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Abstract

Testing for Hardy-Weinberg Equilibrium (HWE) is a common practice for quality control
in genetic studies. Variable sites violating HWE may be identified as technical errors in the
sequencing or genotyping process, or they may be of special evolutionary interest. Large-
scale genetic studies based on next-generation sequencing (NGS) methods have become
more prevalent as cost is decreasing but these methods are still associated with statistical
uncertainty. The large-scale studies usually consist of samples from diverse ancestries that
make the existence of some degree of population structure almost inevitable. Precautions are
therefore needed when analyzing these datasets, as population structure causes deviations
from HWE. Here we propose a method that takes population structure into account in the
testing for HWE, such that other factors causing deviations from HWE can be detected.
We show the effectiveness of our method in NGS data, as well as in genotype data, for both
simulated and real datasets, where the use of genotype likelihoods enables us to model the
uncertainty for low-depth sequencing data.

1 Introduction

Genotype frequencies in a population are normally described using the principle of Hardy-
Weinberg Equilibrium (HWE) [1, 2]. Under the assumption of HWE, genotype frequencies
can be defined as functions of allele frequencies which are conveniently captured as the Binomial
distribution for diallelic sites. The HWE states that genotype and allele frequencies will remain
constant in non-overlapping generations in the absence of other evolutionary forces given an
assumption of random mating. Testing for HWE in a population has therefore become a very
common tool for detecting possible sequencing or genotyping errors, population stratification as
well as other effects leading to non-random mating, acting as a quality control step in genetic
analyses [3, 4]. Extensions to HWE have been defined to incorporate an inbreeding coefficient in
the statistical models to quantify deviations from HWE as a deficiency in observed heterozygotes.
However, population structure will also lead to violations of the expected Hardy-Weinberg (HW)
proportions by increasing the observed homozygosity due to the Wahlund effect, or increasing
the observed heterozygosity due to recent admixture.

Recent methods have been developed to account for population structure using individual al-
lele frequencies estimated from principal component analysis (PCA) [5–7]. PCA is a commonly
used tool in population genetics for inferring population structure, as it has an advantage of
describing individuals along axes of genetic variation instead of having to assign them in clus-
ters [8]. The individual allele frequencies represent probabilities of the distribution from which
the genotypes of each individual are sampled from given their inferred population structure
[5]. These methods have shown to be very effective in large datasets with diverse ancestries,
where population structure can be naturally taken into account using principal components. We
have recently demonstrated the effectiveness of individual allele frequencies in next-generation
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sequencing (NGS) data as well, where we accurately infer population structure using an iterative
algorithm in low-depth sequencing data [7].

NGS data has become more prevalent in genetic studies as the cost of whole-genome sequenc-
ing has decreased [9–12]. This has also lead to an increased amount of large-scale sequencing
studies of samples with diverse ancestries [13, 14]. But sequencing depth is usually lowered to
meet the demand of the large sample sizes in these large-scale projects, which comes at the
price of introducing uncertainty into genotype calls. Probabilistic methods have therefore been
developed to account for this uncertainty, and population genetic parameters are modelled using
genotype likelihoods to retain information of the sequencing process. This has been shown to
improve inferences for low- and medium-depth sequencing data (< 15X) [7, 15–18]. Likewise for
genotype data, it is possible to model the missing genotypes instead of the standard practices of
assuming no structure.

In this study, we propose a method to test for HWE in structured populations on the basis
of genotype likelihoods. The method incorporates individual allele frequencies to account for
population structure, such that we are able to test for effects leading to non-random mating
other than population structure. Our method is implemented into the PCAngsd framework [7]
for ease of use with both NGS and genotype data. We demonstrate its usefulness in both
simulated and real datasets.

2 Materials and methods

It is assumed that individuals are diploid and variable sites are diallelic with genotypes coded as
the number of minor alleles, g = {0, 1, 2}, and that the major and minor alleles are known for a
dataset of n individuals and m sites. Based on individual allele frequencies, the genotypes of the
individuals are assumed to be sampled as follow given their inferred population structure, under
the assumption of HWE:

gis ∼ Binomial(2, πis), (1)

with πis being the individual allele frequency for individual i in site s. Individual allele frequen-
cies were introduced in STRUCTURE [19] based on admixture proportions, population-specific allele
frequencies and an assumption of K ancestral populations, however recent methods have em-
ployed approaches to estimate individual allele frequencies from the inferred population structure
using PCA instead [7, 20].

However, the genotypes are not observed in sequencing data and we will work directly on
genotype likelihoods instead. The genotype likelihood, P (Xis |G = g) can be described as
the probability of observing the sequencing data Xis given the genotype g for individual i in
site s. We are therefore proposing a method for estimating per-site inbreeding coefficients and
computing likelihood ratios to test for HWE. The method is an extension to an expectation-
maximization (EM) algorithm derived in Vieria et al. (2013) [18] using genotype likelihoods.
The EM algorithm is based on Wright’s coefficient of inbreeding for a site s defined as:

Fs = 1− HO

HE
, (2)

where H0 is the observed number of heterozygotes and HE is the expected number of heterozy-
gotes. We extend the model by substituting population allele frequencies for individual allele
frequencies in the likelihood function of the model to take population structure into account.
In this way, we are able to estimate per-site inbreeding coefficients in structured and admixed
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populations. The likelihood of the inbreeding coefficient in a site s is defined as follows by as-
suming independence between individuals conditional on the population structure captured by
individual allele frequencies:

L(Fs) ∝
n∏

i=1

2∑
g=0

P (Xis |G = g)P (G = g |πis, Fs). (3)

Here Fs is the per-site inbreeding coefficient, πis is the individual allele frequency and Xis

is the observed sequencing data for an individual i in a site s. The genotype probability,
P (G = g |πis, Fs), is computed from Hardy-Weinberg proportions with the inbreeding coeffi-
cient incorporated to model deviations from HWE. Thus, for G = 0, 1, 2:

P (G = g |πis, Fs)


(1− πis)2 + πis(1− πis)Fs, g = 0,

2πis(1− πis)(1− Fs), g = 1,

π2
is + πis(1− πis)Fs, g = 2.

(4)

In this likelihood framework, Fs is normally restricted to [0, 1], however we allow it to be in the
interval of [−1, 1], where a negative estimate indicates an excess of heterozygosity and a positive
estimate indicates an excess of homozygosity in site s. While a positive inbreeding coefficient
does not change the allele frequency, a negative inbreeding coefficient will increase the sample
allele frequency as the fraction of heterozygous individuals increases. A fixed allele frequency and
a negative inbreeding coefficient can lead to negative probabilities for the homozygous genotypes
in Equation 4 and thus make the distribution invalid. For example, Fs = −1 can only have
an allele frequency of 0.5 since all individuals will be heterozygous. In order to prevent this,
we propose a heuristic distribution by truncating negative frequencies to 0 and rescaling the
distribution to sum to one. The results of the truncation is visualized in Figure S1. Fs has no
biological interpretation as an inbreeding coefficient for negative values, but instead only act as
some measure of deviation from HW proportions in the direction of excess of heterozygosity. It
is therefore noteworthy that Fs will not be behave the same in the negative domain as for the
positive. We will still refer to Fs as per-site inbreeding coefficient for convenience.

The likelihood is maximized using the proposed EM algorithm. The EM algorithm is fully
described in the supplementary material. Using the maximum likelihood estimate, we construct
a likelihood ratio test (LRT) statistic, Ds, to test for deviations from HWE in each site. The
null model is defined as Fs = 0 and the alternative model is defined as the maximum likelihood
estimate, Fs = F̂s:

Ds = −2 ln

(
L(Fs = F̂s)

L(Fs = 0)

)
. (5)

Ds will be χ2 distributed with 1 degree of freedom.

2.1 Simulation of genotypes and sequencing data

We have simulated genotypes and low-depth sequencing data to test the capabilities of our
method. Using allele frequencies of the reference panel of the Human Genome Diversity Project
(HGDP) [21] from three populations (French, Han Chinese, Yoruba), we have simulated geno-
types of 330 individuals using a binomial model. 100 individuals have been simulated from each
of the 3 populations, while 30 individuals have been simulated with different degrees of admix-
ture between pairs of the three populations based on varying admixture proportions to represent
admixed individuals. The data consist of 340K variable sites and linkage disequilibrium has not
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been simulated between sites. Low-depth sequencing data and genotype likelihoods are simulated
from the sampled genotypes based on a previously used approach [7, 17, 22]. For one individual,
the number of reads in each site is sampled from a Poisson distribution with mean di. Here di
represent the average sequencing depth of individual i, which is sampled as di ∼ N(5, 1). Thus,
the sequencing depth of the simulated sequencing data is ∼5X. The simulated genotypes are then
used to sample the number of reads being the minor allele based on a binomial model also using
di as parameter. Finally, the genotype likelihoods of the three genotypes are obtained from the
probability mass function of the binomial distribution. Sequencing errors are incorporated using
0.01 as the probability of a sampled read being an error.

The data generated from the described procedure is regarded as Scenario 1, where all sites are
sampled in HWE. However we also generate a second scenario, regarded as Scenario 2, where half
of the sites deviate from HWE. This is done by changing the observed heterozygous genotypes
to either of the homozygous genotypes with a probability of 0.5, such that F = 0.5 for a quarter
of the sites. Likewise in the opposite direction, we change the homozygous genotypes to being
heterozygous with a probability of 0.5 in order to simulate F = −0.5 for a different quarter of
the sites. But the latter case will cause changes in allele frequencies due to imbalance between
the numbers of homozygous genotypes, such that F = −0.5 does not when using sample allele
frequencies.

2.2 1000 Genomes Project data

We also test our method on two genotype and sequencing data of the phase 3 release from
the 1000 Genomes Project [13, 14]. The dataset consists of 366 unrelated individuals from
four populations with 56 individuals from ASW (Americans of African Ancestry), 99 from CEU
(Utah residents with Northern and Western European ancestry), 103 from CHB (Han Chinese
in Beijing) and 108 from YRI (Yoruba in Ibadan). The genotype data is based on variant calls
that consists of 7.4 million variable sites after data filtering, and the sequencing data is based
on low coverage NGS data of the same individuals in 7.9 million variable sites with 6.9 million
overlapping with the genotype data. The average sequencing depth in the low coverage dataset
is estimated to 6.1X (varying from 1.7 − 13.6X) based on the used filters. Data filtering and
generation of genotype likelihoods from the low coverage dataset have been performed in ANGSD

[23]. The filtering options used for both datasets are described in the supplementary material.

2.3 Data accessibility

The method is integrated in the PCAngsd framework which is freely available at https://github.
com/Rosemeis/pcangsd. The datasets used from the phase 3 release of the 1000 Genomes Project
[13, 14] are available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/ and a list of the used
individuals is included as supplementary material.

3 Results

We have implemented our method into the PCAngsd framework and will also refer as to in the
following results. Through the framework, the method will work on both genotype likelihoods in
Beagle format as well as standard genotype data in binary PLINK format. PCAngsd converts the
genotype matrix into the genotype likelihood format on-the-go for ease of use. The user can also
incorporate an error model in the observed genotypes to factor in the possibility of alleles being
errors. Here we apply our method to both genotype likelihoods and genotype data in simulated
and real datasets using ε = 0 for comparison reasons.
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Another method for testing for HWE in structured populations has recently been proposed
by Hao and Storey in their software sHWE [24], which also uses individual allele frequencies, but
only works on genotype data. However, our method has the advantage of estimating per-site
inbreeding coefficients in addition to a test statistic as well as working on both sequencing and
genotype data. We compare our method to both sHWE and the commonly used implementation
in PLINK [25] which does not accommodate population structure.

3.1 Simulations

As proof of concept, we have applied our method to simulated genotype and low-depth sequencing
data of 330 individuals from three different populations (French, Han Chinese, Yoruba) in 340K
variable sites. The inferred population structure using PCAngsd is visualized in Figure 1 and we
have used the top two eigenvectors to model the individual allele frequencies. As described in
the Materials and methods section, two scenarios have been simulated. Scenario 1, where none
of the sites are sampled to be out of HW proportions (F = 0), and Scenario 2, where half of the
sites are sampled with F = 0 while the other half are equally sampled with either F = 0.5 or
F = −0.5 being out of HW proportions.

In Scenario 1, we are able to estimate per-site inbreeding coefficients that nicely follow a
normal distribution around the expected value (F = 0) with the spread representing sampling
variance, displayed in Figure 2. As seen by the QQ plots in Figure 3, our test statistic is also
behaving as expected for both genotype and low-depth sequencing data. PCAngsd performs
very similarly to sHWE, while the test statistics of PLINK are inflated and biased due to not
taking population structure into account. sHWE is used with three logistic factors, as one factor
represents the intercept. sHWE and PLINK are also applied to naively called genotypes of the
sequencing data in Scenario 1 to demonstrate the difficulties in analyzing low-depth sequencing
data. Genotypes are simply called by choosing the genotype with the highest likelihood, and
the results are displayed in Figure 4. Here it is clearly seen that the two methods have inflated
test statistics as the statistical uncertainty in the genotypes are not taken into account, where
as PCAngsd is able to account for this uncertainty by working directly on genotype likelihoods.

When applied to the simulated data in Scenario 2, the effect of negative inbreeding coefficients
is seen in the estimates of our method. The estimates for the sites sampled with F = −0.5 are
slightly biased, as expected, due to the sample frequencies being affected by the negative per-site
inbreeding coefficients, as displayed in Figure 5. However, once again the estimates for the sites
sampled with F = 0 and F = 0.5 nicely follow normal distributions around the expected values.
Table 1 further show that our method performs well in terms of power and false positive rate
(FPR) in comparison to sHWE and PLINK, and it works very well for detecting sites that deviate
from HWE with negative per-site inbreeding coefficients. Our method slightly loses power when
using low-depth sequencing data but it is still able to keep the expected FPR.

3.2 1000 Genomes Project

We also applied our method to genotype and low coverage sequencing data of 366 individuals
from four populations in the 1000 Genomes Project (ASW, CEU, CHB, YRI). The two datasets
consist of 7.4 million and 7.9 million variable sites, respectively, where 6.9 million of the sites are
overlapping. The population structure inferred using PCAngsd is displayed in Figure 6 and once
again the top two eigenvectors have been used to model the individual allele frequencies.

In both datasets, we are able to estimate per-site inbreeding coefficients that follow a normal
distribution around 0 (Figure 7), as expected, however the negative estimates are seen to be
slightly skewed with a heavy tail for the low coverage sequencing data when using all sites
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(Figure S2). As seen for the simulations, our test statistic performs very similarly to sHWE using
three logistic factors for the genotype data and both methods are able to reduce the number of
sites that deviate from HWE by a factor of ∼8 (α = 1.0× 10−6) compared to PLINK due to sites
assumed to be biased by population structure (Table S1). This effect is considerably smaller for
the full set of low coverage sequencing data, where we would also expect to see more technical
and random effects causing deviations from HWE than for the genotype data. Though, we show
that the performance of PCAngsd, when only analyzing overlapping sites for the the low coverage
sequencing data, is very similar to using the genotype data. Most of the significant sites have
therefore seemingly been filtered out in the variant calling for the available genotype dataset of
the 1000 Genomes Project phase 3 release, thus reinforcing the capabilities of our method in
low-depth sequencing data.

4 Discussion

We have proposed a method to test for HWE in structured populations and integrated it into the
PCAngsd framework. This is made possible by incorporating individual allele frequencies, which
are modelled from population structure, into a likelihood framework that estimate deviations
from HWE. The method is able to work on both sequencing data, in the form of genotype
likelihoods in Beagle format, and genotype data in binary PLINK format.

We have applied our method to both simulated and real data to test for HWE in structured
populations, where we demonstrate that our method is performing well using both sequencing
and genotype data in the presence of population structure. The simulation studies show that
our method performs very similarly to an existing method for genotype data, sHWE, where both
methods are able to detect deviations from HWE caused by other factors than population struc-
ture. However, our method also performs well on simulated low-depth sequencing data (∼5X)
where we are able to keep the statistical power high while keeping the false-positive rate low.
The bias of calling genotypes for low-depth sequencing data has also been demonstrated using
sHWE and PLINK, but PCAngsd is able to overcome this bias by working directly on genotype
likelihoods.

Our presented results for the 1000 Genomes Project datasets are not as clean as seen in the
study of Hao and Storey [24], as we analyze all variable sites across the whole genome without
filtering for sites overlapping the genotyping chip from the phase 3 release. We further show
that a lot of the sites that deviates from HWE in the full low coverage sequencing data are not
present in the phase 3 variant callset of the 1000 Genomes Project. Thus verifying the usefulness
of PCAngsd, as it is able to detect the deviations from HWE due to technical errors when using
low-depth sequencing data in structured populations.

In addition to testing for deviations from HWE, PCAngsd estimates per-site inbreeding coef-
ficients that quantify the deviation from HWE and are useful for understanding why sites are
out of HWE. We have proposed a heuristic extension to a likelihood framework such that we
are able to estimate negative per-site inbreeding coefficients. In this way, we can model devia-
tions from HWE in both directions that may provide deeper insight into sites of evolutionary
interest regardless of observing excess of homozygosity or excess of heterozygosity in structured
populations.
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6 Figures

Figure 1: PCA plots of the simulated data. The inferred population structure of the left plot
is generated from the simulated genotypes, and the right plot is generated from the simulated
genotype likelihoods.

Figure 2: Histograms of the estimated per-site inbreeding coefficients for the simulated scenario
with sites sampled from HW proportions. The left plot displays the estimates from simulated
genotype data and the right plot shows the estimates from simulated NGS data with a sequencing
depth of ∼5X. Sites with a p-value lower than 0.05 are colored blue.
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Figure 3: QQ plots of the test statistics in -log10 scale using genotype data for Scenario 1, where
all sites are sampled from HW proportions. The left plot is the test statistics of PCAngsd, the
middle plot of sHWE and the right plot of PLINK.

Figure 4: QQ plots of the test statistics in -log10 scale using simulated low-depth sequencing
data for Scenario 1, where all sites are sampled from HW proportions. The left plot is the test
statistics of PCAngsd based directly on genotype likelihoods, while the middle plot of sHWE and
the right plot of PLINK are based on naively called genotypes. Due to precision in the outputted
p-values of sHWE, all p-values < 1.0× 10−16 are truncated to 16 in -log10-scale for convenience in
visualization.

Scenario 2: Half of sites sampled out of HW proportions.

Method Power FPR FPR (α = 0.05) Accuracy

PCAngsd - Genotypes 0.990 0.000 0.0511 0.995
PCAngsd - NGS 0.941 0.000 0.0510 0.971
sHWE 0.988 0.000 0.0485 0.994
PLINK 0.990 0.0589 0.575 0.965

Table 1: Performance of methods on classification of sites out of HW proportions for the simulated
dataset with half of its sites sampled with F = 0, which are used to measure FPR, a quarter
of the sites sampled with F = 0.5 and a quarter of the sites sampled with F = −0.5, such that
half of the sites are out of HW proportions. The two quarters sampled out of HWE are used
to measure power. A site is classified as out of HWE for a p-value < 1.0× 10−6, except for the
fourth column where a lower threshold is evaluated. FPR is an abbreviation for the false positive
rate.

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 12, 2018. ; https://doi.org/10.1101/468611doi: bioRxiv preprint 

https://doi.org/10.1101/468611
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: Histograms of the estimated per-site inbreeding coefficients for the simulated scenario
with half of the sites sampled with F = 0, a quarter sampled with F = 0.5 and quarter sampled
with F = −0.5. The left plot displays the estimates from simulated genotype data and the right
plot shows the estimates from simulated NGS data with a sequencing depth of ∼5X. Sites with
a p-value lower than 0.05 are colored blue, while sites with a p-value lower than 1.0 × 10−6 are
colored red.

Figure 6: PCA plots of the 1000 Genomes data from 4 different populations. The inferred
population structure of the left plot is generated from the genotype dataset, and the right plot
is generated from the low coverage sequencing data.
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Figure 7: Histograms of the estimated per-site inbreeding coefficients for the 1000 Genomes data
from 4 different populations. The left plot displays the estimates from the genotype dataset and
the right plot shows the estimates from low coverage sequencing data in overlapping sites. Sites
with a p-value lower than 0.05 are colored blue.
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Figure 8: QQ plots of the test statistics in -log10 scale for 1000 Genomes Project dataset. The
top row displays the plots from PCAngsd based on genotype data for the left plot and low coverage
sequencing data for the right plot, using overlapping sites. The bottom row displays the plots
from sHWE and PLINK, respectively. Due to precision in the outputted p-values of sHWE, all
p-values < 1.0× 10−16 are truncated to 16 in -log10-scale for convenience in visualization.
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