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Abstract 

 

Dynamic DNA methylation and three-dimensional chromatin architecture compose 

a major portion of a cell’s epigenome and play an essential role in tissue specific 

gene expression programs. Currently, DNA methylation and chromatin organization 

are generally profiled in separate assays.  Here, we report Methyl-HiC, a method 

combining in situ Hi-C and whole genome bisulfite sequencing (WGBS) to 

simultaneously capture chromosome conformation and DNA methylome in a single 

assay. Methyl-HiC analysis of mouse embryonic stem cells reveals coordinated 

DNA methylation between distant yet spatially proximal genomic regions. 

Extension of Methyl-HiC to single cells further enables delineation of the 

heterogeneity of both chromosomal conformation and DNA methylation in a mixed 

cell population, and uncovers increased dynamics of chromatin contacts and 

decreased stochasticity in DNA methylation in genomic regions that replicate early 

during cell cycle.   
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Main 

DNA methylation plays a critical role in gene regulation1. DNA methylation is dynamically 

regulated by a variety of enzymes, including the do novo methyltransferases DNMT3a and 

DNMT3b and the ten-eleven translocation (TET) family of dioxygenases TET1/2/32. 

Additionally, DNA methylation patterns are maintained by DNMT13. The methylation 

status of adjacent CpG dinucleotides on the same DNA fragment is often coordinated, a 

phenomenon that has been used to define methylation haplotype in liquid biopsy tests4,5. 

However, due to the short fragment length in Whole Genome Bisulfite Sequencing 

(WGBS)6 and absence of long-read methylome sequencing technologies7,8, it is not clear 

how long such coordinated DNA methylation extends in mammalian cells. As the DNA is 

spatially organized into three-dimensional structures, genomic regions that reside up to 

hundreds of kilobases away can be brought into spatial proximity through chromatin 

folding9. Thus, it is conceivable that DNA methylation between distal sequences could also 

be coordinated due to their spatial proximity. The chromosome conformation capture (3C) 

technology is based on proximal ligation of spatially close genomic DNA segments10,11. 

Since DNA methylation is a covalent modification on DNA, methylation status of cytosines 

far apart on the linear sequence could in principle be captured simultaneously on ligated 

DNA during chromosome conformation capture procedures. We exploit this principle to 

develop Methyl-HiC, combining in situ Hi-C12 and WGBS to simultaneously profile 

chromatin organization and DNA methylation genome-wide (Fig. 1a). Briefly, long-range 

chromatin interactions are captured by crosslinking with formaldehyde, digested with 

methylation insensitive restriction enzyme DpnII, labeled with biotinylated nucleotides, and 

ligated in situ.  The ligation products are then enriched with streptavidin coated magnetic 

beads after sonication of genomic DNA. The captured DNA is then subject to bisulfite 

conversion, library construction and paired-end sequencing (Fig. 1a). We developed a 

computational pipeline, Bhmem, to map the sequencing reads to the reference genome, 

reveal the methylation status on linked DNA fragments (Fig. 1b and Supplementary Fig. 

1a) (see Method for description of Bhmem) and compute the pairwise contact frequency 

genome wide.  
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To demonstrate the performance of Methyl-HiC, we first applied it to the mouse embryonic 

stem cell line F123, a hybrid between the castaneus and S129/SvJae mouse strains.  We 

compared the results with that from in situ Hi-C analysis from the same cell line. With 

similar sequencing depth, Methyl-HiC results are highly correlated with in situ Hi-C at 

different resolutions (Fig. 1c, stratum-adjusted correlation coefficient (SCC)13 in 250kb 

resolution: 0.92±0.02; SCC in 25kb resolution: 0.88±0.008). The contact probabilities of 

two datasets are comparable to each other (Fig. 1d). The chromatin loops, detected using 

HiCCUPS12 at different resolutions, largely overlap between the two datasets (Fig. 1c, blue 

squares, and Supplementary Table 1). Additionally, chromatin loops identified from 

Methyl-HiC results showed similar enrichment of enhancers and promoters as marked by 

histone markers (H3K4me1, H3K27Ac, and H3K4me3), CTCF, and Polycomb-Repressed 

chromatin (H3k27me3), as in situ Hi-C, indicating that Methyl-HiC can effectively detect 

chromatin loops (Supplementary Fig. 1b). Furthermore, the Topologically Associating 

Domains (TADs) identified from the two datasets are also similar (Fig. 1e and 

Supplementary Fig. 1c). These results show that Methyl-HiC can capture chromosomal 

conformation as effectively as in situ Hi-C.  

 

In addition to efficiently capturing chromosomal architecture, Methyl-HiC also profiles DNA 

methylation genome wide. We compared Methyl-HiC data with WGBS data from the same 

cell line and found that Methyl-HiC can capture about 80% CpGs from WGBS data (Fig. 

1f). The methylation level of these CpGs showed great concordance (R=0.87, p<2.2-e16) 

with WGBS results (Fig. 1g and Supplementary Fig. 1d). We also notice that Methyl-HiC 

reads tend to be enriched at regions with DNA hypomethylation. Despite this bias, Methyl-

HiC accurately measures the DNA methylation state for the over 15 million CpGs in the 

mouse genome (Fig.1g). These results, taken together, demonstrate that Methyl-HiC can 

simultaneously map DNA methylome and chromatin architectures in a biological sample. 

 

Previous studies have reported that adjacent CpGs usually share concordant methylation 

status, and the stretches of DNA that contain such CpGs are termed methylation 

haplotype blocks4,5. Because the genome is not only linearly separated but also spatially 

organized, we hypothesize that spatially proximal DNA may also have coordinated 

methylation status. To test this hypothesis, we analyzed the chromatin loops detected from 
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Methyl-HiC and in situ Hi-C in the same cell type. Indeed, the Pearson correlation 

coefficients of the methylation status from Methyl-HiC read pairs mapped to anchors of 

these chromatin loops (Supplementary Fig. 2a) are significantly higher than that from 

shuffled read pairs mapped to the same anchor regions (Fig. 2a and Supplementary Fig. 

2b) (p<2.2e-16, Fisher z-transformation), indicating that methylation status of spatially 

proximal CpGs is coordinated.  We further classified the loops according to the chromatin 

compartments they belong to. We observed that loop anchors in compartment A had 

higher methylation concordance compared to these in compartment B (Fig. 2b). This is in 

line with recent reports that the methylation correlation signal is a better predictor of A/B 

compartments than the average methylation signal14.  

 

Active and poised enhancers frequently exhibit hypomethylation in cells, and it is not clear 

whether the variable DNA methylation at enhancers is correlated with target gene 

promoters or other enhancers in the same transcription hub. Methyl-HiC data provides an 

opportunity to address this question. We classified the F123 cell genome into 7 different 

chromatin states using ChromHMM analysis of four histone modifications (H3K4me3, 

H3K4me1, H3K36me3, and H3K27me3)15. Pearson correlation coefficients of DNA 

methylation on the same Methyl-HiC read pairs showed different trends for pairs of 

genomic regions from different chromatin states. Methylation of DNA at actively 

transcribed genes, which are generally marked by H3K36me3, shows negative correlation 

with methylation status of active promoters and enhancers (Fig. 2c), consistent with 

previous observation that DNA methylation on TSS and gene body are inversely 

correlated16. By contrast, DNA methylation from active enhancer-like regions, marked by 

H34K4me1/3, shows positive correlation with that of linked promoters marked by 

H3K4me3, supporting the coordinated DNA methylation processes between active 

enhancers and their target gene promoters.  Surprisingly, DNA methylation levels at 

regions with active enhancer-like chromatin state also display a positive correlation with 

that at linked regions marked by Polycomb-repressed chromatin state (Fig. 2c). This 

finding raises interesting questions regarding the relationships among polycomb-

repressed state and enhancers, which will require additional experiments to resolve in the 

future. 
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Methods to map DNA methylome in single cells have been developed17-19, and used to 

deconvolute sub-populations from heterogeneous tissues or cell populations. Similarly, 

approaches to map chromatin organization in single cells have also been devised to reveal 

cell to cell variations in chromosome conformation in a mixed cell population20-22, and to 

study chromatin architecture in cell cycle23 and rare cell types, such as oocytes and 

zygotes24. One drawback of these methods is that DNA materials are destroyed during 

the process, preventing analysis of different epigenomic features from the same cells.  The 

development of Methyl-HiC would overcome this limitation and provide the opportunity to 

explore the heterogeneity of DNA methylation and chromatin architecture simultaneously 

in a mixed cell population.  We therefore modified methyl-HiC protocols to single cells. 

Briefly, after in situ proximal ligation, we sort individual nuclei into a 96-well plate, and then 

perform bisulfite conversion in each well. DNA adaptors are next ligated to the resulting 

bisulfite-converted single strand DNA (ssDNA), and the resulting DNA is PCR amplified 

for paired-end sequencing17 (Fig. 3a). We generated single cell Methyl-HiC data for 108 

mES cells cultured in serum plus LIF condition (primed state) and 48 mESCs cultured in 

2i conditions (naïve state)25. After removing low quality reads (mapQ<30), PCR duplicates, 

and inter-chromosomal read pairs, and cells with less than 250,000 reads and 10,000 cis 

ligations, we obtained data for 103 primed state mESCs and 47 naïve mESCs, each with 

about 1 million uniquely mapped and high quality intra-chromosomal reads for further 

analysis (Supplementary Table 2). Reads with each end originating from distinct restriction 

fragments are selected for further analysis, resulting in around 100,000 contacts on 

average in each cell (Supplementary Fig. 3a). The contact probabilities are comparable 

between the bulk dataset and the aggregate of single cells (Supplementary Fig. 3b).  After 

normalization for sequencing coverage26, the intra-chromosomal interaction matrix from 

the bulk dataset and ensemble dataset of 103 primed mESCs are very comparable (Fig. 

3b and Supplementary Fig. 3d, 3e), with the Pearson correlation coefficient computed from 

observed over expected contact matrix (250kb bin resolution) at 0.98 (p<2.2e-16). We 

also generated single cell methylomes from these cells with an average coverage of 

288,000 CpGs per cell, a level that is comparable to previous single cell Methylome 

datasets17,18 (Supplementary Fig. 3c). The average methylation levels of primed and naïve 

mESCs are around 60% and 20% (Fig. 3c), respectively, consistent with previous single 

cell DNA methylome data18. Moreover, consistent with the observation from bulk 
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populations, DNA methylation levels at the loop anchors are coordinated in individual cells 

(Fig. 3d). Taken together, these results show that our single cell Methyl-HiC can capture 

DNA methylation and chromatin architecture simultaneously in single cells. 

 

The single cell Methyl-HiC dataset would enable analysis of cell-to-cell variability in both 

chromosome organization and DNA methylation as they relate to different replication 

timing regions. DNA replication is accompanied by dynamic chromosome organization 

and DNA methylation. In particular, previous studies have uncovered a link between 

chromatin compartments and timing of DNA replications, and between topologically 

associating domains with DNA replication domains27,28. While DNA methylation pattern is 

generally replicated by the DNMT1 at each cell division, the fidelity is not 100%, resulting 

in variation and plasticity in the methylome29. We partitioned the genome into four groups 

based on replication timing previously determined by Repli-ChIP data from mESC30. We 

then analyzed single cell methylomes and 3D interactions in each replication timing group. 

We found that regions associated with late replication showed higher DNA methylation 

levels (Supplementary Fig. 3f), consistent with their heterochromatin nature31. Moreover, 

the late replication regions tend to show higher cell-to-cell variability of DNA methylation 

evidenced by increased Standard Deviation (SD) across 107 mESCs (Fig. 3e) and a 

higher rate of hemi-methylation (CpGs with methylation level equal to 0.5 in single cell 

DNA methylome) (Supplementary Fig. 3g). Interestingly, late-replicating DNA had lower 

variabilities in chromatin interactions than early-replicating DNA (Fig. 3f). Taken together, 

our data suggest that early replication regions are characterized by more dynamic long-

range interactions, less variable DNA methylation, more permissive chromatin states and 

higher gene expression level32, than late replication time domains. 

 

Epigenetic heterogeneity in tissues or cell population presents a significant challenge in 

analysis of epigenome of tissue samples17,33. As DNA methylation differs among different 

cell types, it is possible to deconvolute distinct cell types from single cell Methyl-HiC 

datasets based on DNA methylation so that the chromatin contacts could be investigated 

in each cell type. Indeed, the primed and naïve mESCs were clearly separable using single 

cell Methyl-HiC datasets (Fig. 4a). Interestingly, the primed mESCs can be further divided 

into two subpopulations according to DNA methylome, which is consistent with previous 
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report18 (Fig. 4a). We then compared these subpopulations with lineage specific DNA 

methylation profiles from ENCODE projects and found that the two subpopulations in 

primed cells clustered with different lineages specific features, in which Cluster 3 showed 

potential embryonic limb development trend (Fig. 4b). We then aggregated the contact 

matrix of cells that share the same DNA methylation status, and compared the populations 

to each other as well as clearly defined mESCs cells. Our result showed that the 

aggregated contact matrix could show heterogeneity between different DNA methylation 

clustered cells (Fig. 4c), which suggests that our method will be useful to determine single 

cell HiC identity of heterogeneous cell population and tissues. To further show the 

biological function of the 3D structure heterogeneity, we identified the differential 

compartments between two clusters (Supplementary Table 3). Genome ontology (GO) 

analysis of the Differential Methylated Regions (DMRs) and genes located in these 

differential compartments revealed that DMRs and genes that switched from compartment 

B in Cluster 2 to compartment A in Cluster 3 were enriched for genes with function related 

to embryonic limb development (Fig. 4d and 4e). For example, HoxD cluster genes and 

Epha4 are key regulators for embryonic limb development34,35. Here we showed that HoxD 

cluster genes and Epha4 gene switched from compartment B in Cluster 2 to compartment 

A in Cluster 3 (Fig. 4f and Supplementary Fig. 4). This is in line with our above clustering 

according to DNA methylome, indicating that our method can discover differential 

chromatin conformations in heterogeneous cells. 

 

Here, we report a novel method, Methyl-HiC, which combines high throughput chromatin 

conformation capture with whole genome bisulfite sequencing that can simultaneously 

profile and integrate two epigenetic regulations on the same DNA molecule. We 

demonstrate that Methyl-HiC could be used to study the higher-order organization of 

chromosomal structures and DNA methylomes simultaneously in mixed populations and 

in single cells. By doing these, we show that DNA methylation status is generally 

concordant between spatially close cytosines. 

 

The simultaneous profiling of multiple epigenomic features, especially from single cells, 

has multiple advantages over assaying each feature individually. As the cost of both Hi-C 

and WGBS is predominantly sequencing, combining two assays together will lead to 
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substantial savings due to reduced sequencing cost. In addition, Methyl-HiC is desirable 

when the biological material is limited, such as oocytes, zygotes and early embryos. In 

particular, single cell Methyl-HiC generates maps of DNA methylome and chromosome 

conformation from the same cells, allowing integrative analysis of chromatin architecture 

and epigenome in individual cells. While current protocol of single cell Methyl-HiC is still 

limited by data sparsity, this limitation could be overcome in the future by better DNA 

methylation detection strategies, such as bisulfite free DNA methylation profiling36, or 

better amplification approaches, such as META (multiplex end-tagging amplification)37. 

Further development of single cell Methyl-HiC in the future to include variants detection 

from bisulfite reads38 and transcriptome39,40 from the same cell will allow us to reveal the 

comprehensive regulation diagram in a single cell from genetic, epigenetic, transcription, 

and chromatin interaction aspects. 

 

Although single cell epigenomic datasets can be clustered de novo, the identities of each 

sub-population are difficult to determine because of the stochasticity of epigenomic 

regulation and lack of reference epigenome from previously characterized cell types, 

especially for assays like single cell Hi-C that the reference of rare populations are very 

hard to profile. DNA methylation is a stable and cell-type specific epigenetic modification, 

which has proved to be capable for analyzing the cell composition of heterogeneous 

samples, such as neuronal subtypes in cortex17. Thus, by combining single cell DNA 

methylation with single cell Hi-C, chromosome conformation heterogeneity can be 

revealed by grouping via DNA methylation. Because of its low cell-input requirements, 

single cell Methyl-HiC is readily applicable to diverse samples, tissue types, and rare cell 

populations, which will benefit our understanding of the chromosome conformation in 

different conditions. 
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Methods 

Cell culture 

The F1 Mus musculus castaneus × S129/SvJae mouse ESC line (F123) was a gift from 

the laboratory of E. Heard and has been described previously41. Cells in primed state were 

cultured with irradiated mouse embryonic fibroblasts (Gibco, A34180) in medium with 85% 

DMEM, 15% Knock-out Serum Replacement (Gibco, 10828-028), 1X 

penicillin/streptomycin, 1X non-essential amino acids (Gibco, 11140-050), 1X GlutaMax 

(Gibco, 35050), 0.4 mM β-mercaptoethanol and 1000U/ml LIF (Millipore, ESG1107). Cells 

in naïve state were adapted from primed cells by passaging cells in MEF free and serum 

free conditions in 2i medium, which contained 50% NEUROBASAL (Gibco 21103-049), 

50% DMEM/F12 (Gibco 11320-033), 0.5% N2-SUPPLEMENT (Gibco 17502-048), 1% 

B27+RA (Gibco 17504-044), 0.05% BSA (Gibco 15260-037), 1X penicillin/streptomycin, 

2mM GLUTAMINE (Gibco 25030-081), 150 µ M Monothioglycerol (Sigma M6145), 

1000U/ml LIF (Millipore, ESG1107), 1 µ M MEK inhibitor (Stemgent 04-0006), and 3 µ M 

GSK3 inhibitor (Stemgent 04-0004). Primed cells were collected and plated on 0.2% 

gelatin-coated feeder-free plates for 30 mins before harvesting to remove feeder cell 

contamination.  

  

Methyl-HiC 

In situ Hi-C was performed according to previous protocol12. Briefly, two million cells were 

cross-linked with 1% formaldehyde for 10 min at room temperature. Reaction was then 

quenched with 0.2M Glycine. Cell pellets were washed with cold PBS and lysed with lysis 

buffer to get nuclei pellets. Nucleus were permeabilized with 0.5% SDS. DNA was in situ 

digested with 100 units of DpnII (NEB) overnight. The ends of restriction fragments were 

filled with biotinylated nucleotides and in situ ligated. After reversal of crosslinks, ligated 

DNA was ethanol precipitate and sheared to a length of ∼400bp by sonication (Covaris). 

Sonicated products were pulled down with streptavidin beads. Library construction was 

then performed on beads. After adapter ligation, beads were suspended in 20ul TE buffer 

and subjected to bisulfite conversion with EZ DNA Methylation-Gold™ Kit (Zymo, D5005). 
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Unmethylated lambda DNA was sonicated and ligated with the same adapter for Methyl-

HiC sample and then was spiked in at 0.5% before bisulfite conversion. After conversion, 

streptavidin beads were removed with magnet and the supernatant were purified. Purified 

bisulfite converted DNA was amplified with HiFi Hotstart Uracil+Ready Mix (KAPA, 

KK2802). 

  

Single cell Methyl-HiC (scMethyl-HiC) 

In situ Hi-C was performed as same as above bulk Methyl-HiC till proximal ligation. After 

ligation, nuclei pellets were centrifuged and washed with PBS. Pellets were suspended in 

PBS stained with 1:200 DRAQ7 (CST, 7406S). FACS sorted single nuclei were directly 

added to 96 well plate with 9ul PBS in each well. Sorted nuclei were then briefly 

centrifuged and bisulfite conversion was directly performed on the sorted nuclei with EZ-

96 DNA Methylation-Direct™ Kit according to the manufactory manual (Zymo, D5020). 

0.5% of fragmented lambda DNA was spiked in before bisulfite conversion. Following 

bisulfite conversion of single nuclei, random priming of bisulfite-converted DNA with high 

concentration Klenow fragments (Enzymatics, P706L) incorporates an indexed P5 

adapter to 5’ ends of synthesized fragments, which can be used for downstream 

multiplexing capability. Exonuclease I and Shrimp Alkaline Phosphatase (NEB) treatments 

were then performed to digest unused random primer and inactivate dNTPs, followed by 

a SPRI bead-based purification step. P7 adapter were then ligated to the 3’ end of single-

stranded products by Adaptase module (Swift, 33096)42. Library amplification was then 

performed using indexed primers that incorporate dual indexing to enable 96-plex 

sequencing. Amplified libraries were pooled together and subjected to size selection and 

library quantification. 

  

Whole-genome bisulfite sequencing 

Genomic DNA was first extracted from mESCs (DNeasy Blood & Tissue Kit, Qiagen). 1–

1.5 µg of genomic DNA was fragmented by sonication (Covaris), end-repaired, dA-tailed 

and ligated to cytosine methylated Illumina Truseq adapter. Ligation product was 
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subjected to bisulfite conversion reaction according to the manufacturer’s instructions (EZ 

DNA Methylation-Gold Kit, Zymo, D5005). 0.5% unmethylated λDNA was spiked-in before 

the conversion. Bisulfite converted DNA was then PCR amplified and purified. 

 

Sequencing of DNA libraries 

The quantification of sequencing libraries was determined by qPCR and TapeStation DNA 

analyzer (Agilent Technologies). Pooling of multiplexed sequencing samples, clustering 

and sequencing were carried out as recommended by the manufacturer on Illumina HiSeq 

2500 or HiSeq 4000. For bisulfite-converted libraries, at least 50% of balanced libraries or 

Phix were multiplexed to overcome the imbalance of GC ratio. All libraries were 

sequenced in paired-end mode.  

 

Analysis of methylation data 

Raw reads were first trimmed as paired-end reads using Trimmomatic with default 

parameters to remove the adapters and low quality reads. Trimmed reads were aligned to 

mm9 using Bismark (v12.5). PCR duplications were removed with Picard 

(http://broadinstitute.github.io/picard/). CpG methylation level were calculated by Bis-SNP 

in bissnp_easy_usage.pl with default parameters. 

 

Analysis of Hi-C data 

All sequence data were produced using Illumina paired-end sequencing. Each end of the 

raw reads was mapped separately to the mm9 reference genome using BWA-

mem.  Filtered reads were then paired and de-duplicated (Picard). Reads that map to the 

same fragment were further removed. Contact matrices were generated at different 

resolution using Juicer pipeline with KR normalization and visualized using Juicebox. 

Loops were then called by HICCUPS.  
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Methyl-HiC reads mapping by Bhmem 

Raw reads were first trimmed as paired-end reads using Trimmomatic with default 

parameters to remove the adapters and low-quality reads. All C in mm9 reference genome 

are converted to T to make C_to_T reference genome, and all G are converted to A to 

make G_to_A reference genome. On paired-end reads, C is converted to T in end 1 and 

G is converted to A in end 2. The converted end 1 and end 2 are joined as single paired 

fragment when both of them were mapped to C_to_T reference genome or G_to_A 

reference genome by BWA-MEM. Only unique mapped and passed VendorQualityFilter 

reads on both ends were joined. The best paired reads were selected based on the 

following priorities: (1) mapping quality on both ends are bigger than 0. (2) the sum of 

mapping quality score is larger. (3) both ends of reads are mapped into the same 

chromosome. (4) the sum of alignment score is larger. (5) the sum of mismatches is 

smaller. (6) the sum of matched cigar string length is larger. Only best paired reads were 

output for the following analysis. Low quality reads (not unique mapped on both ends, 

PCR duplicate and mapping quality score < 30) were removed for the following 

downstream analysis. Only bases with quality score more than 5 were included in the 

downstream methylation analysis. Details were implemented in Bhmem.java. 

Methylation concordance analysis in Methyl-HiC 

Bisulfite incompletely converted reads and 5’ end incompletely converted cytosine (M-bias) 

were filtered out as that in Bis-SNP38. Only read pairs with methylation level at both ends 

were kept for the methylation concordance analysis. For the regions of interests, such as 

HiCCUPS loops anchor regions, Pearson correlation coefficient (PCC) was calculated by 

the methylation level at each end of paired reads rather than by the average methylation 

level at each end of paired regions. Only reads with at least 20kb distant from each end 

were considered for the long-range methylation concordance. Expected control was 

generated by shuffling the read pairs within the same genomic regions. Fisher z-

transformation, implemented in function of “cocor.indep.groups” at R package “cocor” was 

used to determine the significance between observed PCC and control PCC. Details were 

implemented in MethyCorAcrossHiccups.java.  
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Single cell Methyl-HiC analysis 

Reads were mapped by the same Bhmem pipeline with additional parameters to adapt 

the single cell protocol (-nonDirectional -pbat, G is converted to A in end 1 and C is 

converted to T in end 2; End 1 and end 2 mapped to different bisulfite converted genomes 

were also considered as the candidate of best pair when join them). We also utilize the 

restriction enzyme cutting sites on the reference genome to help the reads mapping. Only 

read pairs with restriction enzyme cutting sites nearby the reads (+/-50bp nearby 

alignment start and end of the reads) were kept for the further analysis.  

After removing low quality reads (not unique mapped, PCR duplicate, not both ends 

unique mapped and mapping quality score < 30 ), cells with less than 250,000 reads and 

10,000 ligation events were removed for the further analysis. Finally, there are 47 naïve 

cells and 103 primed cells left for all of the single cell analysis. 

Methylation density (total_methylated_count/total_count) was calculated in each non-

overlapped 1Mb window at mm9 autosome chromosomes. Missing data was replaced by 

the mean methylation level at the same bin across all single cells. Bins with missing data 

in all of cells were removed from analysis. Then t-Distributed Stochastic Neighbor 

Embedding (t-SNE) was applied to represent the methylation level structure in single cell 

level (Rtsne package in R 3.4.0 with plexity=10 and max_iter=5000). Different plexity level 

and random seed were applied to test the robustness of representation. Methylated count 

and total count (missing data is not replaced by mean value yet) at each window within 

each sub-cluster was aggregated and then calculated the methylation level. Methylation 

level at each CpG from external ENCODE methylomes were liftovered from mm10 to mm9. 

Overlapped CpGs after liftover were discarded. Methylation density was calculated in each 

non-overlapped 1Mb window for ENCODE data. Bins with missing data in all of samples 

were removed from analysis. Euclidean distance between 3 merged sub-clusters in single 

cell Methyl-HiC and external ENCODE methylomes was calculated and clustered by 

“ward.D2” by hclust function in R. BAM files were merged within each sub-cluster and then 

visualized for Hi-C contact frequency by Juicebox (1.9.0) 
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Replication timing 

Wavelet-smoothed of mean late/early S-phase ratios data by Repli-ChIP is obtained from 

ENCODE in ES-46C cell line. Regions with high values indicate domains of early 

replication where initiation occurs earlier in S-phase or early in a higher proportion of cells.  

Data availability 

Figures show merged data from all replicates. The Methyl-HiC, single cell Methyl-HiC, and 

WGBS data sets generated in this study have been deposited in the Gene Expression 

Omnibus (GEO) under the accession number GSE119171. Previously published data 

used for this study are listed in Supplementary Table 4.  All the source code for Methyl-

HiC analysis is publicly available at Bitbucket: 

https://bitbucket.org/dnaase/bisulfitehic/src/master/ 
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Figure Legends 

Fig.1 Methyl-HiC simultaneously profiles long-range chromatin interactions and 

DNA methylome in mouse embryonic stem cells. 

a) The workflow of Methyl-HiC. Biotin-enriched DNA fragments from in situ Hi-C are 

bisulfite converted followed by paired-end sequencing. The short sequencing 

reads are mapped to the genome and processed by the in-house computational 

pipeline Bhmem. 

b) An illustration shows the methylation status on read pairs supporting a chromatin 

loop. Methylation status are determined by CpG sites on the reads. 

c) Comparison of contact matrix between in situ Hi-C and Methyl-HiC at different 

resolutions. Blue squares are loops identified from corresponding dataset at 5kb 

resolution. Numbers below each map show the maximum values for the map 

color range. 

d) Comparison of contact frequency distance decay curve obtained from in situ Hi-C 

and Methyl-HiC data. 

e) Comparison of TADs identified from in situ Hi-C and Methyl-HiC.  

f) Comparison of CpG sites covered by at least 10 reads in WGBS and Methyl-HiC. 

g) DNA methylation levels for common CpGs are highly concordant between WGBS 

and Methyl-HiC. 

 

Fig. 2 DNA methylation status is generally concordant between spatially proximal 

regions.  

a) Pearson correlation coefficient of DNA methylation concordance between 

anchors of chromatin loops identified using HiCCUPS at 5kb and 25kb 

resolutions. Only reads containing 2 or more CpGs on each end were included. 

Paired reads located within the same loop anchors were re-shuffled and used to 

calculate the expected values. 
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b) Loops in compartment A show significantly higher concordance compared to 

those in compartment B.  

c) Concordance of DNA methylation levels between regions bearing various 

chromatin states called by chromHMM.  Pearson correlation coefficients of DNA 

methylation were calculated from reads that fall within any two chromatin states.  

 

Fig.3 Simultaneous analysis of DNA methylome and chromatin architecture in 

individual cells by Single Cell Methyl-HiC 

a) Workflow of Single cell Methyl-HiC. 

b) Comparison of aggregate contact matrix from 103 primed mESCs single cell 

Methyl-HiC data and bulk Methyl-HiC. Contact matrixes were normalized by 

sequencing coverage. 

c) Comparison of average global methylation level from single cell Methyl-HiC 

between primed and naïve mESCs. 

d) DNA methylation concordance on loop anchors is validated in single cell Methyl-

HiC datasets. Chromatin loops detected are from bulk Methyl-HiC by HiCCUPS.  

e) Late replication regions defined by Repli-ChIP show significantly higher DNA 

methylation variation. SD means standard deviation. 

f) Late replication regions defined by Repli-ChIP show significantly lower variation 

in chromatin contact. SD means standard diversion. 

 

Fig.4 Single cell Methyl-HiC reveals heterogeneity of cultured mouse embryonic 

stem cells. 

a) T-sne visualization of unsupervised clustering results according to DNA 

methylation. Methylation level is calculated in non-overlaping 1Mb bins.  

b) Subgroups in primed cells show lineage specific DNA methylation. Cells from 

each cluster are aggregated and compared with tissue-specific methylome. 

c) Pearson correlation matrixes of contact matrix from different cell clusters. The left 

map shows the bulk in situ Hi-C matrixes from primed and naïve cells, 
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respectively. Pearson correlation is calculated under 1Mb resolution. Color 

ranges have been set to the same scale. 

d) GO biological process terms for DMRs in Compartment B in Cluster 2 while 

switch to Compartment A in Cluster 3. 

e) GO biological process terms of genes switching from Compartment B in Cluster 2 

to Compartment A in Cluster 3 

f) Snapshot of HoxD cluster genes in different compartments between Cluster 2 

and 3.  
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Fig.1 
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Fig.2 
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Fig.3 
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Fig.4 
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Fig. S1 Methyl-HiC simultaneously profiles long-range chromatin interactions and 

DNA methylome in mouse embryonic stem cells. 

a. The Bhmem Methyl-HiC data mapping and analysis modules. 

b. HiCCUPS loops called from Methyl-HiC dataset enrich enhancers and promoters 

 with active histone markers, Polycomb-Repressed chromatin marked by 

 H3k27me3, and CTCF. 

c. Contact domains called from in situ HiC and Methyl-HiC, respectively 

d. A snapshot of both DNA methylation and HiC contact matrix 
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Fig. S2 DNA methylation status is generally concordant between spatially 

proximal regions.  

a. Illustration of the calculation for methylation concordance on DNA loop anchors 

b. Pearson correlation coefficients distribution of individual loops at two different 

 resolutions. 
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Fig.S3 Simultaneous analysis of DNA methylome and chromatin architecture in 

individual cells by Single Cell Methyl-HiC 

a. The scatterplot for raw reads numbers and the number of CpG covered. 

b. The scatterplot for raw reads numbers and the number of long range contacts. 

c. Contact probability of merged single cell Methyl-HiC and bulk Methyl-HiC data.  

d. Genome wide contact matrix comparison between resembled single cell 

 Methyl-HiC data and bulk Methyl-HiC data. 

e. Pearson correlation matrix comparison between ensemble single cell 

 Methyl-HiC data and bulk Methyl-HiC data. 

f. DNA methylation distribution in replication timing regions. 

g. The hemimethylation density in replication timing regions. 

h. Interaction density distribution in replication timing regions. 
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Fig.S4 Single cell Methyl-HiC reveals heterogeneity of cultured mouse embryonic 

stem cells. 

The snapshot for Epha4 gene in different compartments between Cluster 2 and Cluster 
3. 
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Supplemental Table S2 

Summary of single cell Methyl-HiC datasets 

Cell_ID Raw reads Mapping rate # Cpg Methylation 

level 

Contacts 

JL_392_1.ACTTGA 26,093,135 29% 415192 51.5 156229 

JL_392_1.CGATGT 30,625,688 29% 304672 52.0 111758 

JL_392_1.GCCAAT 25,727,186 31% 481532 55.5 189239 

JL_392_1.TAGCTT 32,943,089 32% 415179 57.8 168720 

JL_392_10.ACTTGA 14,248,904 32% 441917 64.9 177312 

JL_392_10.CGATGT 14,731,902 30% 618359 64.4 233451 

JL_392_10.GCCAAT 14,602,294 33% 769826 44.5 273000 

JL_392_10.TAGCTT 19,475,771 33% 698044 52.8 240987 

JL_392_2.ACTTGA 9,203,085 45% 475615 55.9 191134 

JL_392_2.CGATGT 9,866,361 41% 375493 49.6 149508 

JL_392_2.TAGCTT 12,526,717 45% 563680 51.7 221783 

JL_392_4.ACTTGA 14,421,839 31% 300475 63.9 122731 

JL_392_4.CGATGT 18,785,018 31% 455483 51.1 177192 

JL_392_4.GCCAAT 14,793,535 31% 406426 54.6 160037 

JL_392_4.TAGCTT 18,823,301 36% 645062 44.8 249014 

JL_392_5.ACTTGA 13,471,090 37% 546747 60.6 216535 

JL_392_5.CGATGT 19,249,819 36% 662127 50.1 271298 

JL_392_5.GCCAAT 12,694,096 37% 560169 45.7 228079 

JL_392_5.TAGCTT 17,003,248 36% 407094 63.2 167700 

JL_392_6.ACTTGA 15,189,668 37% 476449 54.1 183245 

JL_392_6.CGATGT 22,250,955 34% 312421 60.3 118488 

JL_392_6.GCCAAT 15,581,905 39% 666163 53.0 264422 

JL_392_6.TAGCTT 17,957,120 39% 597161 65.3 229934 

JL_392_7.ACTTGA 15,868,546 36% 620005 48.2 225881 

JL_392_7.CGATGT 15,352,986 32% 375431 52.9 141105 

JL_392_7.GCCAAT 12,010,704 37% 581526 51.3 221109 

JL_392_7.TAGCTT 19,435,959 36% 514383 55.1 189150 

JL_392_8.ACTTGA 15,729,248 66% 938407 52.6 396561 

JL_392_8.CGATGT 16,756,268 64% 642571 63.0 289973 

JL_392_8.GCCAAT 17,057,513 66% 1128721 50.9 486775 

JL_392_8.TAGCTT 737,634 69% 114117 42.5 43026 

JL_392_9.ACTTGA 16,506,754 36% 718715 45.3 269981 

JL_392_9.CGATGT 19,148,429 31% 416172 61.6 175583 

JL_392_9.GCCAAT 16,980,404 35% 609920 63.1 232840 

JL_392_9.TAGCTT 39,848,719 35% 843267 61.7 319863 

JL_443.ACTTGA 14,657,939 33% 276547 52.6 102898 
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JL_443.CGATGT 14,669,364 32% 232953 58.8 84373 

JL_443.GCCAAT 18,913,126 32% 301762 56.6 94836 

JL_443.TAGCTT 12,313,409 34% 220817 48.1 88043 

JL_444.ACTTGA 15,812,080 52% 375132 50.1 136720 

JL_444.CGATGT 16,281,750 52% 348045 44.3 133998 

JL_444.GCCAAT 32,295,147 51% 375328 52.4 139611 

JL_444.TAGCTT 12,572,838 47% 222240 59.7 81726 

JL_445.ACTTGA 27,063,013 31% 356552 52.7 129134 

JL_445.CGATGT 21,127,143 30% 266303 59.5 95930 

JL_445.GCCAAT 43,200,603 29% 261127 64.3 99958 

JL_445.TAGCTT 15,678,272 33% 252447 57.4 93608 

JL_446.ACTTGA 14,036,738 32% 287828 60.2 105693 

JL_446.CGATGT 13,073,876 31% 231288 58.7 83761 

JL_446.GCCAAT 28,983,280 30% 299361 55.8 104180 

JL_446.TAGCTT 11,148,380 34% 285567 58.6 105016 

JL_447.ACTTGA 17,297,213 38% 465375 57.3 170315 

JL_447.CGATGT 16,588,103 37% 266615 56.5 103432 

JL_447.GCCAAT 35,112,622 36% 329496 53.2 123091 

JL_447.TAGCTT 15,207,963 38% 339200 60.0 130483 

JL_458_10.ACTTGA 10,125,956 25% 185497 69.3 61389 

JL_458_10.CGATGT 9,541,620 24% 93071 71.9 31811 

JL_458_10.GCCAAT 19,808,580 24% 135512 71.4 46913 

JL_458_10.TAGCTT 6,944,940 26% 91324 64.1 33960 

JL_458_11.ACTTGA 11,079,304 23% 118730 68.4 39662 

JL_458_11.CGATGT 10,996,456 23% 132024 53.6 43607 

JL_458_11.GCCAAT 26,677,844 23% 225236 42.3 74556 

JL_458_11.TAGCTT 9,694,924 24% 169579 70.1 53096 

JL_458_12.ACTTGA 12,507,624 24% 197443 57.5 66739 

JL_458_12.CGATGT 12,769,904 24% 108458 66.1 35355 

JL_458_12.GCCAAT 18,892,680 24% 139780 65.3 45821 

JL_458_12.TAGCTT 8,911,728 26% 104243 68.2 28529 

JL_458_1.ACTTGA 12,151,968 24% 130488 61.5 45549 

JL_458_1.CGATGT 18,534,848 25% 110278 63.1 36772 

JL_458_1.GCCAAT 17,254,304 24% 165175 22.5 59649 

JL_458_1.TAGCTT 16,010,560 24% 150292 70.1 43914 

JL_458_2.ACTTGA 11,928,260 22% 112884 73.6 34961 

JL_458_2.CGATGT 19,987,384 23% 146790 48.1 49958 

JL_458_2.GCCAAT 17,053,004 22% 135658 72.3 49325 

JL_458_2.TAGCTT 13,411,156 23% 108664 57.7 38972 

JL_458_3.ACTTGA 15,112,552 24% 186980 70.1 52288 

JL_458_3.CGATGT 21,907,036 24% 149058 59.3 54085 
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JL_458_3.GCCAAT 12,796,920 24% 109756 74.1 39170 

JL_458_3.TAGCTT 17,488,800 23% 100136 58.3 34347 

JL_458_4.ACTTGA 17,057,300 22% 181459 74.1 67891 

JL_458_4.CGATGT 26,805,892 22% 195090 39.0 61936 

JL_458_4.GCCAAT 20,922,184 22% 149753 69.5 51931 

JL_458_4.TAGCTT 20,544,428 21% 143436 73.4 53652 

JL_458_5.ACTTGA 15,258,496 24% 207326 16.9 60300 

JL_458_5.CGATGT 25,030,480 24% 202581 36.3 66115 

JL_458_5.GCCAAT 21,508,396 23% 197997 70.7 54536 

JL_458_5.TAGCTT 18,179,820 23% 110883 46.8 31124 

JL_458_6.ACTTGA 12,136,332 22% 161285 44.7 52259 

JL_458_6.CGATGT 21,484,344 23% 116883 69.2 22697 

JL_458_6.GCCAAT 18,010,880 22% 149513 57.2 51895 

JL_458_6.TAGCTT 14,255,808 22% 94886 71.7 33498 

JL_458_7.ACTTGA 14,654,416 26% 236029 54.4 84571 

JL_458_7.CGATGT 15,929,132 26% 181125 70.8 62794 

JL_458_7.GCCAAT 29,142,676 26% 309934 44.9 102963 

JL_458_7.TAGCTT 11,541,720 27% 240599 69.7 84816 

JL_458_8.ACTTGA 11,567,744 23% 199435 51.9 73004 

JL_458_8.CGATGT 11,000,676 23% 140007 71.9 41557 

JL_458_8.GCCAAT 27,394,804 22% 269659 68.7 84724 

JL_458_8.TAGCTT 10,943,320 24% 170781 35.8 61502 

JL_458_9.ACTTGA 12,064,072 24% 186427 66.8 61696 

JL_458_9.CGATGT 14,643,372 24% 98179 63.5 20855 

JL_458_9.GCCAAT 24,487,096 23% 173215 73.4 62719 

JL_458_9.TAGCTT 9,426,776 25% 184927 71.1 39774 

Naïve state mESCs 

JL_457_1.ACTTGA 2,536,610 39% 238554 36.00 82225 

JL_457_1.CGATGT 3,519,177 34% 181273 20.72 63011 

JL_457_1.GCCAAT 2,954,766 40% 250614 20.88 84559 

JL_457_1.TAGCTT 3,347,255 40% 211478 47.65 67756 

JL_457_10.ACTTGA 5,876,679 39% 249658 15.92 84532 

JL_457_10.CGATGT 6,008,416 38% 252337 41.13 78883 

JL_457_10.GCCAAT 12,932,458 36% 238947 49.93 77548 

JL_457_10.TAGCTT 8,038,440 38% 211939 9.41 71326 

JL_457_11.ACTTGA 6,846,864 41% 211261 15.06 68826 

JL_457_11.CGATGT 6,998,509 41% 206123 31.13 67457 

JL_457_11.GCCAAT 14,773,266 38% 231155 24.67 76463 

JL_457_11.TAGCTT 8,287,532 39% 208065 25.38 63253 

JL_457_12.ACTTGA 6,396,872 39% 176531 19.11 58221 

JL_457_12.CGATGT 6,707,715 38% 122955 36.36 38579 
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JL_457_12.GCCAAT 12,866,407 37% 239563 23.88 76129 

JL_457_12.TAGCTT 7,050,902 39% 177155 18.03 55256 

JL_457_2.ACTTGA 3,297,537 40% 236253 54.48 78462 

JL_457_2.CGATGT 4,880,589 35% 170253 13.33 56416 

JL_457_2.GCCAAT 4,056,438 37% 202682 26.20 67272 

JL_457_2.TAGCTT 3,058,499 41% 239417 9.52 76676 

JL_457_3.ACTTGA 2,864,751 38% 204671 7.16 69760 

JL_457_3.CGATGT 4,249,908 34% 198578 30.51 61411 

JL_457_3.GCCAAT 3,603,828 37% 272433 7.34 83459 

JL_457_3.TAGCTT 2,532,295 40% 206214 14.21 62123 

JL_457_4.ACTTGA 2,898,234 51% 192612 12.36 62311 

JL_457_4.CGATGT 4,402,393 49% 213442 33.97 60602 

JL_457_4.GCCAAT 4,005,945 49% 249647 12.21 76826 

JL_457_4.TAGCTT 3,875,006 44% 173367 16.78 57325 

JL_457_5.ACTTGA 3,103,932 37% 210337 32.97 71349 

JL_457_5.CGATGT 4,625,915 33% 193543 11.42 60829 

JL_457_5.GCCAAT 3,983,288 36% 237047 17.72 81594 

JL_457_5.TAGCTT 3,037,584 39% 198308 14.26 70924 

JL_457_6.ACTTGA 2,598,758 36% 180467 9.96 60204 

JL_457_6.CGATGT 3,900,947 33% 146873 21.32 42386 

JL_457_6.GCCAAT 3,571,898 36% 234174 17.93 73200 

JL_457_6.TAGCTT 2,683,157 38% 179577 14.99 51550 

JL_457_7.ACTTGA 8,108,550 41% 269301 12.73 85553 

JL_457_7.CGATGT 7,374,836 40% 207175 9.04 61353 

JL_457_7.GCCAAT 16,327,502 40% 309737 31.66 98812 

JL_457_7.TAGCTT 8,162,721 42% 317509 29.47 93198 

JL_457_8.ACTTGA 7,410,698 38% 345004 6.68 102615 

JL_457_8.CGATGT 8,131,562 36% 175477 12.69 57794 

JL_457_8.GCCAAT 13,393,982 35% 265145 9.36 82751 

JL_457_8.TAGCTT 6,683,450 39% 247978 30.93 78801 

JL_457_9.ACTTGA 8,309,914 40% 284553 20.75 93001 

JL_457_9.CGATGT 7,686,532 40% 309111 23.46 90810 

JL_457_9.GCCAAT 16,361,850 38% 340304 7.92 101201 

 

Supplemental Table S3 

Differential Compartments between Cluster 2 and 3 in single cell Methyl-HiC 
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Supplemental Table S4 
 

Published data sets used in 
this study 

Data Source Reference 

F123 in situ HiC GSE86150 
1 

sNMseq GSE97179 
2 

Chromatin states in mESCs ENCODE 
3 

Single cell Methylome in 
primary and naïve mESCs GSE56879 

4 
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