nalgene) were inoculated with the initial pool to a final concentration of $2x \ 10^4$ cells/mL.

569 Cultures were grown under 22°C, mixed using a conventional magnetic stir bar and

570 aerated with air filtered using a 1 μm bacterial air venting filter (4308, Pall Laboratory).

571 The TAP culture was grown in dark. For the two replicate TP cultures, the light intensity

572	measured at the surface of the growth container was initially 100 μ mol photons m ⁻² s ⁻¹ ,
573	and then increased to 500 μmol photons $m^{\text{-2}} \text{s}^{\text{-1}}$ after the culture reached ${\sim}2x 10^5$
574	cells/mL. When the culture reached the final cell density of 2×10^6 cells/mL after 7
575	doublings, $2x \ 10^8$ cells were pelleted by centrifugation (1,000g, 5 min, room temperature)
576	for DNA extraction and barcode sequencing.
577	
578	Barcode sequencing and data analysis for pooled screens. Barcodes were amplified
579	and sequenced using the Illumina HiSeq platform as performed on the combinatorial
580	super-pools in library mapping (Supplementary Fig. 1f). Initial reads were trimmed using
581	cutadapt version 1.7.1 ⁸ . Sequences were trimmed using the command "cutadapt -a <seq></seq>
582	-e 0.1 -m 21 -M 23 input_file.gz -o output_file.fastq ", where seq is
583	GGCAAGCTAGAGA for 5' data and TAGCGCGGGGGCGT for 3' data. Barcodes were
584	counted by collapsing identical sequences using "fastx_collapser"
585	(http://hannonlab.cshl.edu/fastx_toolkit). The barcode read counts for each dataset were
586	normalized to a total of 100 million (Supplementary Table 10).
587	For evaluation of the quantitativeness of our barcode sequencing method,
588	barcodes obtained from two technical replicate aliquots of the same initial pool were
589	compared in read counts (Supplementary Fig. 5a). Barcodes obtained from the two TP-
590	light cultures at the end of growth were compared to assess consistency between
591	biological replicates (Fig. 3b).
592	To detect deficiency in photosynthetic growth, we compared mutant abundances
593	in TP-light with TAP-dark at the end of growth (Fig. 3c). As a quality control, different

594	barcodes in the same mutant were compared in the ratio of the TP-light read count to
595	TAP-dark read count. Highly consistent ratios were observed (Supplementary Fig. 5b).
596	For the identification of photosynthetically deficient mutants, each barcode with
597	at least 50 normalized reads in the TAP-dark dataset was classified as a hit if its ratio of
598	normalized TP-light: TAP-dark read counts was 0.1 or lower, or a non-hit otherwise. The
599	fraction of hit barcodes was 3.3% in replicate 1 and 2.9% in replicate 2. These barcodes
600	represent 2,638 and 2,369 mutants showing a growth defect in the TP-light-I and TP-
601	light-II replicates, respectively. A total of 3,109 mutants covering 2,599 genes showed a
602	growth defect in either of the TP-light sample.
603	
604	Identification and annotation of the hit genes from the screen. To evaluate the
605	likelihood that a gene is truly required for photosynthesis, we counted the number of
606	alleles for this gene with and without a phenotype, including exon/intron/5'UTR
607	insertions. If the insertion was on the edge of one of those features, or in one of the
608	features in only one of the splice variants, it was still counted. We excluded alleles with
609	insertions in the 3' UTRs, which we observed to less frequently cause a phenotype (Fig.
610	3, d and e). In cases of multiple barcodes in the same mutant (likely two sides of one
611	insertion), the one with a higher TAP-dark read count was used for the calculation of
612	normalized TP-light: TAP-dark read counts, to avoid double-counting a single allele. For
613	each gene, a P value was generated using Fisher's exact test comparing the numbers of
614	alleles in that gene with and without a phenotype to the numbers of all insertions in the
615	screen with and without a phenotype (Supplementary Table 11). A false discovery rate
616	(FDR) correction was performed on the P values using the Benjamini-Hochberg

617 method¹², including only genes with at least 2 alleles present in the screen. Thus, genes 618 with a single allele have a P value but lack a FDR.

This process was performed for both TP-light replicates. The list of higher-619 confidence genes was generated by taking genes with FDR of 0.27 or less in either 620 replicate - this threshold includes all genes with 2 hit alleles and 0 non-hit alleles. The 621 resulting list of hits included 37 genes in replicate 1, 34 in replicate 2, 44 total. The FDR 622 values for the higher-confidence genes in both replicates are shown in Tables 1 and 2. 623 Additionally, the list of lower-confidence genes was generated by taking genes with a P 624 625 value of 0.058 or less – this value was chosen to include genes with only one allele with a phenotype and no alleles without a phenotype, but to exclude genes with one allele with 626 and one without a phenotype. The resulting list included 264 genes total (210 in replicate 627 1, 196 in replicate 2). 628

One gene in the original higher-confidence list and four genes in the original 629 lower-confidence list encode subunits of the plastidic pyruvate dehydrogenase. Mutants 630 in these genes require acetate to grow because they cannot generate acetyl-CoA from 631 pyruvate but can generate acetyl-CoA from acetate. This requirement for acetate, rather 632 than a defect in photosynthesis, likely explains why mutants in this gene showed a 633 growth defect in TP-light¹³. Removal of these genes led to a final list of 43 higher-634 confidence genes and 260 lower-confidence genes (Fig. 3f, Tables 1 and 2, and 635 636 Supplementary Table 12).

We identified 65 (22 higher-confidence and 43 lower-confidence) out of the 303
hit genes as "known" genes based on genetic evidence: mutation of this gene in
Chlamydomonas or another organism caused a defect in photosynthesis. Among the

640	remaining 238 "candidate" genes (21 higher-confidence ones and 217 lower-confidence
641	ones), some genes appear to be related to photosynthesis because of their predicted
642	chloroplast localization or evolutionary conservation among photosynthetic organisms ¹⁴ ,
643	despite lack of solid genetic evidence. For three of the candidate genes (CGL59, CPL3,
644	and VTE5), mutants with insertions adjacent to them were previously found to be acetate-
645	requiring or hypersensitive to oxidative stress in the chloroplast ¹³ .

646

Analysis of candidate gene enrichment in reported transcriptional clusters related to 647 photosynthesis. Two transcriptome datasets in Chlamydomonas were used in this 648 analysis: a diurnal regulation study¹⁵ and a dark-to-light transition study¹⁶. For the first 649 one, we chose the diurnal cluster 4 in the study that had photosynthesis-related genes 650 enriched in it¹⁵. For the second one, we chose the genes upregulated upon transition to 651 light¹⁶. In each case, the number of candidate genes included and not included in the 652 regulated gene sets was compared to the total number of Chlamydomonas genes included 653 and not included in the cluster, using Fisher's exact test. The resulting P values were 654 FDR-adjusted using the Benjamini-Hochberg method¹². 655

656

663	expression of CPL3 is under the control of the PSAD promoter. The construct was
664	linearized before being transformed into the cpl3 mutant. Transformants were robotically
665	arrayed and assayed in colony sizes in the presence and absence of acetate respectively
666	(Supplementary Fig. 6, c and d). Three representative lines that showed rescued
667	photosynthetic growth were used in further phenotypic analyses (Fig. 4).
668	
669	Analyses of growth, chlorophyll, and photosynthetic electron transport. For all
670	physiological and biochemical characterizations of cpl3 below, we grew cells
671	heterotrophically in the dark to minimize secondary phenotypes due to defects in
672	photosynthesis.
673	For spot assays, cells were grown in TAP medium in dark to log phase to around
674	10^6 cells per mL. Cells were washed in TP and spotted onto solid TAP medium and TP
675	medium respectively. The TAP plates were incubated in dark for 12 d before being
676	imaged. The TP plates were incubated under 30 μ mol photons m ⁻² s ⁻¹ light for 1 d, 100
677	$\mu mol \ photons \ m^{-2} \ s^{-1} \ light \ for \ 1 \ d,$ and then 500 $\mu mol \ photons \ m^{-2} \ s^{-1} \ light \ for \ 4 \ d.$
678	Chlorophyll <i>a</i> and <i>b</i> concentrations were measured as previously described ¹⁸
679	using TAP-dark grown cells. We used TAP-dark-grown instead of TP-light-grown cells
680	for chlorophyll analyses, photosynthetic performance analyses, microscopy, proteomics,
681	and western blots (below) to avoid observing secondary effects due to the photosynthetic
682	defects of the cpl3 mutants.
683	To measure photosynthetic electron transport rate, TAP-dark grown cells were
684	collected, re-suspended in fresh TAP medium, and dark acclimated for 20 min. Cells
685	were then measured in chlorophyll fluorescence under a series of increasing light

686	intensities using the "Light Curve" function on a DUAL-PAM-100 fluorometer (Walz).
687	PSII quantum yield (Φ PSII) was quantified as previously described ¹⁹ . Relative electron
688	transport rate (rETR) was calculated according to the following equation rETR = Φ PSII x
689	I. I represents the emitted irradiance.
690	
691	Microscopy. Cells were grown under the TAP-dark condition to log phase and
692	concentrated ten-fold before microscopic analysis. Aliquots were deposited at the corner
693	of a poly-L-lysine coated microslide well (Martinsried) and spread over the bottom of the
694	well by overlaying with TAP-1% agarose at low temperature (<30°C), to minimize cell
695	motion during image acquisition. Cells were imaged at room temperature though a Leica
696	TCS SP5 laser scanning confocal microscope and an inverted 100x NA 1.46 oil
697	objective. Chlorophyll fluorescence signal was generated using 514 nm excitation, and
698	650-690 nm collection. All images were captured using identical laser and magnification
699	settings (4x zoom and single-slice through the median plane of the cell). Composite
700	images (chlorophyll fluorescence overlay with bright field) were generated with Fiji ²⁰ .
701	
702	Proteomics. TAP-dark-grown cells were collected by centrifugation and flash-frozen.
703	Proteins were extracted from the frozen pellets by resuspension in lysis buffer (6M
704	guandium Hydrochloride, 10mM tris(2-carboxyethyl)phosphine, 40mM chloroacetamide,
705	100mM Tris pH8.5, 1x MS-Safe protease inhibitor, 1x Phosphatase inhibitor cocktail II),
706	grinding with liquid nitrogen, followed by sonication. Protein lysates were then digested
707	with trypsin (Promega) into peptides. Three biological replicates were processed for each
708	strain.

709	The samples were labeled with tandem mass tags (TMTs), multiplexed and then
710	fractionated before tandem mass spectrometry analyses. Briefly, each sample was labeled
711	with the TMT labeling reagent (Thermo Fisher) according to the manufacturer's
712	instructions. The samples were then mixed in equimolar amounts and desalted using
713	C18-stage tips ²¹ . The dried peptide mix was then separated using strong cation exchange
714	(SCX) stage-tips ²² into four fractions. Each of the four fractions were then diluted with
715	1% trifluoroacetic acid (TFA) and separated into three fractions using SDB-RPS stage
716	tips. This procedure initially resulted in a total of 12 fractions. Fractions 1-3 (the children
717	of the first SCX fraction) were pooled together yielding 10 final fractions. Each final
718	fraction was diluted and injected per run using an Easy-nLC 1200 UPLC system (Thermo
719	Fisher). Samples were loaded onto a nano capillary column packed with 1.9 μ m C18-AQ
720	(Dr. Maisch) mated to metal emitter in-line with a Fusion Lumos (Thermo Fisher).
721	Samples were eluted using a split gradient of 10-20% solution B (80% ACN with 0.1%
722	FA) in 32 min and 20-40% solution B in 92 min followed column wash at 100% solution
723	B for 10 min. The mass spectrometer was operated in a data-dependent mode with the
724	60,000 resolution MS1 scan (380-1500 m/z), AGC target of 4e5 and max injection time
725	of 50ms. Peptides above threshold 5e3 and charges 2-7 were selected for fragmentation
726	with dynamic exclusion after 1 time for 60 s and 10 ppm tolerance. MS1 isolation
727	windows of 1.6m/z, MS2 isolation windows 2 and HCD NCE of 55% were selected.
728	MS3 fragments were detected in the Orbitrap at 50,000 resolution in the mass range of
729	120-500 with AGC 5e4 and max injection time of 86 ms. The total duty cycle was set to
730	3.0 sec.

Raw files were searched with MaxQuant²³, using default settings for MS3 reporter 731 TMT 10-plex data. Files were searched against sequences of nuclear, mitochondrial, and 732 chloroplast-encoded Chlamydomonas proteins supplemented with common 733 contaminants^{10,24,25}. Raw files were also analyzed within the Proteome Discoverer 734 (Thermo Fisher) using the Byonic²⁶ search node (Protein Metrics). Data from Maxquant 735 and Proteome Discoverer were combined in Scaffold Q+ (Proteome Software Inc.), 736 which was used to validate MS/MS based peptide and protein identifications. Peptide 737 identifications were accepted if they could be established at greater than 80.0% 738 probability by the Scaffold Local FDR algorithm. Protein identifications were accepted if 739 they could be established at greater than 96.0% probability and contained at least 2 740 identified peptides. Scaffold Q+ un-normalized data were exported in the format of the 741 742 log₂ value of the reporter ion intensities, which reflect the relative abundances of the same protein among different samples multiplexed. Each sample was then normalized to 743 744 a median of 0 (by subtracting the original median from the raw values, since the values are \log_2). For each gene, for each pair of samples, the normalized \log_2 intensity values 745 from the three replicates of one sample were compared against those for the other sample 746 using a standard *t*-test. The resulting P values were adjusted for multiple testing¹², 747 yielding a false discovery rate (FDR) for each gene in each pair of samples. We note that 748 our calculation of FDR does not take into account the spectral count of each protein 749 750 (provided in Supplementary Table 14), which is related to the absolute abundance of the protein and impacts the accuracy of proteomic measurements. Specifically, proteins with 751 a low spectral count are likely of low abundance in cells and often exhibit a large 752 753 variation in the intensity value between the biological replicates.

755	Western blotting. TAP-dark grown cells were pelleted by centrifugation, resuspended in
756	an extraction buffer containing 5 mM HEPES-KOH, pH 7.5, 100 mM dithiothreitol, 100
757	mM Na ₂ CO ₃ , 2% (w/v) SDS, and 12% (w/v) sucrose, and lysed by boiling for 1 min.
758	Extracted proteins were separated on SDS-PAGE (12% precast polyacrylamide gels, Bio-
759	Rad) using tubulin as a loading and normalization control. Polypeptides were transferred
760	onto polyvinylidene difluoride membranes using a semidry blotting apparatus (Bio-Rad)
761	at 15 volts for 30 minutes. For western blot analyses, membranes were blocked for 1 h at
762	room temperature in Tris-buffered saline-0.1% (v/v) Tween containing 5% powdered
763	milk followed by a 1 h incubation of the membranes at room temperature with the
764	primary antibodies in Tris-buffered saline-0.1% (v/v) Tween containing powdered milk
765	(3% [w/v]). Primary antibodies were diluted according to the manufacturer's
766	recommendations. All antibodies were from Agrisera and the catalog numbers for the
767	antibodies against CP43, PsaA, ATPC, and α -tubulin were AS11-1787, AS06-172-100,
768	AS08-312, and AS10-680, respectively. Proteins were detected by enhanced
769	chemiluminescence (K-12045-D20, Advansta) and imaged on a medical film processor
770	(Konica) as previously described ^{2} .
771	
772	Code availability. All programs written for this work are deposited at

- 773 <u>https://github.com/Jonikas-Lab/Li-Patena-2018</u>.
- 774

775 Supplementary Note

776 Accuracy of insertion mapping and number of insertions per mutant. In

777 Chlamydomonas insertional mutants, short "junk fragments" of genomic DNA (likely

from lysed cells) are often inserted between the cassette and flanking genomic DNA^{1} .

779 The difficulty in distinguishing these junk fragments from true flanking genomic DNA

can lead to inaccurate mapping of the insertion to a genomic location^{1,2}. Additionally,

some cassettes are truncated during insertion, preventing mapping of the flanking

sequence on one side. We sought to help users prioritize mutants for characterization by

classifying insertions into categories that reflect our confidence in the mapping accuracy,

based on two criteria: (1) whether flanking sequences from both sides of the cassette

mapped to the same genomic region; and (2) whether the LEAP-Seq reads contained

sequences from multiple genomic regions, suggesting the presence of junk DNA

fragments inserted next to the cassette (Supplementary Fig. 3a and Supplementary Fig.

788 2f-j).

789 A confidence level of 1 was assigned to 19,015 insertions in which both cassettegenome junctions mapped to the same genomic region and were free of junk fragments. 790 791 A confidence level of 2 was assigned to 5,665 insertions in which both cassette-genome 792 junctions mapped to the same genomic region, after correcting for the presence of a junk 793 fragment at one junction. A mapping confidence level of 3 was assigned to 36,600 insertions in which only one cassette-genome junction could be identified, with the 794 likelihood of junk DNA insertion determined to be low based on fewer than 40% of 795 796 LEAP-Seq reads containing sequence from multiple genomic regions. A mapping 797 confidence level of 4 was assigned to 13,643 insertions in which only one junction could

798	be identified, and that junction was likely to contain a junk fragment, or the flanking
799	sequence could not be mapped to a unique genomic location. The mapping for these
800	insertions was adjusted to reflect the most likely correct insertion site.
801	Approximately 95% of confidence level 1 and 2 insertions are mapped correctly
802	based on PCR validation of randomly chosen mutants, compared to \sim 73% of confidence
803	level 3 and ~58% of confidence level 4 (Supplementary Table 6; Methods).
804	Our bioinformatic analyses suggest that over 80% of the mutants harbor only one
805	mapped insertion (Supplementary Fig. 3b), consistent with Southern blot data from
806	randomly chosen mutants (Supplementary Fig. 3c).
807	
808	Deletions, duplications, and junk fragments associated with insertions are small.
809	Random insertions in Chlamydomonas are sometimes also associated with deletions and
810	duplications of neighboring genomic DNA ¹³ . To further help users understand the quality
811	of mutants in this library, we characterized these deletions and duplications by examining
812	the sequences across both junctions of confidence level 1 insertions (Methods). Of these
813	insertions, 11% had no deletions or duplications, 74% harbored genomic deletions and
814	15% had genomic duplications. The great majority (98%) of genomic deletions were less
815	than 100 bp, but some were as large as 10 kb. While 98% of the genomic duplications
816	were shorter than 10 bp, some extended to 30bp (Supplementary Fig. 3, d and e). Both
817	the deletions and duplications likely resulted from non-homologous end joining repair
818	that occurs during cassette insertion ²⁷ . Additionally, examining the 651 insertions in
819	which a junk fragment separated two cassettes inserted in the same location allowed us to
820	estimate the typical junk fragment length. Most (73%) junk fragments were shorter than

300 bp, but some were as large as 1,000 bp (Supplementary Fig. 3f). If larger deletions,
duplications or junk fragments were present, they were not sufficiently frequent to allow
us to identify them reliably.

824

Insertion sites are randomly distributed with mild cold spots and a small number of hot spots. While a random insertion model produced a distribution of insertion sites broadly similar to the observed distribution (Fig. 1c and Supplementary Fig. 4a), we did detect some cold spots and hot spots where insertion density differed significantly from the random insertion model (Supplementary Fig. 4a; Supplementary Table 7; Methods). Cold spots cover 26% of the genome and on average show a 48% depletion of insertions. Hot spots cover 1.5% of the genome and contain 16% of insertions (Methods).

Hot spots fell into two distinct classes that differed in the local distribution of insertions (Supplementary Fig. 4, b and c). In one class, dozens of insertions were found within a region of 20-40 bp. In the other class, the insertions were distributed over a much larger region of 200-1,000 bp. Our observations suggest that hot spots could be caused by two distinct mechanisms; however, we did not observe a correlation between specific features of the genome (e.g. sequence, exon, intron, UTR, mappability) and the occurrence of either class of hot spots.

839

840 Absence of insertions identifies over 200 genes potentially essential for growth under

the propagation conditions used. Identification of essential genes in bacteria, fungi, and

mammals has revealed important molecular processes in these organisms^{3,28-30}. We

sought to take advantage of the very large set of mapped mutations in the library to

844 identify candidate essential Chlamydomonas genes based on the absence of insertions in those genes (Methods). We note that our approach does not allow testing of gene 845 essentiality under all possible conditions. Therefore, it is likely that some of the candidate 846 essential genes we identify in this approach are required specifically for growth under our 847 propagation conditions, but not under all conditions. For example, mutants in respiratory 848 849 genes would be identified as essential if these mutants were not recovered under our propagation conditions (in the dark on acetate media), although the same mutants could 850 have grown if recovery were under photosynthetic conditions. 851

Given our average density of insertions, we were able to detect a statistically significant (FDR< 0.05) lack of insertions for genes with a mappable length greater than 5 kb. We identified 203 candidate essential genes (Supplementary Table 9). We caution that this is a conservative list for two reasons: (1) if a gene has a mappable length smaller than 5 kb and has no insertion, its underrepresentation is not statistically significant; (2) some essential genes were not detected because there are insertions incorrectly mapped to them.

Many of these predicted essential genes have homologs that have been shown to 859 be essential in other organisms. For example, Cre01.g029200 encodes a homolog of the 860 yeast cell cycle protease separase ESP1³¹, Cre12.g521200 encodes a homolog of yeast 861 DNA replication factor C complex subunit 1 RFC1³², and Cre09.g400553 encodes a 862 homolog of the yeast nutrient status sensing kinase Target of Rapamycin 2 TOR2³³. In 863 addition, we observed genes encoding proteins involved in acetate utilization or 864 respiration, such as acetyl-CoA synthetase/ligase³⁴ (Cre07.g353450) and components of 865 the mitochondrial F1F0 ATP synthase³⁵ (Cre15.g635850 and Cre07.g340350). As 866

discussed above, these genes may be essential under the conditions of library

868 propagation, in which acetate serves as the energy source.

We also observed genes on the list with nonessential homologs in other organisms. One example is Cre13.g585301, which encodes monogalactosyldiacylglycerol (MGDG) synthase and whose Arabidopsis homolog MGD1 is not essential³⁶. This can be explained by the presence of two other isoforms of MGDG synthases in Arabidopsis but not in Chlamydomonas³⁷. Comparison of our candidate Chlamydomonas essential genes with those of other organisms can provide insights into evolutionary differences across the tree of life.

876

877 Deleterious mutations rather than differential chromatin configuration are the

major cause of insertion density variation. One caveat for our above prediction of 878 essential genes is that the lack of insertions could be caused by low chromatin 879 accessibility at those loci to insertional mutagenesis. We reasoned that if chromatin 880 accessibility influenced insertion density, the 3' UTRs of these genes would also be less 881 represented; while if low insertion density primarily reflected essentiality, we would still 882 see many insertions in the 3' UTRs of these genes, because 3' UTR insertions typically 883 do not disrupt gene function (Fig. 3, d and e). For all genes in the genome, we observed 884 an insertion density of 1.1 insertions per mappable kb in exons and introns and 4.7 885 886 insertions per mappable kb in 3' UTRs. For the candidate essential genes, despite a lack of insertions in exons and introns, the insertion density in 3' UTRs is 4.1 insertions per 887 mappable kb, similar to that of all genes. We thus conclude that low insertion density in 888

our candidate essential genes is largely caused by mutations that impair mutant fitness
instead of low chromatin accessibility to insertional mutagenesis.

891

892 Disruption of *CPL3* is the cause of the photosynthetic deficiency in the *cpl3* mutant.

893 We sought to confirm and characterize the *cpl3* insertion in detail. Our high-throughput

LEAP-Seq data suggested that *cpl3* contained an insertion of two back-to-back cassettes.

895 Specifically, the *cpl3* mutant contains two insertion junctions from 3' ends of two

cassettes in opposite orientations, within the CPL3 gene. Junction 1 is confidence level 3

(no junk fragment), and junction 2 is confidence level 4 (with a junk fragment, corrected)

898 (Supplementary Fig. 6a). We successfully confirmed both junctions by PCR

899 (Supplementary Fig. 6b). Sequencing of the product from junction 2 revealed that the end

900 of the cassette has a 10-bp truncation and a 10-bp fragment of unknown origin inserted

901 between the cassette and the *CPL3* gene. The genomic flanking sequence of junction 2

902 overlaps with the flanking sequence in junction 1 by 2 bp. When we amplified across the

⁹⁰³ insertion site, *cpl3* yielded a product ~3 kb larger than the product from wild type

904 (Supplementary Fig. 6b). Based on these results, the most likely model for this insertion

905 is that two copies of the cassette (at least one truncated) inserted together into the CPL3

gene in opposite orientations, with a 2-bp genomic duplication at the site of insertion.

To confirm the involvement of CPL3 in photosynthesis, we cloned *CPL3* genomic DNA and transformed it into the *cpl3* mutant. Based on colony size, photoautotrophic growth was rescued in approximately 14% of the transformants (Supplementary Fig. 6, c and d), a percentage consistent with previous Chlamydomonas genetic studies³⁸. Three rescued transformants, named comp1-3, were chosen at random for phenotypic

912	confirmation (Fig. 4b) and genotyping. In comp1-3, PCR across the insertion site of the
913	<i>cpl3</i> mutation with primers "g1 + g2" yielded ~1.2 kb products (expected size: 1,311 bp)
914	that indicate presence of wild-type CPL3 sequence (from the wild-type CPL3 in the
915	complementation construct), and weak ~4 kb bands consistent with the presence of the
916	original cassette insertion in CPL3 (Supplementary Fig. 6b). The lower intensity of the
917	\sim 4 kb bands in these samples can be explained by preferential amplification of the
918	smaller template when multiple templates are present. To further confirm that comp1-3
919	still contained the original insertion in CPL3, we amplified the two insertion junctions in
920	the complemented lines with primers " $g1 + c1$ " and " $g2 + c1$ ". These genetic
921	complementation results demonstrate that the disruption of CPL3 is the cause of the
922	growth defect of the mutant.

928

Supplementary Fig. 1 | A pipeline was developed for generating barcoded cassettes 929 (a-d) and for generating an indexed and barcoded library of insertion mutants in 930 931 Chlamydomonas (e-g). a, A long oligonucleotide primer containing a random sequence region (indicated in gray) was used as a template for the extension of a shorter 932

933 oligonucleotide primer (see Supplementary Table 1 for primer sequences). The resulting double-stranded product contains a random sequence region (22 bp in length; termed 934 "barcode"). This product was restriction digested to generate a sticky end for subsequent 935 936 ligation. The above steps were performed to produce both the 5' and the 3' ends of the 937 cassette. The 5' end of the cassette is shown as an example. **b**, The pMJ016c plasmid was digested to yield the backbone of the cassette. c, The 5' and 3' ends of the cassette 938 generated above were ligated together with the cassette backbone to yield the cassette 939 CIB1. d, The components of the cassette CIB1 are shown. CIB1 contains the HSP70-940 941 *RBCS2* promoter (with an intron from *RBCS2*), the *AphVIII* gene that confers resistance to paromomycin, two transcriptional terminators (T1: PSAD terminator; T2: RPL12 942 terminator), and two barcodes (each 22 bp in length). e, Following transformation and 943 arraving of individual mutants, the sequence of the barcodes contained in each insertion 944 cassette was unique to each transformant but initially unknown for each colony. f, 945 Barcodes were amplified from combinatorial pools of mutants, sequenced, and traced 946 back to single colonies (Supplementary Fig. 2a-e; Methods). After this step, the barcode 947 sequence for each colony was known. For simplicity, only one side of the cassette is 948 949 shown. g, Barcodes and genomic sequences flanking the insertion cassettes were amplified from a pool of the library. By pooled next-generation sequencing, the sequence 950 flanking each insertion cassette was paired with the corresponding barcode 951 952 (Supplementary Fig. 2f). The flanking sequences were used to determine the insertion site 953 in the genome. Because the colony location for each barcode was determined in the 954 previous step, insertion sites could then be assigned to single colonies.

956 Supplementary Fig. 2 | Combinatorial pooling, barcode deconvolution to colony,

and determination of insertion sites. a, To determine which plate each barcode was on, 957 each plate of mutants was pooled into one of 570 plate-pools. The plate-pools were then 958 959 further combinatorially pooled into 21 plate-super-pools, in such a way that each platepool was in a unique combination of plate-super-pools. The barcodes present in each 960 plate-super-pool were determined by deep sequencing, and the barcodes were assigned to 961 plates based on the combination of plate-super-pools they were found in. A similar 962 process was applied to the colony positions of each barcode. Combining the plate and 963 colony data yielded a specific position for each barcode. **b**, The barcodes on the 5' and 3' 964 sides of the cassette were sequenced separately, each with a single-end Illumina read. 965 With the sequencing primers we used (indicated on the cassette), the reads start with the 966 967 barcode sequence and extend into the cassette. c. Most barcode colony positions were identified with no errors, i.e. were found in one of the expected combinations of super-968 pools. Some were found in a combination of super-pools that had one or more 969 970 differences from any expected combination, but the positions could still be identified due to the redundancy built into our method. The much higher number of one-error cases in 971 the colony data compared to plate data is due to a loss of one of the colony-super-pools 972 973 for a significant fraction of the samples (Methods). **d**, Both a plate and a colony position were identified for most barcodes. e, The number of barcodes mapped to an individual 974 975 colony varied, with 2 being the most common. For colonies with two mapped barcodes, 976 the large majority had one 5' and one 3' barcode, likely derived from two sides of one cassette. f, LEAP-Seq reads are paired-end reads with the proximal read containing the 977 978 cassette barcode and immediate flanking genomic sequence, and the distal read

979 containing flanking genomic sequence a variable distance away from the insertion site. 980 During transformation, short fragments of genomic DNA, likely originating from lysed cells, are often inserted between the cassette and the true flanking genomic DNA. We 981 refer to these short DNA fragments as "junk fragments"^{1,2}. Such junk fragments can lead 982 to incorrect insertion mapping if only the immediate flanking genomic sequence is 983 obtained. LEAP-Seq data can be used to detect presence of junk fragments at an insertion 984 junction based on two key characteristics: 1) the number of read pairs where both sides 985 aligned to the same locus and 2) the longest distance spanned by such read pairs. \mathbf{g} . The 986 two key characteristics are plotted for the original full library, before any mapping 987 corrections were applied. h, The same two characteristics are plotted for confidence level 988 1 and 2 insertions. For confidence level 2 insertions, only the side with no junk fragment 989 990 is shown; for confidence level 1 insertions, one randomly chosen side is shown, i, LEAP-Seq data can be used to correct cases of probable junk fragment insertions and determine 991 992 the most likely correct insertion position. The corrected data can be visualized using two 993 modified key characteristics: the number of distal reads aligned to the corrected location, and the distance spanned by such reads. j, The modified characteristics are plotted for 994 confidence level 4 insertions. 995

996

997 Supplementary Fig. 3 | Characterization of genomic disruptions in mutants in the

998 library. a, Mutants in the library were divided into four confidence levels, corresponding

999 to different mapping scenarios. The insertion sites of a number of randomly chosen 1000 mutants in each category were verified by PCR (mutants from confidence levels 1 and 2 1001 were assayed as one group; Supplementary Table 6). The numbers and percentages of 1002 confirmed insertions are shown in the last column. **b**, Most mutants have a single mapped 1003 insertion, and < 20% contain two or more mapped insertions. c. Eighteen randomly selected mutants from the four confidence levels were analyzed by Southern blotting 1004 1005 using the coding sequence of *AphVIII* as the probe. Mutants are numbered and the details of their insertion sites are presented in Supplementary Table 6. The mutant number is 1006 1007 highlighted in red when the Southern blot was interpreted to indicate at least two 1008 insertions in that mutant. The wild-type strain CC-4533 (WT) was included as a negative control. d, Most genomic deletions accompanying cassette insertions are smaller than 100 1009 1010 bp, but deletions up to 10 kb are present in some mutants. Deletions larger than 10 kb may also be present, but there were not enough of them to be clearly detected based on 1011 1012 the aggregate numbers. e, Most genomic duplications accompanying cassette insertion 1013 are smaller than 10 bp, but they can be up to 30 bp. Larger duplications may be present, 1014 but these are not common enough to be detected based on the aggregate numbers. f, The 1015 distribution of junk fragment lengths was determined using a dataset of 651 insertions of 1016 two cassettes surrounding a junk fragment, allowing us to precisely map both ends of the 1017 junk fragment using LEAP-Seq. Most junk DNA fragments are smaller than 320 bp, but 1018 we have detected some up to 1 kb in size. Larger junk fragments may be present, but are 1019 not common enough to be detected based on the aggregate numbers. Note that the x-axes for **d-f** are set to the logarithmic scale. Data presented in this figure are described in the 1020 1021 Supplementary Note.

1023 Supplementary Fig. 4 | The distribution of insertions in the genome is largely

1022

1024 random, and the hot spots fall into two classes. a, For each chromosome, the observed

1025 insertion density is shown as a heatmap in a wide column, followed by three narrow 1026 columns depicting three simulated datasets in which insertions were placed in randomly 1027 chosen mappable genomic locations. The simulated data provide a visual guide to the 1028 amount of variation expected from a random distribution. The large white areas present in 1029 both the observed and simulated data correspond to repetitive genomic regions in which insertions cannot be mapped uniquely. The red and blue circles/lines to the left of each 1030 1031 chromosome show statistically significant insertion hot spots and cold spots, respectively. To ensure that we are showing true insertion density rather than artifacts caused by junk 1032 1033 fragments or other mapping inaccuracies, the plot of insertion site distribution and 1034 identification of hot/cold spots are based on confidence level 1 insertions only. In contrast, Fig. 1c shows the distribution of insertions of all confidence levels over the 1035 1036 genome. **b** and **c**, Each plot represents a 1-kb genomic region surrounding one hot spot, showing multiple features of that region, as listed in the legend. The plots shown are the 1037 1038 22 1-kb regions with the highest total insertion number. The total number of insertions 1039 for each region is listed above each plot, along with the genomic position and the y-axis 1040 range. **b**, 7 of the top 22 hot spots are narrow, with 20 or more insertions in a 10-bp area, 1041 and a total width of 20-30 bp with few or no additional insertions in the surrounding 1 kb. 1042 c, 15 of the top 22 hot spots are wider, with multiple peaks of high insertion density 1043 spanning at least hundreds of base pairs. In either class, the insertion density peaks do not 1044 appear to reliably correlate with any of the other genomic features shown. Data presented 1045 in this figure are described in the Supplementary Note.

Supplementary Fig. 5 | The barcode sequencing method is robust. a, The barcode
sequencing read counts (normalized to 100 million total reads) for each insertion were
highly reproducible between technical replicates, with a Spearman's correlation of 0.978.
94% of barcodes showed a normalized read count of no more than a 2-fold difference
between the two replicates. b, The TP-light/TAP-dark ratios of multiple barcodes in the
same mutant are consistent, with a Spearman's correlation of 0.744. Only 4% of insertion
pairs had a greater than 5x difference between ratios. See also Fig. 3, b and c.

1054

Supplementary Fig. 6 | Molecular characterization of the *cpl3* mutant. a, The cassette
insertion site is indicated on a model of the *CPL3* gene from the Chlamydomonas v5.5
genome. In the gene model, black boxes, gray boxes and thin lines indicate exons, UTRs,

1058 and introns respectively. Two cassettes are inserted in opposite orientations, with one of them truncated on the 3' side (indicated by a notch); the 5' ends may be intact or 1059 1060 truncated. The orange box arrow indicates insertion of a small fragment of unknown 1061 origin. Binding sites for primers g1, g2, and c1 are indicated. **b**, PCR genotyping results of *cpl3* and complemented lines. PCR with the primer pair "g1 + g2" indicated presence 1062 1063 of an insertion within the CPL3 gene in the cpl3 mutant and presence of wild-type CPL3 sequence in the complemented lines. PCR with primer pairs "g1 + c1" and "g2 + c1" 1064 showed the presence of a cassette inserted into the CPL3 gene in cpl3 as well as the 1065 complemented lines. c, cpl3 mutants transformed with the CPL3 gene were arrayed and 1066 1067 grown photosynthetically in the absence of acetate for one day under 100 µmol photons $m^{-2} s^{-1}$ light and four additional days under 500 µmol photons $m^{-2} s^{-1}$ light before 1068 1069 imaging. The colony circled was a positive control strain that grows photosynthetically. 1070 Approximately 14% of transformants showed rescued photosynthetic growth, a frequency consistent with other genetic studies in Chlamydomonas³⁸. \mathbf{d} , The same transformants 1071 1072 were grown for five days in the presence of acetate in the medium under 50 µmol photons $m^{-2} s^{-1}$ light. All colonies grew similarly. **e**, CPL3 contains conserved tyrosine 1073 1074 phosphatase motifs. Sequences of CPL3 in Chlamydomonas and its homolog 1075 psychrophilic phosphatase I (PPI) in *Shewanella sp.* were aligned using Clustal Omega³⁹. 1076 Asterisks (*), colon (:), and period (.) indicate conserved, strongly similar, and weakly similar amino acid residues, respectively. The motifs that are conserved among multiple 1077 protein phosphatases⁴⁰ are boxed. Data in panels **a-d** are described in the Supplementary 1078 1079 Note. See also Fig. 4.

1081

1082 Supplementary Fig. 7 | Phenotypic characterization of the *cpl3* mutant. a, *cpl3*, the

1083 wild-type strain (WT), as well as the complemented line (comp1), contain a normal cup-

1084 shaped chloroplast. Representative images of confocal chlorophyll fluorescence, bright

1085 field, and an overlay are shown for each strain. **b**, cpl3 has a lower chlorophyll a/b ratio

1086 than WT and comp1 (*P*<0.03, Student's *t*-test).

1087

1089	Captions for Supplementary Table 1 to S14 (each provided as a separate file)
1090 1091	Supplementary Table 1 Primers and experimental design for all PCRs related to
1092	library generation and mapping
1093	This database includes primers used for generation of the insertion cassette
1094	(Supplementary Fig. 1a), primers used for barcode amplification and sequencing (Fig. 3a,
1095	Supplementary Fig. 1f, and Supplementary Fig. 2a, b), primers and experimental design
1096	for LEAP-Seq (Supplementary Fig. 1g and Supplementary Fig. 2f-j). See also Methods.
1097	
1098	Supplementary Table 2 Binary codes for plate super-pooling
1099	In this database, each of the 570 rows corresponds to a plate-pool and each of the 21
1100	columns corresponds to a plate-super-pool. A 1 in row X and column Y indicates that
1101	plate-pool X was included in plate-super-pool Y, and a 0 indicates that it was not. See
1102	also Supplementary Fig. 1f, Supplementary Fig. 2a, and Methods.
1103	
1104	Supplementary Table 3 Binary codes for colony super-pooling
1105	Binary codes for the generation of 20 colony-super-pools from 384 colony-pools are
1106	shown in the same format as in Supplementary Table 2. See also Supplementary Fig.1f,
1107	Supplementary Fig. 2a, and Methods.
1108	
1109	Supplementary Table 4 Read counts for each barcode in each combinatorial super-
1110	pool
1111	The columns in this database are barcode, side (5' or 3'), and read counts for that barcode
1112	in each super-pool, normalized to 1 million total reads for each side and each super-pool.

1113 Only barcodes deconvolved to both a blate and a colony are included. Se
--

- 1114 Supplementary Fig. 1f, Supplementary Fig. 2a and Methods.
- 1115

1116 Supplementary Table 5 | List of all mapped mutants in the library

1117 Each line is an insertion junction (i.e. one mapped side of an insertion). Some insertions

1118 have one mapped side, some have two. Some mutants have multiple insertions. The

1119 columns are as follows (explained in detail in Methods):

• mutant_ID - the ID of the mutant if it was included as part of the "consolidated"

set for long-term maintenance, '-' otherwise. A mutant can have multiple insertions.

• side - which side of the cassette the data is derived from, 5' or	3'
---	----

• chromosome, strand, min_position - the mapped position of the insertion,

potentially corrected for a junk fragment, depending on the value of the if_fixed_position

1125 column.

• gene, orientation, feature, gene end distances - the gene containing the 1126 insertion, the orientation with respect to the gene, the feature of the gene, and the distance 1127 from the 5' and 3' end of the gene. If the position is inside two overlapping genes, all 1128 fields will have two entries separated by '& '. For intergenic positions, all values are '-'. 1129 • intergenic adjacent genes, intergenic orientations, intergenic gene distances -1130 for intergenic positions, these fields note the two adjacent genes, the position of the 1131 1132 insertion with respect to those two genes, and the distance from them. Each field will have two entries separated by '&', unless the insertion position is on the edge of a 1133 chromosome and has no gene on one side. For insertions in genes, all values are '-'. 1134

1135 • if both sides – '-' if the insertion only has one mapped side, otherwise 'perfect', 1136 'deletion' or 'duplication' for insertion junctions that are two sides of a confidence level 1137 1 insertion depending on whether there was a deletion/duplication in the genomic DNA. 1138 or 'with-junk' for insertion junctions that are two sides of a confidence level 2 insertion 1139 with a junk fragment on one side.

1140

• confidence level - the confidence level for the insertion mapping, as described in Supplementary Fig. 3a. 1141

• if fixed position – 'no' if no junk fragment was detected in the insertion 1142 1143 (confidence level 1, 3, the side of confidence level 2 with no junk fragment, and a small fraction of confidence level 4); 'yes nearest distal' if a junk fragment was detected and 1144 corrected. For the junk fragment sides of confidence level 2 insertions, the value is just 1145 1146 'yes nearest distal', indicating that the corrected insertion position for this line is the position of the nearest distal LEAP-Seq read; for most confidence level 4 insertions, the 1147 value is 'yes nearest distal +/-X', indicating a further correction of X bp that was 1148 1149 applied to the position to compensate for the average distance between the nearest distal 1150 LEAP-Seq read and the true insertion position (see Methods).

• LEAPseq distance, LEAPseq percent confirming - the highest distance 1151 1152 spanned by a proximal and distal LEAP-Seq read pair mapping to the same region, and the fraction of pairs that map to the same region (see Supplementary Fig. 1g and 1153 1154 Supplementary Fig. 2f-j).

• flanking seq - the flanking sequence immediately adjacent to the cassette, or, if 1155 the if fixed position column value is not 'no', the sequence of the distal LEAP-Seq read 1156 1157 closest to the corrected mapping position.

1158	• barcode - the barcode sequence of the insertion.
1159	• gene_name, defline, description, etc - gene annotation from Phytozome ¹⁰ .
1160	
1161	Supplementary Table 6 Primers and results of PCRs used to verify the insertion
1162	sites of randomly-picked mutants from the mutant library
1163	For column definitions, see the legend of Supplementary Table 5.
1164	
1165	Supplementary Table 7 Statistically significant insertion hot spots and cold spots
1166	The columns give the hot spot position (chromosome, start and end base number), type
1167	(hot spot or cold spot, i.e. enriched or depleted in insertions), false discovery rate (FDR),
1168	number of insertions in the spot, and the expected number of insertions based on the
1169	length and mappability of the spot (see Methods). Only hot spots that passed the filtering
1170	are listed.
1171	
1172	Supplementary Table 8 Statistically significant depleted functional terms
1173	The columns give the gene ontology (GO) term, FDR, the ratio of observed vs expected
1174	insertions in all the genes annotated with the term (i.e. the effect size), the number of
1175	genes annotated with the term, the total number of insertions in those genes, the total
1176	mappable length of those genes, and the GO term definition (see Methods). Only
1177	depleted GO terms are listed - most of the enriched GO terms were due to hot spots in a
1178	single gene.
1179	

1180 Supplementary Table 9 | Candidate essential genes

1181	The columns give the gene ID, its mappable length (excluding UTRs), the number of
1182	insertions in the gene (again excluding UTR insertions), the expected number of
1183	insertions given the mappable length if the insertion distribution was random, the FDR,
1184	and gene annotation from Phytozome ¹⁰ (data described in the Supplementary Note).
1185	
1186	Supplementary Table 10 Read counts of barcodes before and after pooled growth
1187	in the photosynthesis screen
1188	The columns give the barcode, the gene in which the insertion is located (or "-" if
1189	intergenic), the gene feature, the side of cassette the data is derived from, and deep-
1190	sequencing read numbers (raw and normalized to 100 million) in the two technical
1191	replicates of the initial pool, the pool after growth in TAP-dark, and two biological
1192	replicates after growth in TP-light.
1193	
1194	Supplementary Table 11 Statistics of the pooled growth data for all genes
1195	The columns give:
1196	• the gene ID and name, the hit_category (higher-confidence candidate or lower-
1197	confidence candidate, otherwise "-").
1198	• the number of alleles in the gene with and without a phenotype in replicate 1, the
1199	resulting P value and FDR in replicate 1 (see Methods; genes with only 1 allele have no
1200	FDR).
1201	• the same four numbers for replicate 2.

1202	• PredAlgo-predicted localization for the gene: C = chloroplast, M
1203	=mitochondrion, SP = secretory pathway, O = other, and "-" if no prediction could be
1204	made.
1205	• gene annotation data from Phytozome ¹⁰ .
1206	
1207	Supplementary Table 12 Summary of previous characterizations of higher- and
1208	lower-confidence genes' roles in photosynthesis
1209	The columns are similar to those in Supplementary Table 11, but additionally include:
1210	• Previously reported function in photosynthesis for each gene.
1211	• The corresponding references.
1212	
1213	Supplementary Table 13 Read counts of <i>cpl3</i> exon and intron alleles in the pooled
1214	screens
1215	The numbers of read for each barcode per 100 million total reads are presented. Some of
1216	the mutants contain two barcodes and are labeled with an asterisk (*). In such cases, the
1217	barcode with a greater TAP-dark read count is used to determine whether there is a
1218	phenotype. The mutants that fall below the phenotype cutoff are labeled with an obelisk
1219	(\dagger). Two out of the seven mutants were included in the screen but not included in the
1220	consolidated set.
1221	
1222	Supplementary Table 14 Proteomic characterization of the <i>cpl3</i> mutant
1223	The columns give:
1224	• ID for nuclear/chloroplast-encoded genes.

1225	• name - gene name from Phytozome bulk annotation.
1226	• annotations for proteins plotted in Fig. 4 - names of the complexes and protein
1227	subunits are shown.
1228	• spectral counts – number of spectra detected for peptides derived from each
1229	protein, related to protein abundance.
1230	• WT_repl1/2/3, <i>cpl3</i> _repl1/2/3, comp1_repl1/2/3 - log ₂ intensity values for three
1231	replicates of each sample, normalized to a median of 0. WT, the wild-type parental strain
1232	CC-4533. Comp1, the complemented line.
1233	• WT_mean, <i>cpl3</i> _mean, comp1_mean - the average of the three replicate
1234	intensity values for each sample.
1235	• WT-cpl3_diff - cpl3_mean subtracted by WT_mean. The lower this value, the
1236	less abundant the protein is in <i>cpl3</i> relative to WT.
1237	• WT- <i>cpl3</i> _pval - the raw <i>P</i> value comparing the normalized replicate intensities
1238	for WT and cpl3, using an unpaired t-test.
1239	• WT- <i>cpl3</i> _FDR - the false discovery rate (i.e. the <i>P</i> value adjusted for multiple
1240	testing, using the Benjamini-Hochberg method ¹²).
1241	• WT-comp1_diff, WT-comp1_pval, WT-comp1_FDR, <i>cpl3</i> -comp1_diff, <i>cpl3</i> -
1242	comp1_pval, cpl3-comp1_FDR - the same three values for the comparison between WT
1243	and comp1 samples and between <i>cpl3</i> and comp1 samples.
1244	• defline, description, and all further columns - gene annotation from bulk
1245	Phytozome data.

1247 **References**

1248		
1249	1.	Zhang, R. et al. High-Throughput Genotyping of Green Algal Mutants Reveals Random
1250		Distribution of Mutagenic Insertion Sites and Endonucleolytic Cleavage of Transforming DNA.
1251		Plant Cell 26, 1398-1409 (2014).
1252	2.	Li, X. et al. An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological
1253		Processes in Chlamydomonas reinhardtii. <i>Plant Cell</i> 28, 367-87 (2016).
1254	3.	Rubin, B.E. et al. The essential gene set of a photosynthetic organism. Proc Natl Acad Sci USA
1255		112 . E6634-43 (2015).
1256	4.	Wetmore, K.M. <i>et al.</i> Rapid quantification of mutant fitness in diverse bacteria by sequencing
1257		randomly bar-coded transposons. <i>MBio</i> 6 , e00306-15 (2015).
1258	5	Kropat J et al. A revised mineral nutrient supplement increases biomass and growth rate in
1259		Chlamydomonas reinhardtii <i>Plant J</i> 66 770-80 (2011)
1260	6.	Grassl, M. Bounds on the minimum distance of linear codes and quantum codes. Vol. 2017
1261	0.	(http://www.codetables.de/ 2015)
1201	7	Simonia I. The [22: 14: 5] Wegner code is unique. Discuste Mathematics 213 , 260, 282 (2000)
1202	/. 0	Simonis, J. The [25, 14, 5] wagner code is unique. <i>Discrete Mainematics</i> 215 , 209-282 (2000).
1203	δ.	Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBner
1204	0	J. 17, 10-12 (2011).
1205	9.	Langmeau, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtle 2. Nat Methods 9, 357-9
1266	10	(2012).
1267	10.	Merchant, S.S. <i>et al.</i> The Chiamydomonas genome reveals the evolution of key animal and plant
1268	11	Tunctions. Science 318 , 245-251 (2007).
1269	11.	Pazour, G.J., Agrin, N., Leszyk, J. & Witman, G.B. Proteomic analysis of a eukaryotic cilium. J
12/0	10	Cell Biol 170, 103-13 (2005).
12/1	12.	Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful
1272	10	approach to multiple testing. J. R. Statist. Soc. B 57, 289-300 (1995).
1273	13.	Dent, R.M. <i>et al.</i> Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic
12/4		functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants.
1275	1.4	Plant J 82, 337-351 (2015).
1276	14.	Karpowicz, S.J., Prochnik, S.E., Grossman, A.R. & Merchant, S.S. The GreenCut2 resource, a
1277		phylogenomically derived inventory of proteins specific to the plant lineage. J Biol Chem 286,
1278		21427-39 (2011).
1279	15.	Zones, J.M., Blaby, I.K., Merchant, S.S. & Umen, J.G. High-Resolution Profiling of a
1280		Synchronized Diurnal Transcriptome from Chlamydomonas reinhardtii Reveals Continuous Cell
1281		and Metabolic Differentiation. <i>Plant Cell</i> (2015).
1282	16.	Duanmu, D. et al. Retrograde bilin signaling enables Chlamydomonas greening and phototrophic
1283		survival. Proc Natl Acad Sci U S A 110, 3621-6 (2013).
1284	17.	Berthold, P., Schmitt, R. & Mages, W. An engineered Streptomyces hygroscopicus aph 7" gene
1285		mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153,
1286		401-12 (2002).
1287	18.	Porra, R.J., Thompson, W.A. & Kriedemann, P.E. Determination of accurate extinction
1288		coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four
1289		different solvents: verification of the concentration of chlorophyll standards by atomic absorption
1290		spectroscopy. Biochimica et Biophysica Acta (BBA) - Bioenergetics 975, 384-94 (1989).
1291	19.	Saroussi, S.I., Wittkopp, T.M. & Grossman, A.R. The Type II NADPH Dehydrogenase Facilitates
1292		Cyclic Electron Flow, Energy-Dependent Quenching, and Chlororespiratory Metabolism during
1293		Acclimation of Chlamydomonas reinhardtii to Nitrogen Deprivation. <i>Plant Physiol</i> 170 , 1975-88
1294		(2016).
1295	20.	Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 9,
1296		676-82 (2012).
1297	21.	Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser
1298		desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal
1299		<i>Chem</i> 75 , 663-70 (2003).

1300 1301	22.	Kulak, N.A., Pichler, G., Paron, I., Nagaraj, N. & Mann, M. Minimal, encapsulated proteomic- sample processing applied to copy-number estimation in eukaryotic cells. <i>Nat Methods</i> 11 , 319-24
1302	a a	(2014).
1303	23.	Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b
1304		range mass accuracies and proteome-wide protein quantification. <i>Nat Biotechnol</i> 26 , 1367-72
1305	24	(2008).
1306	24.	Maul, J.E. <i>et al.</i> The Chiamydomonas reinhardtii plastid chromosome: islands of genes in a sea of
1307	25	repeats. Plant Cell 14, 2659-79 (2002).
1308	25.	Michaelis, G., Vahrenholz, C. & Pratje, E. Mitochondrial DNA of Chlamydomonas reinhardtii:
1309		the gene for apocytochrome b and the complete functional map of the 15.8 kb DNA. <i>Mol Gen</i>
1310	20	Genet 223, 211-6 (1990).
1311	26.	Bern, M., Kil, Y.J. & Becker, C. Byonic: advanced peptide and protein identification software.
1312	27	Curr Protoc Bioinformatics Chapter 13, Unit13 20 (2012).
1313	27.	vu, G. I. <i>et al.</i> Repair of Site-Specific DNA Double-Strand Breaks in Barley Occurs via Diverse
1314	20	Pathways Primarily Involving the Sister Chromatid. <i>Plant Cell</i> 26 , 2156-2167 (2014).
1313	28.	Glaever, G. <i>et al.</i> Functional profiling of the Saccharomyces cerevisiae genome. <i>Nature</i> 418 , 587-
1217	20	91 (2002). Deters IM at al A Communication (DISDD based Experimental Analysis of Essential Comes in
1317	29.	Peters, J.M. <i>et al.</i> A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Protoria, <i>Coll</i> 165 , 1402–506 (2016)
1310	30	Wang T at al Identification and characterization of essential games in the human genome
1319	50.	Science 350 1006 101 (2015)
1320	31	Baum P. Vin C. Goetsch I. & Buers B. A yeast gene essential for regulation of spindle note
1321	51.	dunlication Mol Cell Riol 8 5386-97 (1988)
1323	32	Cullmann G Fien K Kobayashi R & Stillman B Characterization of the five replication
1324	52.	factor C genes of Saccharomyces cerevisiae <i>Mol Cell Biol</i> 15 4661-71 (1995)
1325	33.	Kunz, J. <i>et al.</i> Target of rapamycin in yeast. TOR2, is an essential phosphatidylinositol kinase
1326		homolog required for G1 progression. <i>Cell</i> 73 , 585-96 (1993).
1327	34.	Spalding, M.H. The CO2-Concentrating Mechanism and Carbon Assimilation. in <i>The</i>
1328		Chlamydomonas Sourcebook, Vol. 2 (eds. E.H., H., E.B., S. & G.B., W.) 257-301 (Academic
1329		Press, 2009).
1330	35.	Devenish, R.J., Prescott, M. & Rodgers, A.J. The structure and function of mitochondrial F1F0-
1331		ATP synthases. Int Rev Cell Mol Biol 267, 1-58 (2008).
1332	36.	Jarvis, P. et al. Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis
1333		MGD synthase 1 mutant. Proc Natl Acad Sci U S A 97, 8175-9 (2000).
1334	37.	Riekhof, W.R., Sears, B.B. & Benning, C. Annotation of genes involved in glycerolipid
1335		biosynthesis in Chlamydomonas reinhardtii: discovery of the betaine lipid synthase BTA1Cr.
1336		Eukaryot Cell 4, 242-52 (2005).
1337	38.	Wang, L. et al. Chloroplast-mediated regulation of CO2-concentrating mechanism by Ca2+-
1338		binding protein CAS in the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 113,
1339		12586-12591 (2016).
1340	39.	Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments
1341		using Clustal Omega. Mol Syst Biol 7, 539 (2011).
1342	40.	Tsuruta, H., Mikami, B. & Aizono, Y. Crystal structure of cold-active protein-tyrosine
1343		phosphatase from a psychrophile, Shewanella sp. J Biochem 137, 69-77 (2005).
1344		