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ABSTRACT  

Episodic memory function has been shown to depend critically on the hippocampus. 

This region is made up of a number of subfields, which differ in both cytoarchitectural 

features and functional roles in the mature brain. Recent neuroimaging work in children 

and adolescents has suggested that these regions may undergo different 

developmental trajectories—a fact that has important implications for how we think 

about learning and memory processes in these populations. Despite the growing 

research interest in hippocampal structure and function at the subfield level in healthy 

young adults, comparatively fewer studies have been carried out looking at subfield 

development. One barrier to studying these questions has been that manual 

segmentation of hippocampal subfields—considered by many to be the best available 

approach for defining these regions—is laborious and can be infeasible for large cross-

sectional or longitudinal studies of cognitive development. Moreover, manual 

segmentation requires some subjectivity and is not impervious to bias or error. In a 

developmental sample of individuals spanning 6-30 years, we assessed the degree to 

which two semi-automated segmentation approaches—one approach based on 

Automated Segmentation of Hippocampal Subfields (ASHS) and another utilizing 

Advanced Normalization Tools (ANTs)—approximated manual subfield delineation on 

each individual by a single expert rater. Our main question was whether performance 

varied as a function of age group. Across several quantitative metrics, we found 

negligible differences in subfield validity across the child, adolescent, and adult age 

groups, suggesting that these methods can be reliably applied to developmental studies. 

We conclude that ASHS outperforms ANTs overall and is thus preferable for analyses 
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carried out in individual subject space. However, we underscore that ANTs is also 

acceptable and may be well-suited for analyses requiring normalization to a single 

group template (e.g., voxelwise analyses across a wide age range). Previous work has 

supported the use of such methods in healthy young adults, as well as several special 

populations such as older adults and those suffering from mild cognitive impairment. 

Our results extend these previous findings to show that ASHS and ANTs can also be 

used in pediatric populations as young as six.  
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Recent years have seen increasing research interest in how the hippocampus 

(HPC) develops, both in terms of structure and function. In particular, work combining 

high-resolution structural imaging methods with new analysis techniques (Gogtay et al., 

2006; Lee et al., 2014; Lin et al., 2013) has suggested that the HPC may continue to 

change in subtle ways through at least late childhood, and perhaps even into early 

adulthood. For instance, different developmental trajectories have been observed 

across the anterior-posterior axis of the hippocampus, with anterior regions generally 

showing decreases and posterior regions showing increases in size with age (Demaster 

et al., 2013; Gogtay et al., 2006). Theoretical and animal models suggest that 

anatomical pathways within the hippocampal circuit may also mature at different rates 

(Gómez and Edgin, 2015; Lavenex and Banta Lavenex, 2013), which could give rise to 

the different developmental trajectories sometimes observed across subfields 

(Daugherty et al., 2016; Tamnes et al., 2014a): the cornu ammonis (CA) fields, dentate 

gyrus, and subiculum. These substructures within HPC have unique anatomical and 

functional characteristics in the mature brain (Carr et al., 2010; Manns and Eichenbaum, 

2006). Thus, these perspectives suggesting variability in the developmental trajectory of 

different HPC substructures make a host of predictions about when the functions of 

each region—and thus, the corresponding mnemonic behaviors—each reach maturity. 

A spate of recent work has jumpstarted the enterprise of empirically testing these 

hypotheses (Canada et al., 2018; Daugherty et al., 2017; Keresztes et al., 2017; Ngo et 

al., 2017; Riggins et al., 2018, 2015; Schlichting et al., 2017; Tamnes et al., 2018, 

2014b).  
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 Answering questions about HPC development requires the application of 

advanced neuroimaging techniques to pediatric populations. For instance, future studies 

will likely seek to use high-resolution functional MRI (fMRI) to interrogate activation 

profiles within different subfields of the hippocampus and characterize how they change 

over development. This approach requires not only the acquisition of high-resolution 

fMRI data, but also the ability to reliably demarcate HPC subfields as anatomical 

regions of interest (ROIs) and/or normalize individual anatomical images to a custom 

template generated for the purpose of localizing activations to particular HPC subfields. 

These methods should be able to be carried out in a consistent manner on participants 

spanning a wide age range—preferably in a manner that is easily reproducible across 

studies and research groups.  

There is an increasing push toward larger sample sizes in neuroscience research 

(Button et al., 2013), and developmental work is no exception. Developmental questions 

regularly require large sample sizes due to the defining characteristic of the discipline as 

one interested in the impact of age, either as an individual difference in a cross-

sectional study or in a longitudinal design. For example, developmental researchers 

might investigate how brain-behavior relationships differ as a function of age or 

characterize within-participant change by acquiring data at multiple timepoints in a 

longitudinal study. As manual delineation of HPC subfields is time-consuming to both 

master and perform, the large amount of data required by many developmental 

researchers renders this best available method of hippocampal subfield segmentation 

intractable for many researcher groups. Moreover, as this process involves 

consideration of both probabilistic boundaries as well as those identifiable from visible 
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landmarks, there is a degree of subjectivity that seeps its way into segmentations 

produced manually. 

The questions that remain outstanding in the literature—as well as the practical 

concern of too much data, too little time—motivated us to assess how semi-automated 

HPC subfield segmentation methods trained on a particular tracing protocol compare 

with segmentations manually delineated using that same protocol. Moreover, we were 

especially interested in characterizing the performance of these approaches in younger 

participants. The majority of existing studies investigating the development of 

hippocampal subfields with automated segmentation methods (Krogsrud et al., 2014; 

Tamnes et al., 2014a) have used Freesurfer (http://surfer.nmr.mgh.harvard.edu/) and 

provide no quantitative assessment of the method. Importantly, these studies used 

“routine” T1-weighted MR images (borrowing terminology from Yushkevich et al., 

2015b) of relatively low resolution (~1mm isotropic voxels) on which the internal 

structure of the HPC is not visible. Here, we use “dedicated” high-resolution (0.4 x 0.4 x 

1.5 mm) T2-weighted images with a very specific orientation—perpendicular to the HPC 

long axis—that enable us to visualize HPC subfields and extend on this prior work. 

In terms of systematic assessments of automated methods over development, 

one study (Schoemaker et al., 2016) did investigate the correspondence between 

manual tracing of the overall HPC in children and two automated segmentation 

methods: Freesurfer (Desikan et al., 2006; http://surfer.nmr.mgh.harvard.edu/) and 

FIRST, part of FSL (Smith et al., 2004; www.fmrib.ox.ac.uk/fsl). Both automated 

methods failed to reach acceptable levels of reliability; however, it was unclear whether 

the failure of these automated methods was due to the developmental stage of the 
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sample or is due to a more general concern about these tools, as similarly low reliability 

has been reported previously in adults (Doring et al., 2011; Pardoe et al., 2009). 

However, other groups have reported success with automated methods for segmenting 

the overall HPC in preterm neonates (Guo et al., 2015) and toddlers (Gousias et al., 

2008). Thus, there is mixed support in the literature for using automated HPC 

segmentation methods in developmental work. 

With regards to automated subfield segmentation, while there is no dearth of 

literature validating the use of such methods in other special populations such as older 

adults and individuals suffering from mild cognitive impairment, Alzheimer’s Disease, 

and psychoses (Pipitone et al., 2014; Yushkevich et al., 2010; Paul A. Yushkevich et al., 

2015b), there is only one paper to our knowledge that formally assessed automated 

segmentation methods in a pediatric sample (Bender et al., 2018). That study found 

acceptable levels of performance for one of the automated methods we test in the 

present paper (ASHS) for an early lifespan sample aged 6-26 years, and when 

restricted to the HPC body. However, as the main goal of that work was to compare 

across multiple atlases applied to the early lifespan sample rather than segmentation 

performance across specific ages, it remains unknown whether the performance of 

automated methods varies across different developmental periods. Given that the 

primary goal of much work in developmental cognitive neuroscience is to directly 

compare individuals at different stages of development—for example, how do children 

differ from adults in X structure or Y function?—it remains a critical open question 

whether such methods show similar performance across age groups or worse 

performance in children and adolescents.  
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In the present study, we sought to assess how comparable two semi-automated 

subfield segmentation techniques are to manual subfield delineation in a pediatric 

sample. Importantly, these segmentations are all derived from a single tracing protocol; 

manual delineation was carried out by a single rater referencing histological work and 

printed atlases of human hippocampus (Duvernoy, 1998; Mai et al., 2007; West and 

Gundersen, 1990). Selecting and developing an in-house tracing protocol is common 

among research groups studying subfield function using fMRI in humans. We thus 

chose analyses that would be informative in the context of this workflow—wherein a 

tracing protocol may be pre-determined but the semi-automated segmentation 

procedures are flexible. We chose to have our hand-delineated regions ‘drawn’ by a 

single rater to maximize the consistency of regions both (1) going into ‘training’ the 

semi-automated methods as well as (2) being combined across participants to yield the 

ultimate validity metrics. Our aim is focused not on validating this manual tracing 

protocol, but to systematically evaluate how well semi-automated segmentation 

methods can approximate the same manual tracings in various age groups. 

For our semi-automated methods, we selected two approaches with which we 

could use our atlas of choice, allowing us to generate regions that would be directly 

comparable to our drawn ROIs (Fig. 1): reverse normalization of regions drawn on a 

custom template to each participant’s native space using Advanced Normalization Tools 

(ANTs; Avants et al., 2011), and automated segmentation on each participant’s brain 

implemented using the Automated Segmentation of Hippocampal Subfields (ASHS) 

software (Paul A. Yushkevich et al., 2015b). Critically, both methods also allowed us to 

use the same reference (i.e., ANTs template and ASHS atlas) and analysis strategy 
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across age groups, which—assuming there is no systematic, age-related bias—is 

important for making direct comparisons across groups. We then compared the ROIs 

generated by each automated method to the manually drawn regions separately for 

participants in child, adolescent, and adult age groups to test for possible differences in 

the convergent validity of these approaches across our age range of interest. Results 

revealed little evidence that the validity of ANTs and ASHS varied as a function of age 

group; those differences that did exist were numerically small. While both methods 

performed well overall, ASHS outperformed ANTs on several of our metrics. For 

researchers wishing to employ our segmentation approach on their own datasets, our 

ANTs template and ASHS atlas have been made available for download: 

https://osf.io/hrv9n/. 

 

MATERIALS AND METHODS 

 

Participants 

 

Ninety volunteers participated in the experiment across child (ages 6-11 y; N=31), 

adolescent (12-17 y; N=25), and adult (18-30 y; N=34) age groups. Participants of all 

ages were recruited from the greater Austin area and were thus a mixture of University-

affiliated and community individuals. The consent/assent process was carried out using 

age-appropriate language in accordance with an experimental protocol approved by the 

Institutional Review Board at the University of Texas at Austin. For participants under 18, 

assent was obtained from the participant and permission was obtained from his/her 
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parent or guardian. Adults provided consent. All participants received monetary 

compensation and a small prize for their involvement in the study.  

Participants were screened for psychiatric conditions using the Child Behavior 

Checklist (CBCL; completed by the parent/guardian of participants aged 6-17; 

Achenbach, 1991) and the Symptom Checklist 90-Revised (SCL-90-R; adults; 

Derrogatis, 1977). IQ was assessed using the Wechsler Abbreviated Scale of 

Intelligence, Second Edition (WASI-II; Wechsler, 1999). The intelligence measure of 

interest was the full-scale IQ composite score (FSIQ-2), which includes vocabulary and 

matrix reasoning subtests.  

From the original group of 90 participants, individuals were excluded from 

subsequent analysis if they met any of the following criteria: (1) CBCL score in the 

clinical range (N=1 child; N=1 adolescent) or SCL-90-R score greater than 1 SD above 

the mean of a normative sample (N=9 adults); (2) presence of a psychiatric condition 

(N=1 adult); (3) did not complete the MRI portion (N=3 children; N=4 adults); (4) 

handedness concerns (N=1 adolescent); (5) MRI data not of acceptable quality (N=4 

children); or (6) automated segmentation failed (N=1 adolescent; N=2 adults). Samples 

of images of unacceptable quality and for which automated segmentation failed are 

provided in Online Supplementary Figure 1. Participants were excluded for automated 

segmentation failure when visual inspection revealed that the hippocampus as a whole 

was grossly mislabeled (e.g., with HPC extending through white matter and into medial 

temporal lobe cortex). For two of these participants (adults), both ASHS and ANTs 

failed; only ANTs failed for the third participant (adolescent). No participants scored 

below our inclusion threshold for IQ (> 2 SD below the mean).  
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Through the revision process, we additionally identified two outlier participants 

using a Mahalanobis distance test of cross-method correspondence of overall HPC 

volumes. Mahalanobis distance provides a measure of the likelihood of a data point in a 

multivariate dataset given a dataset’s covariance structure. Potential outliers were 

identified by comparing each participant’s bilateral HPC volume as defined by manual 

tracing with each semi-automated method. A threshold of c22,.99 flagged one child and 

one adolescent participant as potential outliers (i.e., showing lower correspondence 

between methods than would be typical for their age group). Upon manual inspection, 

these individuals were determined to have poor manual tracing and were subsequently 

removed from all analyses. The final sample included a total of 62 right-handed 

participants (22 children, 13 females, ages: 6.08-11.83 y, 9.52 ± 0.38 y, FSIQ-2: 84-142, 

118.86 ± 2.90; 21 adolescents, 10 females, ages: 12.08-17.33 y, 14.26 ± 0.37 y, FSIQ-

2: 92-130, 110.95 ± 2.58; 19 adults, 10 females, ages: 18.67-28.92 y, 23.86 ± 0.78 y, 

FSIQ-2: 92-129, 113.00 ± 2.76). 

 

Experiment Overview 

 

The experiment comprised two visits. On the first visit, participants were exposed 

to the MRI environment using a mock scanner, completed paper-based screening 

measures (CBCL or SCL-90-R; WASI-II), and performed a battery of cognitive tasks 

(not discussed here). MRI scanning took place during the second visit. 
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MR Data Acquisition  

 

Imaging data were acquired on a 3.0T Siemens Skyra MRI. Two to three oblique 

coronal T2-weighted structural images were acquired perpendicular to the main axis of 

the HPC (TR=13150 ms, TE=82 ms, 512 x 60 x 512 matrix, 0.4 x 0.4 mm in-plane 

resolution, 1.5 mm thru-plane resolution, 60 slices, no gap, acquisition time 6:36). 

Coronal images of acceptable quality as determined by visual inspection (e.g., absence 

of motion artifacts that would prevent visualization of the hippocampal sulcus) were 

coregistered using ANTs (Avants et al., 2011) and averaged to improve visualization of 

the internal structure of the hippocampus, yielding a single mean coronal image per 

participant. A T1-weighted 3D MPRAGE volume (256 x 256 x 192 matrix, 1 mm3 voxels) 

was also collected. 

 

Baseline method: Manual hippocampal subfield delineation 

 

We used manual demarcation to define subfields on each participant’s 

anatomical image (hereafter denoted Manual), which is typically considered the most 

accurate method for anatomical volume assessment (Rodionov et al., 2009). As such, 

all semi-automated methods described were compared to Manual as a reference in a 

pairwise fashion. HPC regions of interest (ROIs) were delineated on each participant’s 

mean coronal image by a single rater (KFG) following a published protocol (Bonnici et 

al., 2012) and further referencing printed hippocampal atlases and histological work 

(Duvernoy, 1998; West and Gundersen, 1990). We chose to have a single rater perform 
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the segmentations to reduce the variance across manual tracings associated with rater 

differences. However, we underscore that in general a multi-rater approach in which the 

tracing protocols are validated through high agreement with other expert raters would 

be ideal (see Limitations section of Discussion for more on this point). The rater was 

blind to participant identity (including but not limited to age, sex, and performance on 

behavioral tasks), and images were cropped to obscure overall head size to ensure 

unbiased application of the segmentation protocol across participants of different ages.  

We followed the segmentation protocol described by Bonnici and colleagues 

(Bonnici et al., 2012) referencing additional atlases and histological work (Duvernoy, 

1998; Mai et al., 2007; West and Gundersen, 1990). HPC was segmented into the 

following subfields: cornu ammonis fields 1 (CA1) and 2/3 (combined; CA2,3), dentate 

gyrus (DG), and subiculum. Segmentation was performed across the entire extent of the 

HPC long axis, with the exception of the most posterior slices on which subfields could 

not be reliably delineated. For this region, we created a combined posterior HPC ROI 

(as was done in Yushkevich et al., 2015b). All subfields and posterior HPC were 

summed to create overall HPC ROIs. As functional neuroimaging studies often 

interrogate activation within a combined DG/CA2,3 region, we also summed individual 

DG and CA2,3 regions to create DG/CA2,3. While our main analyses used bilateral 

regions of interest, for completeness we also report all metrics split by hemisphere (see 

Inline Supplementary Information). 

Furthermore, it is possible that validity of the semi-automated methods may be 

lower in the HPC head, as the boundaries are more complex in shape and have fewer 

visible landmarks than those in the HPC body. Therefore, in addition to the overall HPC 
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subfields described above, we also investigated convergent validity for subfields 

restricted to the head versus those in the body (see Supplementary Information for 

results). The posterior boundary of the HPC head was the last slice on which the uncal 

apex was visible (Poppenk and Moscovitch, 2011; Weiss et al., 2005). The posterior 

boundary of the HPC body was one slice anterior to the first slice showing separation of 

the fornix from the HPC (Watson et al., 1992). 

 We quantified the reliability our manual segmentation approach by computing 

intra-class correlation (ICC(2,1) absolute agreement of single measures; Shrout and 

Fleiss, 1979) and spatial overlap (Dice similarity coefficient [DSC]; Dice, 1945) for a 

subset of our participants. As all of our manually delineated regions were drawn by a 

single rater, intra-rater reliability—in other words, the correspondence of volumes drawn 

by the same rater across tracing occasions—is the most relevant to the present study 

(for a similar approach, see Yushkevich et al., 2015b). For this purpose, our rater (KFG) 

manually delineated subfields for all child participants for a second time at a delay of at 

least one year. We focused quantification of intra-rater reliability on the child group 

because we reasoned this group might be the most anatomically variable and/or have 

the lowest image quality, and therefore might be the most difficult to segment. ICC was 

at acceptable levels (≥0.80) for a majority of the subfields that are the focus of the 

present manuscript (HPC: 0.82, CA1: 0.81, DG: 0.83, DG/CA2,3: 0.87); however, two 

regions fell below standards in ICC for manual demarcation (CA2,3: 0.66, SUB: 0.68). 

Spatial overlap (DSC) was high for the majority of regions (HPC: 0.91, CA1: 0.77, SUB: 

0.76, DG: 0.78, DG/CA2,3: 0.84) with the exception of one region (CA2,3: 0.50). The 

majority of these results—overall HPC, CA1, DG, and DG/CA2,3—are in the same range 
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as previous reports for manual demarcation of hippocampal subfields (Lee et al., 2014; 

Mueller et al., 2007; Wisse et al., 2012; Yushkevich et al., 2010) and suggest sufficiently 

reliable segmentation within rater across time. However, in order to provide a stringent 

baseline for evaluating the semi-automated segmentation methods, we limit our 

interpretation of validity measures to only those regions showing acceptable intra-rater 

reliability (ICC≥0.80). For completeness, we include results for CA2,3 and SUB in the 

subsequent sections, but caution against interpreting these findings as evidence in 

support of one method over another. 

 

Automated methods for comparison 

 

Comparison method 1: Custom template ROIs reverse normalized (ANTs). For 

the first comparison method (Fig. 1A), we defined ROIs on a template brain image, and 

then back-projected the regions into each participant’s native space. We first generated 

a series of custom templates from the mean coronal images of a subset of participants 

with canonical hippocampi. “Canonical” was defined subjectively, taking into account 

features of both the individual’s neuroanatomy (e.g., morphometry of the hippocampus) 

as well as the MR acquisition (e.g., whether landmarks could be readily visualized given 

slice orientation and image quality). Template generation and normalization were 

carried out using ANTs version 2.1.0 (Avants et al., 2011). Multiple templates were 

generated using different subsets of participants. We then selected the best group 

template, i.e., one that was free from artifacts and for which the HPC subfield landmarks 

could be visualized. Efforts were made to include participants who spanned our age 
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range in the generation of all templates. The final chosen template used for both 

comparison methods 1 and 2 was created from the mean coronal images of 10 

individuals (overall age range: 7.5-28.42 y; N=3 in child age range: 3 females, mean 9.3 

± SEM 1.3 y; N=3 in adolescent age range: 1 female, 14.31 ± 1.11 y; N=4 in adult age 

range: 2 females, 23.0 ± 2.31 y). The number 10 was chosen in accordance with the 

recommended guidelines for optimal template construction in ANTs, which note that the 

final outcome (i.e., the resulting template image) stabilizes across subsets of 

participants when approximately 10 images are used as input (see ANTs documentation, 

available at the following URL as of the writing of this paper: 

http://stnava.github.io/ANTs/).  

The manual rater (KFG) then segmented the HPC on the group template into 

subfields using the protocol described above for the manual ROI delineation. In other 

words, the subfields were demarcated on the group coronal template in the same way 

as they were for an individual brain. We then back-projected all ROIs into the native 

space of each participant as follows. First, we computed the nonlinear transformation 

(which in the present paper always includes an affine step to initialize the registration) 

from the individual’s mean coronal to the group template using the following settings: 

image metric: probabilistic; transformation: symmetric normalization; regularization: 

Gaussian. We then applied the inverse transformation to each ROI. 

This method does require some time and expertise on the part of the researcher 

to implement. First, it may be the case that multiple templates need to be generated to 

yield one that will allow for manual segmentation and satisfactory normalization. Second, 

the researcher must manually segment the regions on the template according to their 
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desired protocol. Thus, this procedure is not fully automated; however, it does 

significantly cut down the hands-on time required by the researcher relative to manual 

segmentation of each individual, making it tractable for larger N studies. 

 

Comparison method 2: Custom template ROIs reverse normalized using ROI-

guided methods (ANTsROI). The second comparison method used a procedure identical 

to the one described for ANTs above, with the single exception that regions were back-

projected into native space using nonlinear transformations computed with ROI-guided 

methods implemented using landmarkmatch, part of the ANTs toolbox (Fig. 1A). 

Hereafter, this method of ROI-guided ANTs normalization is denoted ANTsROI. 

Specifically, the Manual HPC for each individual was used to guide the normalization to 

the custom group template, with the Manual HPC template ROI serving as the target 

(weight: 1). The inverse of the computed transformation was then applied to the group 

template ROIs, such that regions were back projected to native space.  

As with ANTs, ANTsROI requires template selection and manual demarcation on 

the part of the researcher. In addition, a significant downside to ANTsROI as compared 

with ANTs is that implementing this approach requires a rater to trace HPC on each 

participant’s brain individually. This practical concern should be taken into consideration 

when choosing a segmentation method. 

 

Comparison methods 3 and 4: ASHS automated segmentation using custom 

atlases. For the third and fourth comparison methods (both depicted in Fig. 1B), we 

built custom atlases for use with the Automated Segmentation of Hippocampal 
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Subfields (ASHS) software (version 0.1.0, rev 103 downloaded on 4/14/2016) (Paul A. 

Yushkevich et al., 2015b). ASHS is an open-source software package that uses both 

T1- and T2-weighted images to automatically segment the medial temporal lobe into 

subregions. It can be used with an included atlas, or retrained to use any segmentation 

protocol chosen by the user. For the present study, we generated custom atlases based 

on the Manual ROIs for a subset of participants with canonical hippocampi. Nine 

participants from each of the three age groups (total N=27) were selected for atlas 

generation (age range: 6.08-28.75 y, hereafter termed “atlas participants”; N=9 in child 

age range: 6 females, 9.18 ± 0.61 y; N=9 in adolescent age range, 6 females, 14.99 ± 

0.58 y; N=9 in adult age range: 5 females, 23.89 ± 1.21 y). This number was chosen to 

be in the 20-30 range recommended in the ASHS software documentation 

(https://sites.google.com/site/hipposubfields/building-an-atlas). We then built two 

atlases: one that combined across DG and CA2,3 (ASHS combined, hereafter ASHSC), 

and one that included them as separate regions (ASHS separated, hereafter ASHSS). 

These two comparison methods were otherwise identical.  

Following atlas generation, automated segmentation was carried out on all 

participants. The standard ASHS segmentation procedure allows all atlas participants to 

“vote” on the subfield label for each voxel, an approach known as multi-atlas label 

fusion (Paul A. Yushkevich et al., 2015b). In our case, as the atlas participants were 

also members of our target segmentation sample, we modified this procedure to remove 

the possibility of any bias in the label fusion step: Namely, for those participants whose 

manual ROIs went into atlas generation, their vote was excluded from subfield label 

fusion. This avoids a participant’s own manual segmentation potentially driving a highly 
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accurate (but biased) segmentation. Our modified approach allows for an unbiased 

comparison to the ANTs methods for the purposes of the current work. Note that when 

ASHS is used in practice, manually drawn ROIs from atlas subjects rather than the 

ASHS atlas could be used for characterizing anatomical and functional measures of 

those subjects. 

Manually delineated ROIs are needed for the initial step of generating a custom 

atlas. However, once an atlas has been created, it can easily be applied to an entirely 

new sample, which would make the segmentation entirely automated. Users wishing for 

a fully automated pipeline may also download and use an existing, publicly available 

atlas. 

 

Volume extraction 

 

Each comparison method resulted in HPC, CA1, CA2,3, DG, DG/CA2,3, and 

subiculum regions in each participant’s native space. Because the most posterior 

portion of the hippocampus was not segmented into subfields on the majority of 

participants, we consider validity of subfield delineation only on slices for which 

subfields were drawn. Raw volumes were extracted for all methods and then adjusted 

for differences in overall head size across all participants as follows. Intracranial volume 

(ICV) was estimated from each participant’s T1-weighted image using Freesurfer 

(Desikan et al., 2006). We extracted volumes for each ROI and participant. To account 

for differences in overall head size, volumes for each ROI were adjusted for ICV using 

an analysis of covariance approach (Raz et al., 2005). Specifically, each ROI (including 
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overall HPC) was regressed on ICV across the age range to determine the slope (βICV) 

of the relationship between overall head size and ROI volume. Raw ROI volumes were 

then adjusted to correct for this relationship by subtracting the product of mean-

centered ICV measures and βICV from each ROI. This procedure removes the statistical 

relationship between ICV and ROI volumes. Adjusted rather than raw ROI volumes then 

went into all subsequent volume-based analyses. We reasoned that this was the best 

choice in this context, as the ICV-normalized values are what would ultimately go into a 

final analysis in any paper investigating individual differences in region size or brain-

behavior relationships.  

The convergent validity of the automated methods were compared across age 

groups using various metrics as described below. Basic quality assurance was 

performed to exclude participants (N=5) whose overall HPC was grossly mislabeled, as 

described above. This step was the only quality control we carried out for the automated 

segmentations; no manual editing of regions was performed. 

 

Comparing automated segmentation methods with manual demarcation 

 

Spatial overlap (DSC). We first interrogated how much each automated method 

agreed with the Manual regions in terms of their spatial overlap. Spatial overlap was 

indexed using Dice similarity coefficients (DSC; Dice, 1945). For region X segmented 

using methods A and B, DSC is defined as: 
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where A and B are the set of voxels marked as region X by methods A and B, 

respectively. DSC was computed for each participant, ROI, and comparison method; 

the resulting values were then averaged across participants within each age group. 

Note that as DSC is a measure of spatial overlap rather than volume, it is not corrected 

for ICV. 

 

Edge agreement across methods. While DSC quantifies the amount of overall 

spatial overlap between two methods, it does not indicate where the disagreements 

among methods lie. To further characterize the spatial locations at which our automated 

methods agree (or disagree) with our Manual subregions, we indexed agreement at 

particular voxels in a mapwise fashion (see Yushkevich et al., 2015 for a similar 

approach). For each participant and method, we created an image indicating edge 

voxels (i.e., voxels on either side of the boundary between two subfields, or between a 

subfield and the outside of HPC). We then compared the edges for each method to the 

Manual edge map in native participant space, characterizing agreement as voxels that 

were marked as edges by both methods. These maps were then normalized to the 

group template for display and averaged across individuals within each age group to 

serve as a qualitative representation of edge agreement. The intensities of the resulting 

maps thus indicate the proportion of participants that showed agreement between the 

two methods at each specific voxel.   

In addition to these qualitative results, we also quantified the degree to which 

these edges overlapped with those determined via Manual demarcation across the 

anterior-posterior HPC axis, again motivated by concerns that segmentation in anterior 
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HPC may be less reliable. This analysis was performed in the native space of each 

participant (i.e., no spatial normalization was performed) using the edge maps 

described above. For each participant and semi-automated method, we calculated DSC 

overlap for the ANTs- or ASHS-generated edge map with the manually drawn edges 

within each HPC slice. For each participant, slice location was centered on the 

boundary between HPC body and head as determined by author KFG during initial 

manual demarcation. DSC values were averaged within age groups at each centered 

slice that contained manually-demarcated ROIs from at least 90% of the participants. 

This approach provides a measure of segmentation error specific to the edges and 

boundaries of ROIs at each anterior-posterior position within HPC that can be compared 

across age groups and methods. It is worth noting that due to the fewer number of 

voxels in edge maps this measure of overlap will almost necessarily lead to lower 

agreement than what is typically observed with volume-based DSC measures. Although 

an acceptable threshold of edge-based DSC has not (to our knowledge) been 

established, the relative comparisons between methods and age groups provide insight 

into the spatial agreement of the different methods. Note that both edge overlap 

analyses measure spatial overlap rather than volume, as such they are not corrected for 

ICV. 

 

Volume correspondence: Intra-class correlation. We next assessed the degree of 

correspondence between regional volumes determined using each method, irrespective 

of spatial agreement. We computed intra-class correlation (ICC) to measure absolute 

agreement of single measures using a two-way random effects ANOVA model (i.e., 
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ICC(2,1), Shrout and Fleiss, 1979). ICC values near 1 indicate high agreement in the 

volumes derived across methods, while values near 0.5 indicate poor agreement. Prior 

work on hippocampal subfields in developmental samples (Lee et al., 2014) has 

considered values exceeding 0.70 to represent an acceptable or “good” level of 

agreement, in line with recommendations from Bartko, 1991. 

 

Bias. One possibility is that the degree to which volumes are over- or under-

estimated by a given method varies as a function of the region’s size. This might be of 

particular concern for researchers investigating hippocampal subfields (as subfields 

vary substantially in size) and/or their development (as overall size will differ across age 

groups). To assess this possibility, we generated Bland-Altman plots (Bland and Altman, 

2007), which show the difference in volume of the two methods (e.g., ANTs-Manual on 

the y-axis) as a function of the average of the two methods (x-axis). If the automated 

method is not systematically over- or under-estimating the region volumes relative to 

Manual, the difference values should be centered around zero. Additionally, we 

performed ANCOVAs to determine whether there were significant main effects of 

average volume, age, and/or a volume x age interaction. Significant effects of volume 

indicate bias in the volume estimation across all three age groups, with the size of the 

ROI predicting the degree to which volume is over or underestimated by the automated 

method. Significant effects of age indicate that the degree of volume under- or 

overestimation differs across the three age groups. A significant volume x age 

interaction would indicate that the bias profile differs across the age groups. 
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Assessing reliability within segmentation method 

 

Volume correspondence within an individual: inter-hemispheric correlations. Prior 

reports have suggested that the degree of volume correspondence of a given region 

across hemispheres within an individual is moderate to strong (Allen et al., 2002). As 

such, one metric that has been proposed to capture reliability within method 

(Schoemaker et al., 2016) quantifies the degree to which a given structure’s size in one 

hemisphere predicts its size in the other. A weak correlation between hemispheres for a 

given method could potentially reflect error in volume estimation. Furthermore, a drop in 

interhemispheric correlation for an automated method relative to manual may be 

indicative of lower performance in the automated approach (i.e., to the extent that 

manual delineation is close to the true level of symmetry). We performed across-

participant Pearson’s correlations of left and right hemisphere volumes (hereafter 

termed inter-hemisphere correlations, IHC) for each method (including Manual for 

reference) and each region. 

 

Statistical analyses 

 

For all quantitative metrics (DSC, ICC, IHC, and Bias), we used a nonparametric 

approach to compute 95% confidence intervals and p values. We resampled 

participants with replacement across 1,000 iterations, each time computing the 

statistic(s) of interest. Inferences were made on the basis of these bootstrapped 

distributions. All reported statistics were derived using this approach. 
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For DSC, ICC, and IHC measures, child and adolescent groups were each 

compared in a pairwise fashion to the adult group, which was treated as the baseline. 

Specifically, we generated a bootstrapped distribution of the difference between the two 

groups, which we then compared to zero to generate p values. In the case of the Bias 

analysis, F statistics for the main effects and interaction were computed across 

iterations, and the bootstrapped distribution was compared to one. As the main goal of 

our paper was to compare the degree to which semi-automated segmentations 

correspond with those generated manually across ages groups within a single method, 

we do not report direct comparisons across methods within each age group. However, 

the reader is invited to reference the 95% confidence intervals reported in each table to 

determine where significant differences exist across methods (i.e., where the mean of 

one method falls outside the 95% confidence intervals of a second method). This 

approach is recommended to inform the selection of a method that yields the best 

performance, either across the whole age range reported here or within a particular age 

group of interest. 

As our goal is to show where differences across groups might exist at a liberal 

threshold, we do not correct for multiple comparisons in our main analyses. We note 

throughout the text and tables which pairwise comparisons would survive Bonferroni 

correction, where we correct for the number of tests across subfields and age groups 

within method (ANTs and ANTsROI: 12 tests, ASHSS: 10 tests, ASHSC: 8 tests). 
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Follow-up analysis omitting template and atlas subjects 

 

 As a subset of our participants went into creating the group ANTs template 

(N=10) and ASHS atlas (N=27), it might be the case that those participants drive the 

measures computed across the whole group. To determine whether this was indeed the 

case, we repeated all analyses described above, this time completely omitting those 

participants who went into template and atlas generation. Importantly, we omitted all 

participants who went into either the ANTs template or ASHS atlas (N=27; all ANTs 

template participants were also used in the ASHS atlases) from the analyses. We note 

that these analyses are likely underpowered due to the large drop in N compared with 

our main analysis (reduced N=35 instead of 62); thus, a large increase in variance is to 

be expected, especially for correlation-based measures (ICC, IHC). For completeness, 

these results omitting template participants are included on all barcharts as grey dots 

and error bars representing the mean and 95% confidence intervals; and on bias and 

edge overlap plots as dashed lines plotting the regression line and group means, 

respectively. 

 

RESULTS 

 

Comparing automated segmentation methods with manual demarcation 

 

Our primary goal was to determine whether the degree to which semi-automated 

methods corresponded to regions delineated by an expert human rater varies across 
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age groups in a pediatric sample. We thus assessed spatial overlap, edge agreement, 

volume correspondence, and potential bias of each automated method—ANTs, ANTsROI, 

ASHSS, and ASHSC—relative to Manual. Due to the poor intra-rater reliability of manual 

segmentations in CA2,3 and subiculum, we do not discuss these two regions here.  

 

Spatial overlap (DSC). The main results of the spatial overlap analysis are 

presented in Table 1 and Figure 2. Overall, DSC values neared or exceeded the 

agreement typically achieved by two human raters (ranging roughly from 0.7-0.85 in 

Olsen et al., 2013; though specific values will be resolution-dependent, Yushkevich et 

al., 2015b). For all regions, the ASHS approaches yielded better validity than the ANTs 

methods; comparing the two ANTs approaches, ANTsROI outperformed ANTs in all 

cases, suggesting that landmark-guided normalization may be superior when aiming to 

achieve maximal spatial overlap. Age-related differences were assessed by comparing 

child and adolescent groups to the adults using nonparametric t-tests. There were small 

but reliable differences at a liberal threshold of uncorrected p<0.05 between age groups 

in overall HPC (children and adolescents for ANTs and ASHSS; children using ASHSC) 

and DG/CA2,3 (adolescents using ANTs). There were no differences for CA1 and DG. 

Only the difference between children and adults for HPC using both ASHS methods 

remained significant after correcting for multiple comparisons; moreover, the differences 

in overlap values are numerically quite small (0.01-0.04) and are lessened by using 

ASHSC (all < 0.02). Spatial overlap within the HPC head and body subfields separately 

revealed a slight advantage in agreement for subfields within the body over the head 

(Inline Supplementary Tables S1-2 and Inline Supplementary Figures S2-3). 
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Results were similar across left and right hemispheres (Inline Supplementary Tables 

S3-4 and Inline Supplementary Figures S4-5). 

 

Edge agreement across methods. A voxelwise depiction of edge agreement is 

displayed in Figure 3. The edge between CA1 and DG, which largely relies on 

boundaries visible on MRI, were generally quite high across most of the anterior-

posterior extent of the HPC, as well as across age groups. The outer edge of the overall 

HPC was also quite reliable across all methods, particularly on the lateral portions of the 

structure; there was relatively less agreement on how far DG/CA2,3 (particularly in the 

HPC head) and subiculum should extend in the medial and ventral directions, 

respectively. As would be expected, agreement was lower for those divisions lacking 

visible anatomical boundaries, such as between CA1 and subiculum and between CA2,3 

and DG in the head. However, there was also substantial disagreement between 

methods in the stratum radiatum lacunosum moleculare (SRLM), which is somewhat 

surprising given that this is a highly visible boundary. It did seem to be the case that 

there was less overall agreement about where edges should be placed in the head 

relative to the body of the HPC. Despite these differences in agreement across the 

structure, there were no apparent differences in this pattern across age groups. 

We next quantified overlap of these subfield edges as a function of position along 

the anterior-posterior axis of HPC to ask whether edge overlap differed between the 

HPC head versus body and tail. The slice-by-slice edge-based DSC results depicted in 

Figure 4 show a consistent pattern across methods and age groups: there was 

generally higher agreement in the HPC body/tail relative to the head. By focusing on the 
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edges rather than the entire volume of the subfields, this very stringent index showed a 

considerable advantage for ASHS over the both ANTs and ANTsROI methods. Of note, 

the degree of the advantage was not necessarily apparent from the standard DSC 

measures that consider the whole area of each subfield. In particular, the slice with the 

best spatial overlap for the ANTs methods is about the same as the slice with the worst 

overlap for ASHS. The adult group showed greater overlap than children and 

adolescents across most of the hippocampal axis. However, despite these differences, 

the child and adolescent agreement for ASHS was quite high overall and superior to 

edge overlap in adults using either ANTs method. Analyzing left and right hemispheres 

separately yielded similar results (Inline Supplementary Figure S6). 

 

Volume correspondence: Intra-class correlation. In the next analysis, we 

investigated the degree to which each subfield volumes derived from the semi-

automated methods corresponded with Manual, irrespective of their spatial agreement. 

These results are shown in Table 2 and Figure 5. Comparing ICC measures, we found 

that most methods provided acceptable correspondence for overall HPC and CA1. A 

notable exception was ANTs, which demonstrated lower correspondence than the other 

methods in all ROIs for all three age groups (although showed no reliable differences as 

a function of age). Validity was lower and more variable in DG and DG/CA2,3 for all 

methods except ASHSC. It is worth noting that the ASHS methods yielded higher ICC 

values than either ANTs method almost universally across regions.  

Echoing the DSC results, age-related differences were limited. One caveat to this 

result is that in some methods and regions ICC was quite low and not reliably different 
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from zero; thus, a lack of group differences in such cases is difficult to interpret. We 

observed significantly better volume agreement in the adults relative to both the child 

and adolescent groups in overall HPC when using ASHSS or ASHSC. However, these 

differences did not survive correction for multiple comparisons. There were no 

differences using any method in any of the subfields. In sum, ASHSC provided the 

highest validity across methods within the tested ROIs (HPC, CA1, SUB, DG/CA2,3), with 

minimal evidence for age-related differences.  

Dividing HPC into head and body showed a difference across ANTs and ASHS 

methods, with ASHS generally performing better in the body and ANTs generally 

performing better in the head (see Inline Supplementary Tables S5-6 and Figures S7-

8). However, given that ICC in the body for ANTs were in some cases not reliably 

different from zero, again these results should be interpreted with caution. See Inline 

Supplementary Tables S7-8 and Figures S9-10 for results split by hemisphere. 

 

Bias. We generated Bland-Altman plots to look for potential bias in the volumes 

estimated by each automated method, shown in Figures 6. These plots show each 

automated method-Manual segmentation difference as a function of the average 

volume estimated across the two methods being compared. First, none of the 

automated methods showed evidence of overall bias as evidenced by confidence bands 

(dashed lines in Figure 6) encompassing zero in all cases. This is taken as evidence 

that none of the methods systematically over- or under-estimate the volumes relative to 

Manual.  
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Second, we performed a series of ANCOVAs to test how the average volume, 

the age group, or the volume x age group interaction impacted the degree of 

discrepancy we observed between the two methods (Table 3). All regions we consider 

showed significant main effects of volume for all four methods; this indicates that the 

larger a region is, the more its volume tends to be underestimated by the automated 

methods. Significant main effects of age (p<0.05, uncorrected) were found only for CA1 

using ANTs. These results suggest that the degree of bias differs reliably between the 

three groups only in this region using those specific methods. However, means split by 

age group were near zero in all cases, suggesting that despite these small differences 

all groups remain within the acceptable range. Of note, main effects of volume would 

survive correction for multiple comparisons for only a subset of regions. Splitting 

subfields into the HPC head and body revealed age-related bias only for ANTs and 

ANTsROI (see Inline Supplementary Tables S9-10 and Figures S11-12). Age-related 

effects appeared to be slightly stronger in the right than left hemisphere (Inline 

Supplementary Tables S11-12 and Figures S13-14). Taken together, these results 

suggest that while present in a few cases, the effects of age group on the degree of bias 

observed pale in comparison to the effect of region size. This represents an important 

bias that is pervasive in these methods (see Discussion for further consideration of this 

issue).  

 

 

Assessing reliability within segmentation method  
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Volume correspondence within an individual: inter-hemispheric correlations. In 

addition to characterizing how well each automated method corresponds with the 

Manual segmentation, we also wanted to quantify how consistent each method is with 

itself across participants’ two hippocampi. Previous work (Schoemaker et al., 2016) has 

investigated the correlation between volumes in the left and right hemispheres as an 

index of this within-method agreement, since individuals tend to have relatively similar 

structural volumes across hemispheres. We computed this measure for all methods 

including Manual, which serves as a baseline.  

These data are displayed in Table 4 and Figure 7. First, all regions considered 

here showed a significant relationship between left and right hemispheres across all 

methods. For the Manual ROIs, we observed no significant age group effects, indicating 

that the degree of correspondence across hemispheres changes little across 

development. However, when using the automated approaches, DG/CA2,3 for ANTs and 

ASHSc showed significantly greater IHC for the child relative to the adult group. There 

were no group differences that survived correction for multiple comparisons. It seemed 

to be the case that the differences that emerged for the automated methods were driven 

by under- or overestimating the level of symmetry for a single group relative to the 

Manual regions, rather than a fundamental change in the pattern shown across all three 

groups. For instance, in DG/CA2,3, three of the four automated methods yielded 

decreased IHC estimates relative to Manual in the adult group, while the estimates for 

the other age groups appear to remain unchanged. There were few differences in IHC 

between the HPC head and body with only slightly lower symmetry among adults in the 

body versus the head (see Inline Supplementary Tables S13-14 and Figures S15-16). 
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Impact of template/atlas participant omission 

 

To assess the generalizability of our findings, we also calculated all metrics 

reported here omitting all N=27 participants who went into either the ANTs template or 

ASHS atlas generation. These results are displayed on figures throughout as grey dots 

(means) and error bars (95% confidence intervals) on bar charts and dashed lines on 

scatterplots and line graphs (representing regression line and group means, 

respectively). It should be noted that omitting such a large number of participants leaves 

a very small number of participants in each age group (child N=13, adolescent N=12, 

adult N=10). As such, correlation-based metrics (ICC, IHC) are not expected to be 

accurate reflections of the underlying relationship and may at times yield extreme 

values (e.g., CA2,3 for IHC in adults; Figure 7).  

Generally speaking, the analyses omitting template participants showed similar 

means but wider confidence intervals compared with those metrics derived from the full 

sample. The similarity of the means across these analyses suggest that the template 

participants do not have a disproportionate impact on the pattern of results we see here. 

These initial results also speak to the generalizability of our ANTs templates and ASHS 

atlases and suggest these resources may be successfully applied to datasets with 

similar imaging protocols and samples. 

DISCUSSION 
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 We compared HPC subfield regions of interest defined using two semi-

automated methodological approaches to those demarcated by an expert human rater. 

Participants were children, adolescents, and adults, spanning an age range of 

approximately 6 through 30 years.  

We chose methods that allowed us the flexibility to match the tracing protocol to 

the one we implemented manually, removing the concern that differences in the atlases 

used across methods may somewhat artificially lower performance (de Flores et al., 

2015; Schoemaker et al., 2016; Wisse et al., 2014). We found generally good 

convergent validity across the methods—especially ASHS—and few differences for 

children and adolescents relative to the adult comparison group. Our findings extend 

previous work assessing the validity of automated methods designed to segment overall 

HPC in pediatric samples (Guo et al., 2015; Schoemaker et al., 2016). While these prior 

studies have yielded mixed results, our data complement recent work by Bender and 

colleagues (Bender et al., 2018) in demonstrating that there do exist methods that will 

segment the HPC into subfields (in addition to overall HPC) in pediatric samples in a 

way that approximates manual segmentation by an expert human rater. Building upon 

this prior work (Bender et al., 2018), our results additionally quantify segmentation 

performance as a function of age group, demonstrating that age does not appear to be 

a major factor in the validity of subfield segmentation methods.  

One combination of region and method that showed poor performance was DG 

and DG/CA2,3 using ANTsROI. In particular, ICC was low in these regions, with 

confidence intervals nearing or crossing zero in many cases in the adult group. 

Performance was particularly poor in the hippocampal body (Inline Supplementary 
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Table S6). ASHS performance was far superior for these regions. As these particular 

regions are often the main target of developmental memory research given their late 

development (Lavenex and Banta Lavenex, 2013), this finding is particularly significant. 

These results suggest that, for researchers wishing to target DG or DG/CA2,3 combined 

subfield, ASHS is the far better choice.  

One interesting pattern that stands out in our IHC analysis is the trend for a 

general decrease in symmetry over the course of development, a finding particularly 

evident in the subfields. A caveat to these findings is that IHC is relatively low in adults 

for some methods, which could reflect either error or true asymmetry. As this trend is 

numerically present even in the Manual regions, we suggest that this most likely reflects 

true asymmetry in neuroanatomical structure rather than bias in the automated methods. 

These results could reflect that hemispheric specialization of HPC emerges over 

developmental time. In adults, lateralized effects are often observed in terms of HPC 

task-based activation (Addis et al., 2011; Glosser et al., 1995; Golby et al., 2001; Kelley 

et al., 1998; Mack and Preston, 2016; Martin et al., 1997; Schlichting et al., 2014; 

Zeithamova and Preston, 2010), suggesting that the two hippocampi may serve unique 

and specialized roles. It may be the case that the general decrease in symmetry we 

observed is related to emerging specialization, as the two hemispheres progress along 

distinct developmental trajectories. Consistent with this notion, prior work has shown 

greater developmental change in the right than left HPC overall (Dennison et al., 2013; 

c.f. Daugherty et al., 2016). Similar ideas have been proposed for developmental 

emergence of hemispheric specialization in the visual stream (Behrmann and Plaut, 

2015; Dundas et al., 2013); whether developmental asymmetry similarly reflects shifts in 
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functional specialization across hemispheres in HPC subfields as well remains to be 

tested in future studies. 

 

Strengths of automated methods 

Previous reports have used automated methods to draw conclusions about HPC 

structure in pediatric populations (Guo et al., 2015; Krogsrud et al., 2014; Lin et al., 

2013; Tamnes et al., 2014a). For instance, one study (Lin et al., 2013) used automated 

methods to characterize maturational differences in HPC shape among children from 6-

10 years of age. Their approach yielded findings that were not detectable when 

comparing volume alone, demonstrating the utility of applying such analyses to 

developmental questions. The authors applied three different automated methods and 

found that they gave similar results, suggesting the convergent validity of these 

methods even in their young participants. However, to the best of our knowledge, only 

three reports have quantified the validity of automated segmentation methods to yield 

HPC volumes in developmental samples and compared them with manual tracing. One 

such study (Schoemaker et al., 2016) found that both Freesurfer and FSL-FIRST 

overestimated overall HPC volumes, suggesting that these methods are not good 

approximations of manual tracing. Importantly, however, this problem does not seem to 

be unique to the children that were participants in that study, as other papers in adults 

have shown low validity using these methods (Doring et al., 2011; Pardoe et al., 2009).  

Another report used MAGeT-Brain to segment the hippocampi of preterm 

neonates (Guo et al., 2015). That paper showed that segmentations derived from the 

automated methods were comparable to those performed manually, suggesting that 
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automated methods can (in their case) be used with even the youngest of participants. 

A recent study  (Bender et al., 2018) found good correspondence between automated 

segmentation using ASHS and manual tracing of the hippocampal body among an early 

lifespan sample (6-24 years). Performance was highest when the atlas was optimized—

namely, that study suggests that a more variable atlas sample (as we have utilized in 

the current study) yields superior segmentations. However, it is unknown whether 

manual-ASHS correspondence in that study varied systematically with age. Taken 

together, these mixed findings in the prior literature underscore that the performance of 

the particular automated method being used must be assessed, as no two automated 

methods are the same in all cases. 

 Our findings extend beyond prior work to show that there exist automated 

methods for HPC subfield segmentation that can be used reliably in pediatric 

populations. Although previous work evaluating automated methods have included 

pediatric subjects (e.g., Bender et al., 2018), no study to date has specifically 

characterized the validity of such methods separately for child, adolescent, and young 

adult age ranges. We showed minimal age-related differences in the convergent validity 

of the semi-automated methods we tested.  Of course, one caveat to this finding is our 

relatively small sample size; it is possible that significant relationships would be 

observed in a much larger group of participants. Nevertheless, we believe these results 

are welcome news for several reasons. While manual tracing is considered the best 

available approach for subfield segmentation, it has undeniable drawbacks: it is a 

laborious, time-consuming process that requires extensive training and anatomical 

expertise; it requires subjective decisions to be made on the part of the rater, leading to 
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variability both within and across individuals—even those trained on the same tracing 

protocol—and is susceptible to bias and error; and varies substantially across research 

groups (Paul A. Yushkevich et al., 2015a). These issues are each expounded upon in 

turn below. 

With respect to training needed to carry out this procedure, it is relatively minimal. 

At the data collection stage, scanner operators need training to monitor data as it is 

incoming and learn to judge what makes an “acceptable” coronal scan. After that point, 

both automated methods described in this paper require relatively little hands-on 

involvement on the part of the researcher. For our experienced rater at the resolution 

described in this paper, manual delineation of subfields takes roughly two hours; for less 

experienced raters, the process will take much longer. Most of the human involvement 

in the automated methods described here comes at the template or atlas generation 

stage: the researcher must create an acceptable template or atlas (or select among 

those publicly available), which not only takes time but also introduces a degree of 

human subjectivity that would be expected to propagate through the analysis pipeline to 

the final segmentations. Put another way, semi-automated methods are not purely 

objective. However, automated methods do significantly reduce the segmentation 

burden after this stage: once a template or atlas is generated, the ANTs approach we 

describe requires manual delineation on just one brain (the template), representing an 

investment of just a few hours; for ASHS, virtually no hands-on researcher time is 

needed. Depending on the resources available, these methods may require several 

hours of computation time to complete for a single participant; however, this is time 

during which the researcher can be doing other things. The knowledge of HPC subfield 
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anatomy required is also quite limited. There are options available—such as using 

ASHS with an existing atlas—that require little anatomical expertise to carry out, and (in 

our experience) have a very low failure rate.  

A clear strength of automated approaches is that they reduce the inconsistencies 

associated with human raters (Lerma-Usabiaga et al., 2016). Such inconsistencies may 

arise from simple differences in subjective tracing decisions across individuals (e.g., one 

rater tending to draw regions slightly more “generously” than another) or even within an 

individual, across occasions. Most relevant to the present report, knowledge of 

participant age might subconsciously influence raters to delineate regions in a certain 

way. While measures can be taken to avoid this issue in the case of development (e.g., 

by blinding the rater to subject identity and cropping the field of view to obscure 

identifying features like head size), this approach might be difficult or impossible in other 

special populations (e.g., those with brain damage or obvious atrophy). Thus, 

automated approaches that significantly reduce human subjectivity may be an ideal 

solution. Unlike other automated methods (Desikan et al., 2006), those we describe 

here—particularly ANTsROI and ASHS—do not require manual editing or painstaking 

examination of regions. While basic quality assessment should certainly be performed, 

failures with these methods tend to be extreme (though rare) and quite obvious, even to 

an untrained eye. This fact reduces not only the burden of anatomical knowledge 

required, but also alleviates issues associated with the potential bias introduced by 

human subjectivity, even compared with other automated methods.   

 The way manual tracing is implemented also varies substantially across research 

groups (Paul A. Yushkevich et al., 2015a), making it difficult to compare findings across 
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studies. Both ANTs templates and ASHS atlases are small enough in terms of file size 

that they can be easily shared with other research groups and/or made freely available 

for download through online repositories. These methods can be readily applied to new 

datasets, thus enabling direct comparisons across studies—even those carried out by 

different research groups. Furthermore, as the field’s knowledge of hippocampal 

anatomy continues to be refined, new atlases can be generated and applied to existing 

datasets in a relatively straightforward and efficient manner. 

 In discussing these features, it is clear that automated segmentation methods 

align well with the aspirations expressed by so many in the field (e.g., Gorgolewski and 

Poldrack, 2016): science should be more reproducible and open. Moreover, in efforts to 

make findings more replicable in future studies, larger sample sizes are becoming the 

goal for some and the norm for many, particularly when individual differences are of 

interest. This makes manual delineation of hippocampal subfields an intractable 

approach for many researcher groups due to its labor-intensive nature. In 

developmental work specifically, this problem is compounded when individual 

differences vary by age, and/or when data is collected from the same large number of 

participants over multiple years. The automated methods described here would make 

hypotheses falling into these categories addressable in a way that is not only logistically 

feasible but also less susceptible to potential bias and subjectivity introduced by a 

human rater. 

 

Limitations and future considerations  
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While we purposefully chose to have a single rater perform all manual 

segmentations to reduce concerns about inter-rater reliability when generating our 

template and atlases, we recognize that this approach is not without limitations. 

Specifically, we were unable to determine the degree to which the automated 

segmentations generated here would correspond with another manual rater using the 

same protocol. Future work should strive to establish validity of the manual tracings 

through such comparison across expert raters. Thus, while our results provide 

quantification of the degree to which ANTs- and ASHS-based approaches can be used 

to generate new segmentations that approximate a given rater—and the relative 

performance of each method—it is not necessarily the case that they would correspond 

at the same level when tested across raters. Relatedly, we are not able to assess the 

degree to which the added variability of multiple human raters impacts (either positively 

or negatively) the semi-automated segmentation methods. All of these questions would 

be interesting avenues for future investigation. 

Furthermore, one weakness of the ANTs methods in particular is that in this case, 

a single segmentation (by a single rater) on the group template serves as the basis for 

all individual participant segmentations. One could imagine an extension of our 

approach in which group template segmentations from multiple raters were somehow 

combined to create the template ROIs. Alternatively, it might be beneficial to segment 

the group template using ASHS rather than a human rater; in this case, the template 

image could simply be treated as another participant and the ROIs generated through 

the usual ASHS voting procedure. Such an approach could be useful if the researcher 
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required their data to be in some common (i.e., template) space, and should be formally 

tested in future work.  

Moreover, how the current results generalize to other brain regions, tracing 

protocols, and MRI acquisition protocols is also an important open question. Note that 

here, we consider only the HPC proper, and did not investigate subregions of MTL 

cortex. A formal test of these methods for MTL cortical segmentation in pediatric 

samples remains an open question for future studies. With respect to tracing protocols, 

it is possible that a similar comparison of automated methods using a different tracing 

protocol may lead to a different outcome. Thus, while our results serve as an important 

test to the flexibility of both software packages in generating reliable templates/atlases 

for hippocampal segmentation using a tracing protocol that was independent of this 

method’s development, future work will be needed to provide an empirical test of these 

questions of generalizability to different regions, raters, and protocols. It also remains to 

be tested whether manual tracing (e.g., by comparison of multiple raters on the same 

dataset) or semi-automated segmentation is more robust to differences in image quality, 

such as across images acquired using different MRI scanners and/or acquisition 

parameters. We did not systematically test different imaging parameters, and thus it is 

quite possible that a different MRI protocol—for example, perhaps by collecting a single, 

higher quality image rather than averaging two images— would improve performance of 

either manual tracers and/or semi-automated methods in a developmental context.  

 Another limitation of the present study is the poor intra-rater reliability of manual 

segmentations in CA2,3 and subiculum, which precluded assessment of the automated 

methods in these regions. While we report these results throughout the paper for 
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completeness, the reader is cautioned against drawing any conclusions from the degree 

of correspondence between semi-automated and manual methods within these regions. 

In particular, if agreement is high, that could be an indication that the error inherent to 

the manual tracings is being reproduced by the semi-automated method(s). If 

agreement is low, this could either be due to the error in the original segmentations or 

weaknesses in the automated method. As such, future work with more reliably manual 

segmentations will be necessary to assess whether there are developmental differences 

in the performance of these semi-automated methods within CA2,3 and subiculum. 

We were able to assess the generalizability of our ANTs templates and ASHS 

atlases to only those participants that did not go into generating the initial template/atlas. 

While the findings were encouraging in that the overall pattern of results held, the very 

small number of participants remaining ultimately led to noisier estimates across all 

metrics. As such, although these initial findings are encouraging for the general use of 

our generated templates and atlases, further validation of these resources with a much 

larger sample is needed. 

The most stringent criterion for assessing segmentation methods is to require no 

differences of any kind across age groups. This criterion was not applicable in the 

present report; we do find some age-related differences. However, we suggest that the 

direction of these differences is important to bear in mind when thinking about how our 

results should inform future study. In particular, one must consider whether the direction 

of their developmental hypothesis would be confounded by the direction of differences 

observed here. For example, most empirical work and theoretical accounts in 

developmental cognitive neuroscience aim to understand the ways in which children are 
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not yet like adults; relative to adult groups, children typically show lower performance, 

less differentiated neural signatures, lower data quality, and so on. We reason that in 

the majority of cases, the main concern would be if the current results showed 

automated segmentations were worse in children—such a finding would indicate that 

there is more error or variability in segmentation for the child group.  

Our results show that evidence for this sort of confound is minimal. While there 

are a few group differences (children and/or adolescents showing worse segmentation 

than adults), they are either numerically small and in the context of extremely good 

performance (e.g., DSC for ASHS) or are statistically weak and do not survive 

correction for multiple comparisons (ICC, Bias). In fact, in some cases, the results 

appear to go in the opposite direction; for example, there was a general pattern of 

greater IHC among the younger groups relative to adults. Thus, given that the vast 

majority of targeted hypotheses in developmental cognitive neuroscience that expect 

worse performance or more errors in children, we believe that the limited differences 

observed in the current study are encouraging for semi-automated methods.  

 One strong pattern did in fact emerge across all methods tested, and nearly all 

regions: the degree of bias (i.e., over- or under-estimation of region size) was 

significantly related to the size of the region itself. In the majority of cases, this was 

borne out as greater error—that is, a larger difference between volumes derived from 

the target method versus those derived manually—for larger regions. Others have 

reported similar observations, albeit to varying degrees, in other datasets (Bender et al., 

2018; de Flores et al., 2015; Guo et al., 2015; Schoemaker et al., 2016; Yushkevich et 

al., 2010; P.A. Yushkevich et al., 2015). One possibility is that this bias is an artifact of 
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the method, whereby a raw difference of 500 mm3 means something different for a 

region that is 3500 versus 2500 mm3. Nevertheless, it is important to keep in mind that 

while the degree of over- or under-estimation of volume did not vary systematically 

across age groups, it did vary as a function of region size. This result was true even for 

ASHS, our best performing method. One unwanted consequence of this finding is that 

the range of volume values across participants is artificially compressed—that is, the 

maximum volume is effectively reduced due to the systematic under-estimation in this 

range. Such bias could potentially make it difficult to detect true relationships between 

volume and another variable of interest (e.g., behavioral performance).  

Like other studies using these semi-automated methods (Bender et al., 2018; 

Paul A. Yushkevich et al., 2015b), we found that performance varies markedly across 

subfields. We thus suggest that comparisons across age groups within subfield are the 

most meaningful, and direct comparisons across subfields should be performed and 

interpreted with caution. This recommendation is especially true when comparing 

subfields that demonstrate low reliability (e.g., CA2,3). 

Finally, it is worth explicitly noting one key limitation that is common to all studies 

of hippocampal subfield segmentation in pediatric populations: our results rest on the 

assumption that hippocampal histology in children will be similar to that of adults. This 

assumption is made due to the absence of histological data specific to children. Future 

studies that directly compare histology with MRI scans in children will be necessary to 

clarify that this is indeed the case. 

 

Suggestions for the field 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 8, 2018. ; https://doi.org/10.1101/064303doi: bioRxiv preprint 

https://doi.org/10.1101/064303


	 46 

 It is likely the case that no semi-automated segmentation method will ever be a 

perfect substitute for a human’s expert anatomical knowledge. However, we believe that 

the automated methods discussed here may be even better suited than manual tracing 

to answer the kinds of questions posed by developmental researchers, given the 

considerations about feasibility, subjectivity, and bias described above. We thus present 

the following recommendations for developmental researchers interested in using 

automated approaches to study HPC subfield anatomy or function. These ideas are 

described with the caveat that we did not examine all possible automated segmentation 

methods or all tracing protocols; recommendations are based on the comparison of just 

those we did test.  

When at all possible, analyses should be done in each participant’s native space 

using ROIs produced by ASHS. Performance of ASHS was comparable to or better 

than ANTs methods in all metrics and regions. One strength that ASHS has over 

ANTs—and likely a reason why it performs so well—is that more information is used to 

perform the individual participant segmentations. That is, rather than a single manual 

segmentation performed by an individual rater being the basis of each participant’s 

ROIs (as is the case for the ANTs methods as implemented here), all atlas participants 

“vote” for each segmentation. Despite its notable strengths, there are situations in which 

we could imagine ASHS would be the less desirable option to the researcher. One 

drawback of ASHS compared with ANTs is the relatively larger number of participants 

required for generating the ASHS atlas. For the purposes of the methodological 

comparisons we perform here, the most stringent approach is to not include these 

participants in the final analysis (i.e., have these participants be a separate “training” 
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dataset, ideally with the same imaging parameters as the target sample). However, 

future empirical work could include the atlas participants by either 1) using only their 

manually traced ROIs that were required for atlas generation for all subsequent 

analyses, 2) generating many ASHS atlases that exclude individual atlas subjects in a 

cross validation approach (Paul A. Yushkevich et al., 2015b), or 3) excluding atlas 

subjects votes during label fusion in segmenting their own ROIs, as we have done in the 

current work. Subsequent analyses performed with the ROIs could include not only 

analysis of volume but also function; for example, these subfields could serve as 

anatomical ROIs (after alignment and resampling to functional space) to investigate 

both univariate and multivariate functional activation.  

When voxelwise, group level analyses are an absolute necessity, our findings 

suggest that generating a custom coronal template—importantly, including participants 

representative of the whole age range—may be an acceptable approach, although we 

suggest caution. Most notably, our data suggest that inferences regarding the DG/CA2,3 

region would be particularly problematic in this situation, given the subpar performance 

of both ANTs-based methods on nearly all of our metrics. While it has been suggested 

that the use of the MNI template is appropriate for use with children as young as 7 

(Burgund et al., 2002; Kang et al., 2003), this template is not appropriate for localizing 

activations to specific hippocampal subfields. Our study is the first that we know of to 

generate a single custom group ANTs template (and the second to generate an ASHS 

atlas; Bender et al., 2018) spanning a developmental sample of the kind that would be 

used in high-resolution imaging studies optimized for the medial temporal lobes. This 

single group template is an important feature of the present method, as it enables direct 
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voxelwise comparisons across individuals of different ages. We found limited age-

related differences in our metrics for both ANTs methods, suggesting that the ability to 

normalize to the group template does not substantially differ for children and 

adolescents relative to adults.  

We have a slight preference for using ANTsROI over ANTs in this kind of analysis 

strategy, given that spatial overlap—the metric that, we reason, is most directly related 

to warping each subject’s functional data or statistical maps to the group template—as 

superior for the ROI-guided implementation of ANTs across all of the regions we 

examined. Notably, researchers could opt to use the overall HPC derived from ASHS 

rather than manually trace the region on each participant to use the ROI-guided 

normalization, substantially reducing the time burden associated with the ANTsROI 

method. Moreover, as mentioned previously, researchers might opt to perform 

segmentation on the ANTs group template in an automated fashion using ASHS rather 

than through manual delineation, which has the potential to further improve 

performance.  

Finally, given that rater subjectivity is such a concern with manual approaches to 

HPC segmentation, we would recommend that an automated method like ANTs or 

ASHS is utilized as a subsidiary analysis even in studies that ultimately rely on manual 

tracing of all participants. Despite being the best available segmentation method, 

manual tracing is prone to biases and error, and there is no guarantee that all problems 

with tracings will be identified during quality control. Leveraging an automated method 

can aid in identifying such problems: manually defined ROIs that significantly diverge 

from automated segmentations raise the flag for a more in-depth review of the tracing. 
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In this situation, an automated method serves as an extended approach to quality 

control for correcting biases and errors due to manual tracing.  

 

Conclusions 

Recent years have seen an increase in the number of studies on HPC subfield 

function. It is additionally becoming clear that many interesting questions relating to 

hippocampal development remain to be answered—not only in terms of characterizing 

the typical developmental trajectory, but also to better understand how the structural 

development goes awry in less typical scenarios like significant early life stress (Teicher 

et al., 2003), childhood obesity (Chaddock et al., 2010), and neurodevelopmental 

disorders (Schumann et al., 2004). Our findings suggest that automated subfield 

segmentation techniques can be applied to healthy individuals ranging in age from 6-30 

years. While the convergent validity of these methods to atypically developing samples 

remains to be explored, the present results show the promise in this avenue. The ability 

to readily apply such methods to a diverse sample may result in increased sensitivity for 

diagnosis, making these findings of relevance to basic researchers and clinicians alike.  
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TABLES 

ROI All 
DSC [95%CI] 

Child 
DSC [95%CI] 

Adolescent 
DSC [95%CI] 

Adult 
DSC [95%CI] 

ANTs     
HPC 0.84 [0.83 0.85] 0.83 [0.81 0.85]* 0.84 [0.83 0.85]* 0.86 [0.84 0.87] 
CA1 0.70 [0.69 0.70] 0.69 [0.67 0.71] 0.69 [0.68 0.71] 0.70 [0.69 0.72] 
(SUB) 0.65 [0.64 0.66] 0.65 [0.63 0.66] 0.65 [0.63 0.66] 0.67 [0.65 0.69] 
DG/CA2,3 0.78 [0.77 0.79] 0.78 [0.76 0.79] 0.78 [0.77 0.79]* 0.79 [0.78 0.80] 
(CA2,3) 0.44 [0.42 0.45] 0.42 [0.39 0.44]* 0.44 [0.42 0.45] 0.46 [0.43 0.48] 
DG 0.74 [0.73 0.74] 0.73 [0.72 0.75] 0.74 [0.73 0.75] 0.74 [0.72 0.75] 

ANTsROI     
HPC 0.90 [0.90 0.90] 0.90 [0.89 0.90] 0.90 [0.89 0.90] 0.90 [0.90 0.91] 
CA1 0.73 [0.72 0.74] 0.73 [0.72 0.74] 0.72 [0.71 0.73] 0.73 [0.72 0.74] 
(SUB) 0.73 [0.72 0.73] 0.73 [0.72 0.74] 0.72 [0.71 0.73] 0.73 [0.72 0.74] 
DG/CA2,3 0.81 [0.80 0.82] 0.81 [0.80 0.82] 0.80 [0.79 0.81] 0.81 [0.81 0.82] 
(CA2,3) 0.48 [0.47 0.49] 0.47 [0.45 0.49] 0.48 [0.46 0.50] 0.50 [0.48 0.51] 
DG 0.75 [0.74 0.75] 0.75 [0.74 0.75] 0.74 [0.74 0.75] 0.75 [0.74 0.76] 

ASHSS     
HPC 0.92 [0.92 0.93] 0.92 [0.91 0.92]**+ 0.92 [0.91 0.93]* 0.93 [0.93 0.93] 
CA1 0.80 [0.79 0.81] 0.80 [0.79 0.81] 0.81 [0.79 0.82] 0.80 [0.79 0.81] 
(SUB) 0.78 [0.77 0.79] 0.78 [0.76 0.79] 0.77 [0.76 0.79] 0.79 [0.78 0.80] 
DG/CA2,3 -- -- -- -- 
(CA2,3) 0.63 [0.62 0.65] 0.61 [0.58 0.64]* 0.64 [0.62 0.66] 0.65 [0.63 0.68] 
DG 0.84 [0.83 0.84] 0.84 [0.83 0.85] 0.84 [0.83 0.85] 0.84 [0.82 0.85] 

ASHSC     
HPC 0.92 [0.92 0.93] 0.92 [0.91 0.92]**+ 0.92 [0.92 0.93] 0.93 [0.93 0.94] 
CA1 0.81 [0.80 0.82] 0.80 [0.79 0.81] 0.81 [0.80 0.83] 0.81 [0.80 0.83] 
(SUB) 0.79 [0.78 0.80] 0.78 [0.77 0.79]* 0.78 [0.76 0.81] 0.80 [0.79 0.82] 
DG/CA2,3 0.87 [0.87 0.88] 0.87 [0.85 0.88] 0.88 [0.86 0.89] 0.88 [0.87 0.89] 
(CA2,3) -- -- -- -- 
DG -- -- -- -- 

 
Table 1. Spatial overlap of each method with Manual ROIs. Mean DSC and lower and upper 
bounds of 95% confidence intervals across all participants (left), as well as for child, adolescent, 
and adult groups separately. Asterisks indicate significance level of nonparametric t-tests 
comparing child and adolescent groups, respectively, with adults. * p < 0.05 and ** p < 0.01, 
uncorrected. + survives correction for multiple comparisons within method. Parentheses around 
SUB and CA2,3 indicate that these regions fell below our intra-rater reliability threshold 
(ICC(2,1)<0.80) and thus we do not consider them in the text. See also Figure 2.  
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ROI All 

ICC [95%CI] 
Child 
ICC [95%CI] 

Adolescent 
ICC [95%CI] 

Adult 
ICC [95%CI] 

ANTs     
HPC 0.51 [0.35 0.63] 0.37 [0.02 0.52] 0.63 [0.34 0.78] 0.56 [0.15 0.76] 
CA1 0.56 [0.39 0.67] 0.47 [0.10 0.64] 0.58 [0.26 0.76] 0.63 [0.37 0.78] 
(SUB) 0.54 [0.36 0.70] 0.29 [-0.08 0.55] 0.70 [0.44 0.82] 0.64 [0.34 0.91] 
DG/CA2,3 0.38 [0.26 0.46] 0.39 [0.14 0.50] 0.31 [0.12 0.45] 0.40 [0.18 0.55] 
(CA2,3) 0.14 [0.07 0.20] 0.15 [-0.01 0.25] 0.12 [0.02 0.22] 0.15 [0.03 0.25] 
DG 0.47 [0.31 0.57] 0.49 [0.06 0.65] 0.38 [0.08 0.57] 0.49 [0.20 0.65] 

ANTsROI     
HPC 0.82 [0.76 0.86] 0.84 [0.68 0.89] 0.81 [0.67 0.89] 0.83 [0.64 0.90] 
CA1 0.79 [0.68 0.85] 0.79 [0.42 0.90] 0.79 [0.60 0.88] 0.79 [0.61 0.88] 
(SUB) 0.66 [0.50 0.78] 0.66 [0.27 0.86] 0.70 [0.48 0.83] 0.61 [0.30 0.82] 
DG/CA2,3 0.47 [0.32 0.58] 0.58 [0.40 0.71] 0.38 [0.11 0.60] 0.39 [0.02 0.60] 
(CA2,3) 0.16 [0.07 0.25] 0.15 [-0.04 0.25] 0.16 [0.01 0.32] 0.18 [0.00 0.33] 
DG 0.47 [0.29 0.59] 0.69 [0.35 0.78] 0.33 [0.03 0.53] 0.36 [-0.03 0.57] 

ASHSS     
HPC 0.75 [0.64 0.82] 0.71 [0.47 0.79]* 0.67 [0.41 0.82]* 0.89 [0.76 0.95] 
CA1 0.74 [0.63 0.82] 0.70 [0.42 0.81] 0.72 [0.48 0.86] 0.81 [0.65 0.89] 
(SUB) 0.68 [0.54 0.78] 0.65 [0.37 0.82] 0.67 [0.38 0.81] 0.73 [0.48 0.85] 
DG/CA2,3 -- -- -- -- 
(CA2,3) 0.26 [0.15 0.38] 0.27 [0.10 0.45] 0.22 [0.01 0.42] 0.26 [0.04 0.43] 
DG 0.72 [0.57 0.81] 0.77 [0.40 0.88] 0.55 [0.24 0.80] 0.81 [0.63 0.89] 

ASHSC     
HPC 0.75 [0.65 0.82] 0.71 [0.47 0.80]* 0.68 [0.43 0.82]* 0.89 [0.74 0.95] 
CA1 0.70 [0.59 0.78] 0.65 [0.34 0.77] 0.69 [0.46 0.84] 0.78 [0.61 0.87] 
(SUB) 0.66 [0.52 0.77] 0.62 [0.34 0.80] 0.65 [0.34 0.81] 0.74 [0.50 0.86] 
DG/CA2,3 0.72 [0.61 0.78] 0.70 [0.40 0.79] 0.63 [0.40 0.78] 0.80 [0.66 0.87] 
(CA2,3) -- -- -- -- 
DG -- -- -- -- 

 
Table 2. Volume correspondence for each automated method with Manual ROIs. Mean ICC 
(absolute agreement of single measures) value and lower and upper bounds of 95% confidence 
intervals across all participants (left), as well as for child, adolescent, and adult groups 
separately. Asterisks indicate significance level of nonparametric t-tests comparing child and 
adolescent groups, respectively, with adults. * p < 0.05 and ** p < 0.01, uncorrected. No tests 
survived correction for multiple comparisons. Parentheses around SUB and CA2,3 indicate that 
these regions fell below our intra-rater reliability threshold (ICC(2,1)<0.80) and thus we do not 
consider them in the text. See also Figure 4. 
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ROI Volume 

F statistic (p value) 
Age 
F statistic (p value) 

Volume x Age 
F statistic (p value) 

ANTs    
HPC 30.99 (<0.001)**+ 1.52 (0.26) 1.23 (0.34) 
CA1 39.79 (<0.001)**+ 4.66 (0.02)* 0.18 (0.66) 
(SUB) 4.00 (0.13) 1.41 (0.27) 1.09 (0.37) 
DG/CA2,3 50.19 (<0.001)**+ 1.72 (0.21) 0.22 (0.60) 
(CA2,3) 120.65 (<0.001)**+ 2.20 (0.15) 1.60 (0.24) 
DG 28.59 (<0.001)**+ 0.97 (0.34) 0.33 (0.57) 

ANTsROI    
HPC 62.20 (<0.001)**+ 1.74 (0.19) 0.15 (0.71) 
CA1 38.88 (<0.001)**+ 2.64 (0.12) 0.64 (0.53) 
(SUB) 1.77 (0.34) 0.57 (0.43) 0.16 (0.59) 
DG/CA2,3 41.16 (<0.001)**+ 0.82 (0.39) 0.25 (0.60) 
(CA2,3) 113.64 (<0.001)**+ 2.65 (0.11) 2.23 (0.17) 
DG 23.39 (0.000)**+ 0.21 (0.54) 0.23 (0.60) 

ASHSS    
HPC 12.90 (0.01)* 2.60 (0.11) 1.63 (0.23) 
CA1 21.72 (<0.001)**+ 1.38 (0.25) 0.17 (0.66) 
(SUB) 1.40 (0.40) 1.25 (0.25) 3.95 (0.05)* 
DG/CA2,3 -- -- -- 
(CA2,3) 74.60 (<0.001)**+ 5.11 (0.04)* 0.41 (0.52) 
DG 3.23 (0.19) 0.09 (0.60) 0.17 (0.57) 

ASHSC    
HPC 13.43 (0.01)*+ 2.76 (0.11) 1.41 (0.28) 
CA1 28.79 (<0.001)**+ 2.02 (0.16) 0.14 (0.65) 
(SUB) 1.44 (0.40) 1.63 (0.21) 4.01 (0.05)* 
DG/CA2,3 11.07 (0.04)* 0.51 (0.46) 0.05 (0.57) 
(CA2,3) -- -- -- 
DG -- -- -- 

 
Table 3. Bias statistics for each automated method, with Manual ROIs serving as the baseline. 
F statistics and corresponding p values indicate the reliability of the main effects of volume, age, 
and volume x age interactions. * p < 0.05 and ** p < 0.01, uncorrected. + survives correction for 
multiple comparisons within method. Parentheses around SUB and CA2,3 indicate that these regions 
fell below our intra-rater reliability threshold (ICC(2,1)<0.80) and thus we do not consider them in the 
text. These data are depicted in Figures 5-8.  
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ROI All Child Adolescent Adult 
Manual     

HPC 0.94 [0.90 0.96] 0.95 [0.86 0.98] 0.91 [0.84 0.97] 0.95 [0.89 0.98] 
CA1 0.90 [0.85 0.94] 0.85 [0.67 0.94] 0.91 [0.85 0.96] 0.94 [0.88 0.98] 
(SUB) 0.58 [0.41 0.72] 0.67 [0.35 0.87] 0.52 [0.22 0.80] 0.55 [0.17 0.79] 
DG/CA2,3 0.79 [0.66 0.88] 0.85 [0.64 0.95] 0.74 [0.48 0.89] 0.75 [0.48 0.90] 
(CA2,3) 0.70 [0.55 0.81] 0.79 [0.52 0.92] 0.55 [0.19 0.79] 0.65 [0.46 0.81] 
DG 0.78 [0.66 0.87] 0.84 [0.58 0.94] 0.83 [0.53 0.93] 0.72 [0.44 0.89] 

ANTs     
HPC 0.80 [0.69 0.88] 0.67 [0.38 0.89] 0.85 [0.70 0.93] 0.86 [0.67 0.95] 
CA1 0.73 [0.56 0.85] 0.70 [0.48 0.87] 0.76 [0.47 0.91] 0.71 [0.25 0.92] 
(SUB) 0.45 [0.26 0.62] 0.55 [0.27 0.74] 0.35 [0.00 0.67] 0.44 [0.12 0.72] 
DG/CA2,3 0.72 [0.60 0.82] 0.87 [0.71 0.95]* 0.72 [0.55 0.84] 0.56 [0.11 0.80] 
(CA2,3) 0.45 [0.21 0.65] 0.74 [0.44 0.92] 0.33 [-0.16 0.68] 0.28 [-0.26 0.64] 
DG 0.78 [0.68 0.86] 0.85 [0.67 0.95] 0.80 [0.59 0.92] 0.69 [0.40 0.86] 

ANTsROI     
HPC 0.88 [0.81 0.92] 0.92 [0.75 0.97] 0.84 [0.72 0.93] 0.87 [0.67 0.95] 
CA1 0.83 [0.73 0.90] 0.80 [0.55 0.95] 0.84 [0.71 0.92] 0.87 [0.67 0.94] 
(SUB) 0.66 [0.51 0.79] 0.70 [0.31 0.88] 0.59 [0.26 0.83] 0.73 [0.54 0.87] 
DG/CA2,3 0.65 [0.48 0.79] 0.79 [0.55 0.91] 0.67 [0.37 0.89] 0.58 [0.20 0.84] 
(CA2,3) 0.51 [0.30 0.70] 0.61 [0.32 0.84] 0.62 [0.29 0.84] 0.36 [-0.10 0.72] 
DG 0.69 [0.53 0.81] 0.77 [0.45 0.91] 0.72 [0.42 0.91] 0.63 [0.27 0.85] 

ASHSS     
HPC 0.90 [0.84 0.94] 0.91 [0.81 0.97] 0.88 [0.78 0.95] 0.90 [0.76 0.96] 
CA1 0.79 [0.69 0.87] 0.82 [0.63 0.93] 0.79 [0.63 0.89] 0.81 [0.60 0.93] 
(SUB) 0.70 [0.54 0.81] 0.70 [0.38 0.87]* 0.41 [0.04 0.67]** 0.90 [0.80 0.96] 
DG/CA2,3 -- -- -- -- 
(CA2,3) 0.57 [0.37 0.72] 0.76 [0.45 0.93]** 0.54 [0.34 0.74]* 0.06 [-0.49 0.47] 
DG 0.83 [0.75 0.90] 0.89 [0.84 0.95] 0.87 [0.74 0.94] 0.78 [0.55 0.91] 

ASHSC     
HPC 0.90 [0.85 0.94] 0.93 [0.82 0.97] 0.88 [0.76 0.95] 0.90 [0.76 0.96] 
CA1 0.77 [0.66 0.85] 0.81 [0.53 0.93] 0.79 [0.62 0.90] 0.76 [0.47 0.90] 
(SUB) 0.73 [0.58 0.83] 0.76 [0.47 0.90] 0.44 [0.09 0.70]** 0.91 [0.83 0.96] 
DG/CA2,3 0.80 [0.72 0.87] 0.90 [0.84 0.95]** 0.84 [0.71 0.92] 0.67 [0.41 0.84] 
(CA2,3) -- -- -- -- 
DG -- -- -- -- 

 
Table 4. Within-method volume correspondence for all methods, indexed as Pearson 
correlations between left and right hemisphere volumes. Lower and upper bounds indicate 95% 
confidence intervals across all participants (left), as well as for child, adolescent, and adult 
groups separately. Note that the volume of CA2,3 is not reliably correlated across hemispheres in 
adults, making it difficult to interpret deviations from that group as a baseline. Asterisks indicate 
significance level of nonparametric t-test comparing child and adolescent groups, respectively, 
with adults. * p < 0.05 and ** p < 0.01, uncorrected. No tests survived correction for multiple 
comparisons. Parentheses around SUB and CA2,3 indicate that these regions fell below our intra-
rater reliability threshold (ICC(2,1)<0.80) and thus we do not consider them in the text. See also 
Figure 9. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 8, 2018. ; https://doi.org/10.1101/064303doi: bioRxiv preprint 

https://doi.org/10.1101/064303


	 62 

 
FIGURE LEGENDS 

Figure 1. Schematic depiction of methods compared. A) ANTs segmentation methods. 1. 
Subsets of participants were selected from the three age groups to generate a single ANTs 
template. 2. Then, hippocampal subfield ROIs were manually delineated on the ANTs template. 
3. Finally, the ANTs template ROIs were reverse normalized to each participant’s native space. 
For the ANTs method (top path), a nonlinear warp was estimated based uniformly on the entire 
ANTs template and participant anatomical volumes. For the ANTsROI method (bottom path), the 
nonlinear warp was estimated through landmark matching of the whole hippocampus. For the 
main analysis, both ANTs-based methods were performed for all participants to create two sets 
of participant-specific subfield ROIs. B) ASHS segmentation methods. 1. Subsets of participants 
from the three age groups were selected for training custom ASHS atlases. The ASHS training 
procedure was run using the manually delineated subfield segmentations for the atlas 
participants. 2. Then, the ASHS atlases were applied to all participants. Briefly, the ROIs from 
each atlas participant were all nonlinearly warped to a single participant. Then, a label fusion 
procedure combined the transformed atlas segmentations to generate final, participant-specific 
ROIs. In the main analysis, atlas participants’ own segmentations were excluded from the label 
fusion procedure to reduce bias in their final segmentation. The whole procedure was performed 
twice: once with DG and CA2,3 separated (ASHSS), and once with them combined (ASHSC). 
Figure depicts the main analysis including all participants; we additionally performed follow-up 
analysis omitting participants who went into the generation of the ANTs template or ASHS atlas. 
 
Figure 2. Spatial overlap of each method with Manual ROIs measured using DSC. Black error 
bars represent 95% confidence intervals on the main analysis. Grey dots and corresponding 
error bars represent means and 95% confidence intervals, respectively, for analysis omitting all 
N=27 participants who went into the generation of the ANTs template or ASHS atlases. 
Parentheses around SUB and CA2,3 indicate that these regions fell below our intra-rater reliability 
threshold (ICC(2,1)<0.80) and thus we do not consider them in the text. Data correspond with 
Table 1. 
 
Figure 3. Voxelwise edge agreement displayed on a custom template separately for children, 
adolescents, and adults. Intensities represent the proportion of participants for which the 
method and Manual agreed that the voxel was a subfield boundary.  
 
Figure 4. DSC edge overlap as a function of position along the anterior-posterior axis. Spatial 
overlap of edge maps for ANTs, ANTsROI, and ASHSS with Manual ROIs for each age group within 
left (top) and right (bottom) HPC. Lines represent group means; shaded regions represent 95% 
confidence intervals. Each participant’s hippocampus was centered on the slice dividing the 
head from the body, represented at zero with a dashed vertical line. Positive values along the x-
axis (to the right of the dashed line) are in the HPC head; negative values (left) are in the 
remainder of HPC (a combined body/tail region). Overlap generally tracked with number of 
voxels going into the analysis (inset), which also varies as a function of anterior-posterior slice. 
 
Figure 5. Volume correspondence of each method with Manual ROIs measured using ICC. 
Black error bars represent 95% confidence intervals on the main analysis. Grey dots and 
corresponding error bars represent means and 95% confidence intervals, respectively, for 
analysis omitting all N=27 participants who went into the generation of the ANTs template or 
ASHS atlases. Parentheses around SUB and CA2,3 indicate that these regions fell below our intra-
rater reliability threshold (ICC(2,1)<0.80) and thus we do not consider them in the text. Data 
correspond with Table 2. 
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Figure 6. Bland-Altman plots comparing each automated method with Manual. Rows 
correspond with results from different automated methods, columns correspond with data from 
different ROIs. Within each plot, x-axis represents the mean regional volume across the two 
methods; y-axis represents the difference (method-Manual). Solid black line indicates the mean 
difference across all age groups; dashed lines are 2 standard deviations above and below the 
mean. Regression lines are displayed for each age group separately (dashed lines represent 
regression lines excluding atlas subjects). Parentheses around SUB and CA2,3 indicate that these 
regions fell below our intra-rater reliability threshold (ICC(2,1)<0.80) and thus we do not consider 
them in the text. ANCOVA statistics are provided in Table 3.  
 
Figure 7. Within-method reliability assessed using IHC. Bar height represents the Pearson’s r 
value between the left and right hemisphere volumes for each group separately; black error bars 
represent 95% confidence intervals on the main analysis. Grey dots and corresponding error 
bars represent means and 95% confidence intervals, respectively, for analysis omitting all N=27 
participants who went into the generation of the ANTs template or ASHS atlases. Parentheses 
around SUB and CA2,3 indicate that these regions fell below our intra-rater reliability threshold 
(ICC(2,1)<0.80) and thus we do not consider them in the text. Data correspond with Table 4. 
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