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Abstract— Designing synthetic microbial consortia is an
emerging area in synthetic biology and a major goal is to
realize stable and robust coexistence of multiple species. Co-
operation and competition are fundamental intra/interspecies
interactions that shape population level behaviors, yet it is
not well-understood how these interactions affect the stability
and robustness of coexistence. In this paper, we show that
communities with cooperative interactions are more robust to
population disturbance, e.g., depletion by antibiotics, by form-
ing intermixed spatial patterns. Meanwhile, competition leads
to population spatial heterogeneity and more fragile coexistence
in communities. Using reaction-diffusion and nonlocal PDE
models and simulations of a two-species E. coli consortium, we
demonstrate that cooperation is more beneficial than competi-
tion in maintaining coexistence in spatially structured consortia,
but not in well-mixed environments. This also suggests a trade-
off between constructing heterogeneous communities with local-
ized functions and maintaining robust coexistence. The results
provide general strategies for engineering spatially structured
consortia by designing interspecies interactions and suggest
the importance of cooperation for biodiversity in microbial
community.

I. INTRODUCTION

Microbial consortia exist in all natural environments, such
as mammalian guts [1], foods [2], soils [3], water bodies
and wastes [4]. Multiple species coexist in consortia and
the interactions among species play a key role in their
survival [5]. Compared with monocultures, consortia contain
more diverse structures and functions to promote stability
and robustness to fluctuations in environments. Inspired by
the enhanced performance in productivity, efficiency and
robustness of natural microbial consortia, researchers have
started to design synthetic consortia and regulate population
level behaviors of multi-species to achieve complex tasks. By
carefully engineering intra/interspecies communication path-
ways, dividing metabolic labor and assembling functional
modules across mixed populations [6], [7], the synthetic con-
sortia can perform multiple tasks or functions with multiple
steps and overcome limitations of genetic circuits in single
cells.

Recent synthetic consortia designs include the predator-
prey system [8], the rock-paper-scissors system [9], an
emergent oscillator in two species [10], a toggle switch
in two species [11], feedback controllers on population
size [12], three- and four-strain ecosystems by social in-
teraction programming [13], etc. Researchers focus on en-
gineering intercellular communication via quorum sensing
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(QS) signals [14], essential metabolites exchange [15], or
secreted enzymes [16], and compartmentalizing functional
modules such as biosynthesis of desired chemical products
across microbial populations. To ensure the functionality of
the consortia, it is important to maintain a stable coexistence
of multiple species and robust cell-cell interactions.

The stability and adaptation to perturbations in environ-
ment can be achieved by dynamically balanced interactions
among consortia members. Cooperation (or mutualism) is
common in consortia and is shown to be efficient for
promoting biomass [17] and helpful for excluding cheaters
and invaders [18]. Competition (or antagonism) is also an
important and nonnegligible interaction since cells compete
for space and nutrients and may associate with antibiotics
warfare [19]. Work by Coyte et al. [20] indicate that hosts
benefit from competition and stability is increased when
competition dampens cooperative networks among species.
Kelsic et al. [21] also highlights the importance of an-
tagonism in stabilizing community structures in three-way
microbial interactions.

However, most of the studies do not consider the spatial
structuring of the consortia and lack theoretical explanations.
Therefore, it is implicit why cooperation or competition can
maintain stable coexistence in general. Spatial structures of
the consortia can play a big role in population level behav-
iors, such as biofilm formation and cell differentiation, so
realizing stable coexistence under different spatial conditions
is important for consortia design.

We consider two common spatial conditions, the well-
mixed scenario where no spatial information is involved for
cell-cell interaction and the 2D spatial scenario where we
assume cells are cultured on agar plates and perform self-
organized structures. By comparing the population dynamics
of cooperative and competitive interaction systems for both
nonspatial and spatial scenarios, we show the conditions on
achieving stable coexistence.

In Section II, we introduce a two-species interaction
system of E. coli and demonstrate the biological design for
population growth control and intra/interspecies interactions.
In Section III and IV, we construct nonspatial and spatial
models and show coexistence stability by simulation and
linear stability analysis. In Section V, we summarize and
discuss control strategies for synthetic consortia with stable
coexistence.

II. BIOLOGICAL DESIGN

We consider a two-species interaction system of E. coli,
where Cell1 and Cell2 can interact and regulate population
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Fig. 1. Abstract biological design and spatial effect on cell population. (a) Intra/interspecies interactions in a two-species system. The lower plot shows a
design of cooperation using toxin-antitoxin mechanism. Two cell population communicate via quorum sensing signals S1,S2. In Cell1, S1 activates toxin
T and S2 activates antitoxin production to further regulate cell death and rescue processes. Similar reactions occur in Cell2. (b) The diffusion of quorum
sensing signals on an agar plate. Quorum sensing signals can diffuse around and accumulate in the environment to form a certain concentration distribution
on 2D space. (c) The measurement of coexistence stability. After perturbations on cell population, e.g., antibiotics depletion within an area, if the cell
population recovers, the system is stable; otherwise, it is unstable.

growth. As shown in Fig. 1(a), we denote intraspecies
interaction strengths as aii, i = 1,2 and interspecies inter-
action strengths as ai j, i 6= j. In both cell species, there is
constant production of quorum sensing signals S1 and S2.
The concentrations of these small and diffusive signaling
molecules can represent the population sizes of two cell
species. Signaling molecules can bind with receptors to
activate or repress cell growth and death processes. Mech-
anisms of regulating population size include toxin-antitoxin
systems [22], [23], metabolite feeding [24], RNA antisense
of growth gene [25] and other mechanisms. Cooperative and
competitive interactions are identified by the positive and
negative impacts on cell population increase via quorum
sensing communication and cell growth and death actuation.
For example, Cell1 produces quorum sensing signal S1. S1
activates toxin production in Cell1 that leads to death and
antitoxin production in Cell2 for rescue. The intraspeceis
interaction in Cell1 is competitive, i.e., a11 < 0 and the
interspecies interaction from Cell1 to Cell2 is cooperative,
i.e., a21 > 0.

Cell-cell interactions depend on signaling molecules dif-
fusing and reaching cells, and quorum sensing signals form
a concentration distribution due to the heterogeneity of cell
population. Therefore, it makes a big difference if the spatial
condition is considered. The range of length and time scale
can be affected by spatial settings of cell culture and circuit
properties [26], [27]. Fig. 1(b) demonstrates that each single
cell is a point source and the concentration of signaling
molecules decreases when it is further from the source and
leads to weaker interaction strength to other cells.

To measure the stability of a consortium, we can perturb
one population in the coexisting multi-species community
by antibiotics depletion or population dilution and see if the
steady states recover. As shown in Fig. 1(c), if the population
returns to the previous steady state, the coexistence is stable.

Otherwise, the coexistence is unstable because the perturbed
population goes extinct and the other species becomes dom-
inant. Theoretically, we can assess the mathematical model
and analyze the eigenvalues after linearization for local
stability.

III. NONSPATIAL MODEL AND STABILITY ANALYSIS

The basis for our population growth model is the Lotka-
Volterra model. The nonspatial model represents the well-
mixed scenario where every individual cell interacts with
each other with identical strength and we can obtain the
population interaction ODEs of two species as follows:

dC1

dt
= kC

(
1− C1 +C2

Cmax

)
C1 +(a11C1 +a12C2)C1,

dC2

dt
= kC

(
1− C1 +C2

Cmax

)
C2 +(a21C1 +a22C2)C2.

(1)

In equation (1), kC is the growth rate, Cmax is the envi-
ronmental carrying capacity and ai j, i, j = 1,2 are interaction
strengths. The interspecies interaction is competition if ai j <
0, i 6= j, cooperation if ai j > 0, i 6= j and neutralism if ai j =
0, i 6= j. To avoid growth explosion and focus on interspecies
interaction properties, we only consider the scenario where
intraspecies interaction is competitive, i.e., aii < 0, i = 1,2.
For simplicity, we assume all signaling molecules are pro-
duced and diffuse at the same rate and have same strength
on activation or repression on population growth for both
species, then we have a11 = a22,a12 = a21. In general, the
interaction strengths may be asymmetrical for two species,
and the steady states of population size are not ideally at 1:1
ratio. The following analysis methods still apply.

There exist three nonzero steady states for equation (1).
One steady state is a nontrivial solution where both species
exist, denoted as

(
C(1)∗

1 ,C(1)∗
2

)
and the other two steady

states indicate one species dominates and the other species
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Fig. 2. Simulations of cell population dynamics under perturbation for
nonspatial models. Panels (a) and (b) are the deterministic simulations
for cooperative and competitive interactions under different levels of cell
depletion on Cell1. Panels (c) and (d) are the stochastic simulations
for cooperative and competitive interactions under different levels of cell
depletion on Cell1.

dies, denoted as
(

C(2)∗
1 ,C(2)∗

2

)
,
(

C(3)∗
1 ,C(3)∗

2

)
. We can solve

for the steady states as follows:

C(1)∗
1 =C(1)∗

2 =C(1)∗ =− kC

a11 +a12− 2kC
Cmax

,

C(2)∗
1 =− kC

a11− kC
Cmax

, C(2)∗
2 = 0,

C(3)∗
1 = 0, C(3)∗

2 =− kC

a11− kC
Cmax

.

(2)

The equilibrium
(

C(1)∗
1 ,C(1)∗

2

)
corresponds to coexistence

of two cell populations. We set parameters |a12| = 0.8|a11|
for both cooperative and competitive interactions and rescale
the parameter values to achieve the same equilibrium at
C(1)∗ = 100. We set initial conditions to be random nonzero
values. In simulations, we perturb the system by diluting out
20%, 40%, 60% of Cell1 population after reaching steady
state at 1:1 ratio at t = 50 hr, and measure the recovery.
Using bioSCRAPE toolbox for deterministic and stochastic
simulations [28], we show that cooperation and competition
maintain stable coexistence in Fig. 2, where the relative
population ratios between Cell1 and Cell2 all recover to the
1:1 ratio.

We next investigate stability conditions for both inter-
actions from the nonspatial model. We first analyze the
local stability at equilibrium

(
C(1)∗

1 ,C(1)∗
2

)
by linearizing

equation (1) as

d
dt

[
C1
C2

]
=C(1)∗J

[
C1
C2

]
, (3)

where the Jacobian matrix is defined as

J =

[
a11− kC

Cmax
a12− kC

Cmax

a21− kC
Cmax

a22− kC
Cmax

]
=

[
a11 a12
a21 a22

]
− kC

Cmax
. (4)

Fig. 3. Stability conditions at the coexistence equilibrium for the nonspatial
interaction model. Dominant eigenvalues are calculated under different sets
of intra/interspecies interaction strengths a11 and a12. If the real parts of
eigenvalues are negative, shown in red color, the coexistence is stable.
Otherwise, the coexistence is unstable, as shown in blue. Both cooperative
and competitive interactions have large stable regimes.

According to local stability criteria and C(1)∗ > 0, this
requires

T = 2
(

a11−
kC

Cmax

)
< 0,

δ = (a11−a12)

(
a11 +a12−

2kC

Cmax

)
> 0.

(5)

Equation (5) is equivalent to

0 < a12 <
2kC

Cmax
−a11, if cooperation;

a11 < a12 < 0, if competition.
(6)

Fig. 3 shows the region of stable and unstable coexistence
by identifying dominant eigenvalues with negative and non-
negative real parts when altering interaction strengths. Con-
straints on a12 in equation (6) confirm that as long as the in-
terspecies interaction strength is weaker than the intraspecies
interaction, the consortia is stable for both cooperation and
competition. It also matches with the simulation results in
Fig. 2 since we set the parameters to have |a12|< |a11| and
a11 < 0.

We show the coexistence is globally stable by introducing
the following theorem from [29].

Theorem 1. If the nontrivial equilibrium of equation (1) is
feasible and there exist a constant positive diagonal matrix
P such that PJ+ JT P is negative definite, then equation (1)
is globally stable in the feasible region.

Here our assumption of a11 = a22,a12 = a21 ensures that
J is already negative definite when equation (6) is satisfied.
For more general cases when interaction strengths are not
symmetrical for both species, it is easy to find a constant
positive diagonal matrix P in such form:

P =

[
C(1)∗

1 0
0 C(1)∗

2

]
(7)

that satisfies Theorem 1 and derive global stability from local
stability.
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IV. SPATIAL MODEL WITH DIFFUSION AND NONLOCAL
REACTIONS

Under the assumption that cells can grow and move to
access more space and resources, it is natural to model the
spatial condition as a reaction-diffusion system using PDEs.
Diffusion is introduced in [30] to describe cell motility in
the spatial environment, in forms of ∆(D( f (u,v))u) where
u,v are cell population densities and ∆ = ∇2 = ∂ 2

∂x2 +
∂ 2

∂y2

represents the Laplace operator. The specific function f (u,v)
depends on cell-cell interactions. In our design, we as-
sume that cells diffuse faster if the the growth is activated
since growth factors can increase cell division and move-
ment [31], and the function f (u,v) can be characterized
by intra/interspecies interactions. All intra/interspecies inter-
actions are realized via quorum sensing and the diffusible
signaling molecules can only reach cells in the neighborhood
within some range. Therefore, the interactions are nonlocal
behaviors that depend on the spatial distribution of cells
and of signaling molecules in the neighborhood. We assume
cells are point sources of diffusible signaling molecules
on 2D space. Adding source production and self decay
in signaling molecules diffusion equations, we derive the
signaling molecules concentration φ at the radius r of a single
source at steady state with appropriate boundary conditions
as

φ (r) =


S0 r = 0,

S0

2πd
K0

( r
L

)
r > 0,

(8)

where S0 is the production rate of signaling molecules, d is
the diffusion rate of signaling molecules, L is the diffusion
range calculated as L = d

γ
, γ is the degradation rate of

signaling molecules and K0 is the modified Bessel function of
the second kind of order zero, which can be approximated as
the inverse of a log function when r is small. Therefore, the
interactions are no longer linear functions of cell population
densities as in equation (1), but instead are weighted by a
decreasing distance kernel φ(r). To be consistent with the
parameters in the nonspatial model, we let∫

∞

0
2πrφ (r)dr = 1. (9)

The interactions on cells at position xxx ∈ R2 are nonlocal in
the following form:

ICi (xxx) =
∫

φ (|xxx− yyy|)Ci (yyy, t)dyyy, xxx ∈ R2. (10)

Such nonlocal interactions also have an impact on cell
diffusion dynamics in the following manner, since cells
divide and move faster where there are more cooperative
than competitive interaction signals:

Di (xxx) = D0
(
κ +aiiICi (xxx)+ai jIC j (xxx)

)
≥ 0, i 6= j, (11)

where κ is a basal diffusion scaled by D0. Note that the
competitive and cooperative interactions affect the spatial
system via cell population growth and cell movement con-
sistently. By substituting Ci, i = 1,2 in interaction terms
with equation (10) and adding cell diffusion according to

(a) (b)

(c) (d)

Fig. 4. Simulations of cell population patterning and dynamics under
perturbation for spatial models. Panels (a) and (b) are spatial patterns
for cooperative and competitive interactions w/o perturbation on Cell1
population within an area of size rdis = 100. Cell1 is shown in blue color
and Cell2 in red color in the snapshots. In (a), the upper patterns show
that two cell species are forming intermixed patterns without perturbation.
The lower patterns show that cooperation helps recovering coexistence and
intermixed patterns after the perturbation. In (b), the upper patterns show
that two cell species are forming segregated patches without perturbation.
The lower patterns show that the coexistence breaks as Cell2 dominates
the perturbed area and forms a big segregation. Panels (c) and (d) are
corresponding population dynamics for cooperation and competition with
different perturbation area sizes.

equation (11), we extend the nonspatial ODE model in
equation (1) into a PDE model as

∂C1

∂ t
= ∆(D1C1)+ kC

(
1− C1 +C2

Cmax

)
C1 +(a11IC1 +a12IC2)C1,

∂C2

∂ t
= ∆(D2C1)+ kC

(
1− C1 +C2

Cmax

)
C2 +(a21IC1 +a22IC2)C2.

(12)
We solve for homogeneous steady states of equation (12)

and obtain three nonzero solutions coincident with equa-
tion (2). The nontrivial homogeneous solution is C1 (xxx, t) =
C2 (xxx, t)≡C(1)∗.

We use same parameters and run simulations in gro [32].
We set the initial condition as a homogeneous distribution
and observe self-organized spatial structures of two species.
Both cooperation and competition maintain coexistence after
120 hr. As shown in Fig. 4(a) and 4(b), cooperation leads to
a more intermixed spatial pattern while competition tends
to self-organize into small patches of segregated colonies.
When we deplete some of Cell1 population within range rdis
at t = 50 hr, cooperation helps recovery of Cell1 population
but competition lets Cell2 dominates the antibiotics dispersal
area and extincts Cell1 completely. Fig. 4(c) and 4(d) show
the population fraction dynamics when rdis is altered and
only cooperation maintains stable coexistence after pertur-
bation.

Now we give theoretical explanations of the significant
difference of coexistence stability under spatial conditions
between cooperation and competition. For a coexisting ho-
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Fig. 5. Stability conditions of homogeneous coexistence for the spatial
interaction model. We calculate T in the upper plots and δ in the lower
plots for two interactions when altering two parameters D0 and L. Given
the stability conditions in equation (14), the homogeneous coexistence is
stable in parameter regimes where T < 0 as shown in red color and δ > 0
as shown in blue color. The left plots show that cooperation maintains stable
homogeneous coexistence. The right plots show that it can be unstable for
competitive interaction at high population diffusion rate and small quorum
sensing signal diffusion range.

mogeneous steady state C1 (x, t) = C2 (x, t) ≡ C(1)∗ > 0, we
linearize equation (12) around equilibrium, apply Fourier
transform and obtain the following characteristic equation
given C(1)∗ > 0:

H =

[
a11 a12
a21 a22

]
φ̄

(
1−D0ε

2
)
− kC

Cmax
−
[

1 0
0 1

]
κ
′D0ε

2, (13)

where κ ′ = a11 + a12 +
κ

C∗ ≥ 0. The Fourier transform of
φ is φ̄ = 1√

(εL)2+1
according to equation (8) and (9). The

local stability of the homogeneous coexistence under spatial
perturbation requires the following conditions,

T (ε,L) = 2
(

a11φ̄

(
1−D0ε

2
)
−κ
′D0ε

2− kC

Cmax

)
< 0,

δ (ε,L) =
(
(a11 +a12) φ̄

(
1−D0ε

2
)
−κ
′D0ε

2−2
kC

Cmax

)
·
(
(a11−a12) φ̄

(
1−D0ε

2
)
−κ
′D0ε

2
)
> 0.

(14)

Equation (14) is equivalent to equation (5) for the nonspatial
model when there is no cell and signaling molecule diffusion.
In other words, nonspatial conditions can be described by
equation (14) when L = 0 and D0 = 0. However, given pa-
rameters satisfying nonspatial stability conditions, the local
stability of homogeneous solution is different for cooperative
and competitive interactions.

In Fig. 5, we alter cell population diffusion rate D0
and quorum sensing signaling molecules diffusion range
L, and calculate T and δ to identify stable regions. For
cooperative interactions, the homogeneous coexistence is
stable as equation (14) is satisfied and populations form
intermixed spatial structures. When Cell1 in certain area is
perturbed, cells outside this area could diffuse in and the
other existing species Cell2 would activate Cell1’s growth
to recover coexistence. Similar beneficial phenomena have
been observed where cooperative partners spatially intermix
by appearing successively on top of each other in engineered
metabolites exchanging consortia [33].

For competitive interactions, the stability condition may
not be satisfied for some parameter regimes. Large pop-
ulation diffusion rates indicate the strong repression on
cell motility from competitive interactions and small signal
diffusion ranges stress the impact of spatial heterogeneity of
signaling molecules on population dynamics. Thus, spatial
perturbations can break the coexistence stability when D0
increases and L is small. Since two cell species repress the
population growth of each other, once Cell1 senses Cell2
population, it dies more until the decrease in population com-
pensates for self repression. It is harder for cells to mix but
instead they form small segregated colonies. When Cell1 are
depleted, only Cell2 grows and prevents Cell1 from diffusing
into the area, and eventually outcompetes Cell1. Thus, one
dominant cell population cannot recover coexistence after
the perturbation. Spatial perturbations on cell population
are common noises in environment, therefore cooperative
interaction is more robust than competitive interaction in
consortia.

V. DISCUSSION

In this paper, we show that cooperation leads to intermixed
patterns and supports more stable coexistence so that it is
more robust to population perturbations under spatial condi-
tion. Competition is easily perturbed and becomes unstable
for coexistence. When cells are well-mixed, both interactions
are stable, but when cells grow and self-organize into certain
spatial structures, the nonlocal interaction behavior and popu-
lation diffusion are important factors that cause such different
stability performance between cooperation and competition.
The results can provide useful guidance when we engineer
synthetic consortia, especially when strong spatial hetero-
geneity in environment is considered. Cooperative interaction
is beneficial because it maintains stable coexistence, while
competition can better perform localized functions by form-
ing spatially segregated colonies. For example, the human
microbiome consists of hundreds of microbial species and
they are grouped to perform complicated functions [34]. It is
important to keep stable and robust coexistence within groups
and avoid cross-talk and interference from unrelated groups
at the same time. By implementing certain interspecies
interaction type and regulating the interaction strength or
signal diffusion range, we can improve the the performance
of synthetic consortia dealing with multiple tasks. Another
application could be spatial-temporal control on cell differen-
tiation. The rate of evolution depends on spatial organization
and interactions among the population in nontrivial ways. It
has been shown that cooperation leads to fast creation of
complex phenotypes as an emergent property [35].

Our work is based on a general interaction model of two-
species systems, but the analysis can be applied to more
circuits and problems in synthetic biology. Different biolog-
ical mechanisms can be implemented to perform population
level functions with theoretical predictions. For future work,
we would like to construct specific synthetic consortia using
potential cooperative and competitive interaction control on
population regulation and explore the spatial effect on coex-
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istence stability and robustness to perturbations in consortia
containing more species and complex interaction networks.
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“Privatization of cooperative benefits stabilizes mutualistic cross-
feeding interactions in spatially structured environments,” The ISME
Journal, vol. 10, no. 6, p. 1413, 2016.

[19] J. C. Clemente, E. C. Pehrsson, M. J. Blaser, K. Sandhu, Z. Gao,
B. Wang, M. Magris, G. Hidalgo, M. Contreras, Ó. Noya-Alarcón,
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