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Abstract

We propose a new model for fast classification of DNA sequences output by next generation sequencing
machines. The model, which we call fastDNA , embeds DNA sequences in a vector space by learning con-
tinuous low-dimensional representations of the k-mers it contains. We show on metagenomics benchmarks
that it outperforms state-of-the-art methods in terms of accuracy and scalability.

1 Introduction
The cost of DNA sequencing has been divided by 100,000 in the last 10 years. With less than $1,000 to
sequence a human-size genome, it is now so cheap that it has quickly become a routine technique to characterize
the genome of biological samples with numerous applications in health, food or energy. Besides the genome,
many techniques have been developed to measure other molecular informations using DNA sequencing, e.g.,
gene expression using RNA-seq, protein-DNA interactions using ChiP-seq, or 3D structural informations
using Hi-C, to name just a few. In short, DNA sequencing is the swiss army knife of modern genomics and
epigenomics. As a consequence, the rate of production of DNA sequences has exploded in recent years, and
the storage, processing and analysis of these sequences is increasingly a bottleneck.

While new, so-called long-read technologies are under active development and may become dominant in
the future, the current market of DNA sequencing technologies is dominated by so-called next-generation
sequencing (NGS) technologies which break long strands of DNA into short fragments of typically 50 to 400
bases each, and "read" the sequence of bases that compose each fragment. The output of a typical DNA
sequencing experiment is therefore a set of millions or billions of short sequences, called reads, of lengths
50∼400 in the {A,C,G, T} alphabet; these billions of reads are then automatically processed and analyzed by
computers to get some biological information such as the presence of particular bacterial species in a sample,
or of a specific mutation in a cancer.

Standard pipelines to process the raw reads depend on the target applications, but typically involve
discrete operations such as aligning them to some reference genome using string algorithms. In this paper, we
investigate the feasibility of directly representing DNA reads as continuous vectors instead, and replacing
some discrete operations by continuous calculus in this embedding.

To illustrate this idea, we focus on an important application in metagenomics, where one sequences the
DNA present in an environmental sample to characterize the microbes it contains [21, 4]. An important
problem in metagenomics is taxonomic binning, where each of the billions of sequenced reads must be
assigned to a species, given a database of genomes characteristic of each species considered [16]. Standard
computational approaches for taxonomic binning try to align each read to a reference sequence database with
sequence alignment tools like BLAST [5] or short read mapping tools such as BWA [14] or BOWTIE [10].
However, the computational cost of these techniques becomes prohibitive with current large sequence datasets.
Alternatively, compositional approaches rephrase the problem as a multiclass classification problem, and
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employ machine learning methods such as a naive Bayes (NB) classifier [23, 19] or a support vector machine
(SVM) [17, 20, 22] after representing each read by the vector of k-mer1 counts it contains. Interestingly, [22]
showed that compositional approaches can be competitive in accuracy with alignment-based methods, while
maintaining a computational advantage, by using large-scale machine learning approaches. However, a good
accuracy is only achieved with k-mers of length at least k = 12, corresponding to representing each read as a
sparse vector in N = 4k dimensions. This representation raises computational challenges both at training
time ([22] push VowPal Wabbit to its limit) and at test time (a N × T matrix of weights must be stored to
model T species).

In this work, we propose to extend state-of-the-art compositional approaches by embedding the set of DNA
reads to Rd, with d� N . For that purpose, we still extract the k-mer composition of each read, but replace
the N -dimensional one-hot encoding of each k-mer by a d-dimensional encoding, optimized to solve the task.
This approach is similar to, e.g., the fastText model for natural language sequences of [7, 3] or word2vec
[18], with a different notion of words to embed, and a direct optimization of the classification error to learn
the representation. This can reduce the memory requirements to store the model and accelerate classification
time when d < T , since the N × T matrix of weights is replaced by a N × d matrix of embeddings, and a
d× T matrix of weights.

After presenting in more detail the model and its optimization, we experimentally study the speed/performance
trade-off on metagenomics experiments by varying the embedding dimension, and demonstrate the potential
of the approach which outperforms state-of-the-art compositional approaches.

2 Method

2.1 Embedding of DNA reads
Given the alphabet of nucleotides A = {A,C,G, T}, a DNA read of length L ∈ N∗ is a sequence x =
x1 . . . xL ∈ AL. Depending on the sequencing technology, L is typically in the range 50 ∼ 400, and we fix
L = 200 in the experiments below. For any 1 ≤ a ≤ b ≤ L we denote by x[a,b] = xaxa+1 . . . xb the substring
of x from position a to b. For any d ∈ N∗, an embedding of DNA reads to Rd is a mapping Φ : AL → Rd to
represent each read x ∈ AL by a vector Φ(x) ∈ Rd, which can then be used for subsequent classification tasks.

For a given k ∈ N, the k-spectral embedding represents a sequence by its k-mer profile [11]: it is an
embedding ΦSpectral =

(
ΦSpectral

u

)
u∈Ak in d = |A|k dimensions indexed by all strings of length k, where for

any such string u ∈ Ak one defines:

ΦSpectral
u (x) =

L−k+1∑
i=1

δu
(
x[i,i+k−1]

)
,

where δu(v) = 1 if u = v, 0 otherwise. The k-spectral encoding of DNA reads is used in state-of-the-art
compositional approaches to assign reads to species with machine learning techniques [23, 19, 17, 20, 22].

Given d ∈ N∗ and a N × d matrix M = (Mu)u∈Ak associating a vector Mu ∈ Rd to each k-mer u ∈ Ak,
we now consider a d-dimensional embedding ΦM of DNA reads by summing the vectors associated to the
read’s k-mers:

∀x ∈ AL , ΦM (x) =
L−k+1∑
i=1

Mx[i,i+k−1]
.

In matrix form, one easily sees that the d-dimensional embedding ΦM can be obtained from the k-spectral
representation by the formula:

∀x ∈ AL , ΦM (x) = M>ΦSpectral(x) , (1)

showing in particular that the k-spectral embedding is a particular case of ΦM by taking d = N and
M = Id. Changing M allows to create correlations between k-mers in the embedding space. For example, the
(k,m)-mismatch kernel [12] also corresponds to an embedding ΦM with d = N , but where Mu,v = 1 when
the Hamming distance between u and v is at most m, 0 otherwise. Changing d further allows to vary the

1A k-mer is a contiguous subsequence of k letters.
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dimension of the embedding, which can not only be beneficial for memory and computational reasons, but
also help statistical inference by reducing the number of parameters of the embedding.

2.2 Learning the embedding
While several existing embeddings such as the k-spectral or (k,m)-mismatch embeddings correspond to ΦM

for specific matrices M , we propose to "learn" M as part of the overall classification or regression task that
must be solved. In our metagenomics problem, this is a multiclass classification problem where each of the T
bacterial species is a class and each read must be assigned to a class. Given an embedding ΦM , we consider a
linear model of the form:

∀x ∈ AL , fM,W (x) = WΦM (x) , (2)

where W ∈ RT×d is a matrix of weights, and the prediction rule:

∀x ∈ AL , ŷ ∈ arg max
i∈{1,...,T}

fi(x) .

To learn the embeddingM and the linear modelW , we assume given a training set of examples (xi, yi)i=1,...,ntrain

where xi ∈ AL and yi ∈ {1, . . . , T}, and numerically minimize an empirical risk:

min
M,W

1

ntrain

ntrain∑
i=1

`
(
yi, f

M,W (xi)
)
, (3)

where for the loss ` we choose the standard cross-entropy loss after transforming the scores to probabilities
with the softmax function:

∀(y, g) ∈ {1, . . . , T} × RT , `(y, g) = −gy + ln

(
T∑

i=1

egi

)
.

We solve (3) by stochastic gradient descent (SGD). Note that when d < T , the problem is usually
non-convex and SGD may only converge to a local optimum.

Combining (1) and (2), we further notice that for any embedding M and weights W ,

∀x ∈ AL , fM,W (x) = WM>ΦSpectral(x) . (4)

This clarifies that fM,W boils down to a linear model in the k-spectral representation, with a weight matrix
WM> of rank at most d. When d < min(N,T ) this creates a low-rank regularization that can be beneficial
for statistical inference, in addition to reducing the memory footprint of the model and speeding up the
prediction time.

2.3 Implementation
We implemented the model (3) by modifying the fastText open-source library [7, 8], which involves a similar
model with k-mer embedding for natural language. There are some important differences between DNA reads
and standard NLP applications, though: (i) One is that the concept of a "word", space-delimited groups of
letters, does not exist in DNA sequence data. Hence we resort to a distributed representation of overlapping
k-mers only, and not to words as in word2vec or fastText. (ii) Second is the number of training examples to
be seen by the model is very large: up to 5×109 if we were to achieve full coverage of the large database below,
for example. (iii) Third, the vocabulary is different, as it is of known size (4k) and is densely represented
for relatively small values of k. For greater values of k than those considered in this paper, k-mers become
rare and individual long k-mers can become discriminative. This is in fact used by some other compositional
algorithms such as Kraken [24].

For these reasons we rewrote part of the fastText software to extract overlapping k-mers rather than
words. As appropriate for (iii), the k-mer embeddings are stored in a fixed-size table of dimension (4k, d),
each row corresponding to the vector of a different k-mer. For a given k-mer b = b1 . . . bk ∈ Ak, the index of
its corresponding row in M is ind(b) =

∑k−1
i=0 4ih(bi), where h(A) = 0, h(C) = 1, h(G) = 2 and h(T ) = 3.

This allows to quickly find ind(xi+1:i+k) from ind(i : i+ k − 1) as explained for example in [22]. To address
(ii) we generate random fragments on the fly directly from the full genomes, rather than reading text samples
line by line as in fastText.
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2.4 Regularization with noise
As a form of regularization, we also add random mutations in the training fragments. When reading the
fragment from the reference genome, nucleotide by nucleotide, we introduce a chance r of replacing the
nucleotide by a random one (equally distributed on {A,C,G, T}). This is akin to the dataset augmentations
commonly used in image classification tasks, and in our case promotes the nearby embeddings of k-mers
similar in terms of Hamming distance.

3 Experiments

3.1 Data
We test our model on two benchmarks proposed by [22]: a small one, useful mostly for parameter tuning, and
a large one. Both benchmarks involve a training database of genomes organized by species, and a validation
set of genomes coming from the same species as the training database, but from different strains. Reads are
randomly sampled, with or without noise, from the validation set of genomes, and the goal is to predict, for
each read, from which species it comes from. The small database contains 356 complete genomes, belonging
to 51 species of bacteria; its validation set is composed of 52 genomes, belonging to the same 51 species. The
large database contains 2,961 genomes belonging to 774 species, which is closer to real-life situations. The
validation set is composed of 193 genomes, each from a separate species.

For both training and testing, reads of length L = 200 are extracted from the genomes. The validation
datasets are built by extracting fragments such that their coverage – the average number of times each
nucleotide is present – is 1. This amounts to a total of 134, 319 validation samples for the small database,
and ∼ 3.5M samples for the large database. The machine learning-based models are trained on reads sampled
from the reference genomes and their known taxonomic labels, while alignment-based methods simply align
validation reads to the training reference genomes. To account for the fact that DNA is double-stranded and
that when a read is sequenced it can come from any of the two strands, which are reverse-complement to each
other, we systematically add the reverse-complement of each read with the same label at training time.

In addition, we consider several noisy validation sets as in [22], where each fragment sampled from a
genome is modified to mimick sequencing errors of actual sequencing machines, in particular substitutions,
insertions and deletions of nucleotides. We use the specially-designed grinder software [1] to simulate 3 new
sets of validation reads. The Balzer validation set is simulated with a homopolymeric error model, designed
to emulate the Roche 454 technology [2]. The mutation-2 and mutation-5 sets are simulated with the 4th
degree polynomial proposed by [9] to study general mutations (insertion/deletions and substitutions). The
median mutation rates for these simulated reads are 2% and 5%, respectively. Balzer and mutation-2 are
meant to contain a realistic proportion of errors, and mutation-5 is added as a more challenging set.

3.2 Reference methods
We compare our method, which we call fastDNA in the rest of the text, to two other strategies. One is the
BWA-MEM sequence aligner [13] and the other is the linear SVM classifier on the k-spectral representation,
implemented using the Vowpal Wabbit software in [22]. We name the latter method VW in the rest of the
paper. We follow exactly the same configurations as [22] for both methods.

3.3 Small dataset
3.3.1 Memory footprint

As the embeddings matrix M is loaded in memory both for training and classification, fastDNA models have
a significant memory footprint. [7] discuss various strategies to reduce it. The vocabulary cannot be pruned
for our range of k as the k-mers are densely distributed, so the dimensions of M are fixed. The size of M in
memory can however be reduced by quantization. We use Product Quantization (PQ, [6]), with the option
to cluster separately the vector norms and directions (option qnorm). The linear layer is then retrained to
account for the change in the embeddings. This compresses the model size by almost an order of magnitude
without noticeably impacting the performance.
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Memory footprint
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Figure 1: Memory requirement of fastDNA models as a function of k-mer sizes. The embedding dimensions
d shown are 10, 100 and 1000. The reported value is the size in GB of the model binary, the minimal size
required both in RAM to train and load the model, and on disk to save it.
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Comparison with reference methods
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Figure 2: Comparison between fastDNA and reference methods on the small dataset. This figure shows the
average species-level recall obtained by fastDNA trained for 50 epochs and a learning rate 0.1, for different
values of k and d. The results are compared with VW for different values of k and an alignment-based
approach BWA-MEM

While PQ can make deploying and classifying more accessible, training the model still requires the full
embedding matrix, as its quantized version is not trainable. We restrain our parameter choices (k and d)
to models that fit on 64GB machines. The dimension of the embedding table (4k) is encoded on 32-bits,
which further limits the value of k to kmax = 15. The largest models we consider are k = 13, d = 100 and
k = 15, d = 10. Their memory footprints are available in figure 1.

Contrary to VW , model size is completely determined by the user and does not depend on the number of
possible classes T or on the vocabulary of the training database, which can become an advantage when T is
large.

3.3.2 Coverage

The model is trained by picking a position at random in the reference genomes and using the 200-bp read
starting from that position as a sample. One epoch of training consists of drawing enough random reads to
cover each nucleotide of the reference genomes once on average (coverage of 1). We found that models with
no training noise had converged by 50 epochs, and those with training noise benefited from extra epochs.

The results in this paper were obtained by training with a fixed number of epochs 50, and a learning rate
of 0.1, chosen by a standard grid-search.

3.3.3 Performance

One first result from figure 2, is that increasing the embedding dimension d above 50 brings no added benefit
in classification quality, at the cost of larger prediction times and memory footprint. This could in theory
be expected from (4). Once d is greater than the number of classes, the matrix WM> has maximal rank T ,
so the model is virtually the same as the standard "Bag of Words" model VW . The differences observed
between the two are likely due to different optimization procedures and implementations.
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Excessively lowering the dimension d under T harms the performance, especially for shorter k-mers.
However, the gap between models d = 10 and models d = 50 vanishes as k increases, suggesting that –
provided a sufficient vocabulary size – projecting k-mers to a lower-dimensional space comes at little cost.
Furthermore, models with longer k-mers but smaller dimension can achieve the same performance as a model
with shorter k and greater dimension. The model k = 14, d = 10 has the same performance as k = 12, d = 50.

Finally, classification performance for values of k greater than 12 is competitive with alignment-based
method BWA, which confirms machine learning approaches can be relevant for this problem of taxonomic
binning.

3.4 Large dataset
We report the classification performance, measured by average species-level recall and precision of fastDNA
on the validation sets described in 3.1. The influence of the training noise is shown in figure 3.

As could be expected, greater levels of sequencing noise in the validation sets lead to degraded performances.
Adding random mutations to the training reads curbs this effect. The greater the mutation rate is, the
more robust the model becomes to higher levels of sequencing noise. Somewhat more surprisingly, a certain
range of mutation rates also increases the performance on the validation reads with no sequencing noise.
The regularization induced by these artificial errors is therefore beneficial for both sequencing noise and
intra-species heterogeneity. We found that the best rates of mutation were between 2 and 5%. The models
trained with these levels of noise are better all-around than their no-noise counterparts.

We compare the performance of fastDNA against that of VW and BWA in 4. For small levels of sequencing
errors, fastDNA is competitive with BWA. Greater levels in sequencing noise widens the gap between the two,
as BWA is very robust to sequencing noise, dropping less than 1% for mutation-5 .

3.5 Classification speed
Speed is of critical importance in taxonomic binning and is the main motivation behind exploring machine
learning techniques. Classifying a read with fastDNA can be separated in two parts. It first reads the sequence,
computes the indices of the k-mers contained in the read and computes the read embedding by summing the
k-mer embeddings. This step is of complexity O(dL), where L is the read length (constant in our experiments).
Second, class probabilities are computed by applying the linear classifier, this step is of complexity O(dT ).
fastText and fastDNA offer a different loss function, the hierarchical softmax, that reduces this step to
O(d log(T )), which can become useful in the case of very large T . To this per-read time-complexity must be
added a fixed overhead, the time necessary for the model to be loaded from disk, of complexity O(dN + T ),
where N = 4k is the vocabulary size. Due to the large values of 4k, this can make up a significant portion of
the total time. Moreover, we observe in practice a longer memory access time for larger vectors. These are
the two reasons for the time gap observed between classification with models of same embedding dimension d
but different k.

The total time complexity for predicting a dataset with n samples is therefore O(n(dL+ dT ) + dN).
With reads of constant length, fastDNA and VW classify reads indiscriminately of their content, and

therefore yield equal classification times across the validation sets. On the other hand, BWA’s speed degrades
with the sequencing noise, which is easily explained. BWA searches iteratively on the number of mismatches
z and stops once it gets a hit. It will therefore be slower if there are more mismatches between the testing
and reference data.

We show in figure 5 the classification speeds measured for the large dataset. The values reported are
for a single CPU (Intel Xeon E5-2450 v2 -2.5GHz). We show fastDNA for d = 100 and k = 12, 13 and VW
. fastDNA and VW have similar classification times of ∼ 6, 7 · 103 reads per minute. As remarked in [22],
compositional approaches offer systematically better prediction times than BWA, with improvements of 2−9×.
This speed improvement increases with the mismatch between predicted sequences and reference genomes,
therefore with both sequencing noise and intra-species variations.
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Influence of mutation rate in training
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Figure 3: Performance on the large dataset of fastDNA trained with different mutation rates. k-mer size
and embedding dimension d are 13 and 100, respectively. The classification quality is measured on test sets
generated with different sequencing error models.
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Comparison with other compositional methods
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Figure 4: Comparison between fastDNA and reference methods on the large dataset. This figure shows the
average species-level recall and precision obtained by fastDNA , VW and BWA on the different validation
sets. We show both the best configuration for fastDNA (k = 13, d = 100, r = 4%) and a similar one to VW
(k = 12, d = 100, r = 0%) for a fair comparison.
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Classification speed
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Figure 5: Comparison between fastDNA and reference methods on the large dataset. This figure shows the
average classification speed of the methods on the different test sets. Two versions of fastDNA are shown, one
with k-mer size 12, the other with k-mer size 13. Both have embedding dimension d = 100. The four test sets
used were simulated with different sequencing error models.
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4 Conclusion
We demonstrated that learning a low-dimensional representation of DNA reads based on their k-mer com-
position is feasible, and outperforms state-of-the-art compositional approaches that work directly on the
high-dimensional, k-spectral representation of DNA sequences. Controlling the dimension d of the embedding
allows to consider longer k-mers for a given memory footprint. As other compositional methods, fastDNA is
significantly faster than alignment-based methods, and is well adapted to classification into many classes.

There are two immediate possible extensions of this work. One is to use a more realistic error model
than uniform substitutions for training, to better mimick the expected noise in the data. The other is to
extend the notion of "word" from contiguous k-mers to gap-seeded k-mers or Bloom filters [15], hopefully
capturing longer-range dependencies. In terms of applications, assigning RNA-seq reads to genes to quantify
their expression can also be formulated as a classification problem with typically T ∼ 22k classes, and may be
well adapted to fastDNA as well.

The source code is freely available and published on github https://github.com/rmenegaux/fastDNA,
along with scripts to reproduce the presented results.

References
[1] F. E. Angly, D. Willner, F. Rohwer, P. Hugenholtz, and G. W. Tyson. Grinder: a versatile amplicon and

shotgun sequence simulator. Nucleic Acids Res., 40:e94, 2012.

[2] S. Balzer, K. Malde, A. Lanzén, A. Sharma, and I. Jonassen. Characteristics of 454 pyrosequencing
data–enabling realistic simulation with flowsim. Bioinformatics, 26:i420–i425, 2010.

[3] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with subword information.
Transactions of the Association for Computational Linguistics, 5:135–146, 2017.

[4] N. H. W. Group, J. Peterson, S. Garges, M. Giovanni, P. McInnes, L. Wang, J. A. Schloss, V. Bonazzi,
J. E. McEwen, K. A. Wetterstrand, C. Deal, C. C. Baker, V. Di Francesco, T. K. Howcroft, R. W. Karp,
R. D. Lunsford, C. R. Wellington, T. Belachew, M. Wright, C. Giblin, H. David, M. Mills, R. Salomon,
C. Mullins, B. Akolkar, L. Begg, C. Davis, L. Grandison, M. Humble, J. Khalsa, A. R. Little, H. Peavy,
C. Pontzer, M. Portnoy, M. H. Sayre, P. Starke-Reed, S. Zakhari, J. Read, B. Watson, and M. Guyer.
The NIH human microbiome project. Genome research, 19:2317–2323, Dec. 2009.

[5] D. H. Huson, A. F. Auch, J. Qi, and S. C. Schuster. MEGAN analysis of metagenomic data. Genome
Res., 17:377–386, 2007.

[6] H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 33(1):117–128, 2011.

[7] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov. Fasttext.zip: Compressing
text classification models. arXiv preprint arXiv:1612.03651, 2016.

[8] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. Bag of tricks for efficient text classification.
In Proceedings of the 15th Conference of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 427–431. Association for Computational Linguistics, April
2017.

[9] J. Korbel, A. Abyzov, X. Mu, N. Carriero, P. Cayting, Z. Zhang, Z. Snyder, and M. Gerstein. PEMer: a
computational framework with simulation-based error models for inferring genomic structural variants
from massive paired-end sequencing data. Genome Biol., 10(2):R23, 2009.

[10] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-efficient alignment of short
DNA sequences to the human genome. Genome Biol, 10(3):R25, 2009.

[11] C. Leslie, E. Eskin, and W. Noble. The spectrum kernel: a string kernel for SVM protein classification.
In R. B. Altman, A. K. Dunker, L. Hunter, K. Lauerdale, and T. E. Klein, editors, Proceedings of the
Pacific Symposium on Biocomputing 2002, pages 564–575, Singapore, 2002. World Scientific.

11

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2018. ; https://doi.org/10.1101/335943doi: bioRxiv preprint 

https://github.com/rmenegaux/fastDNA
https://doi.org/10.1101/335943
http://creativecommons.org/licenses/by/4.0/


[12] C. Leslie, E. Eskin, J. Weston, and W. Noble. Mismatch String Kernels for SVM Protein Classification.
In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems
15. MIT Press, 2003.

[13] H. Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Technical Report
1303.3997, arXiv, 2013.

[14] H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioin-
formatics, 25:1754–1760, 2009.

[15] Y. Luo, Y. W. Yu, J. Zeng, B. Berger, and J. Peng. Metagenomic binning through low density hashing.
bioRxiv, 2017.

[16] S. S. Mande, M. H. Mohammed, and T. S. Ghosh. Classification of metagenomic sequences: methods
and challenges. Briefings Bioinf, 13:669–681, 2012.

[17] A. C. McHardy, H. G. Martín, A. Tsirigos, P. Hugenholtz, and I. Rigoutsos. Accurate phylogenetic
classification of variable-length DNA fragments. Nat. Methods, 4(1):63–72, 2007.

[18] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector
space. Technical Report 1301.3781, arXiv, 2013.

[19] D. H. Parks, N. J. MacDonald, and R. G. Beiko. Classifying short genomic fragments from novel lineages
using composition and homology. BMC Bioinf., 12:328, 2011.

[20] K. R. Patil, L. Roune, and A. C. McHardy. The PhyloPythiaS web server for taxonomic assignment of
metagenome sequences. PLoS One, 7:e38581, 2012.

[21] C. S. Riesenfeld, P. D. Schloss, and J. Handelsman. Metagenomics: genomic analysis of microbial
communities. Annu. Rev. Genet., 38:525–552, 2004.

[22] K. Vervier, P. Mahé, M. Tournoud, J.-B. Veyrieras, and J.-P. Vert. Large-scale machine learning for
metagenomics sequence classification. Bioinformatics, 32:1023–1032, 2016.

[23] Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole. Naive bayesian classifier for rapid assignment of
rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol., 73:5261–5267, 2007.

[24] D. E. Wood and S. L. Salzberg. Kraken: ultrafast metagenomic sequence classification using exact
alignments. Genome Biol., 15(3):R46, 2014.

12

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2018. ; https://doi.org/10.1101/335943doi: bioRxiv preprint 

https://doi.org/10.1101/335943
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Method
	Embedding of DNA reads
	Learning the embedding
	Implementation
	Regularization with noise

	Experiments
	Data
	Reference methods
	Small dataset
	Memory footprint
	Coverage
	Performance

	Large dataset
	Classification speed

	Conclusion

