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Abstract 

There is significant interest in the development and application of deep neural networks 

(DNNs) to neuroimaging data. A growing literature suggests that DNNs outperform their 

classical counterparts in a variety of neuroimaging applications, yet there are few direct 

comparisons of relative utility. Here, we compared the performance of three DNN 

architectures and a classical machine learning algorithm (kernel regression) in predicting 

individual phenotypes from whole-brain resting-state functional connectivity (RSFC) 

patterns. One of the DNNs was a generic fully-connected feedforward neural network, while 

the other two DNNs were recently published approaches specifically designed to exploit the 

structure of connectome data. By using a combined sample of almost 10,000 participants 

from the Human Connectome Project (HCP) and UK Biobank, we showed that the three 

DNNs do not outperform kernel regression across a wide range of behavioral and 

demographic measures. Furthermore, the generic feedforward neural network exhibited 

similar performance to the two state-of-the-art connectome-specific DNNs. We conclude 

with suggestions on future neuroimaging DNN research, including comparisons with stronger 

baseline algorithms, minimum sample sizes, transparency of hyperparameter tuning and code 

availability. Critically, we believe that deep learning remains a promising tool for analyzing 

neuroimaging data. However, researchers should carefully consider whether and how their 

applications might benefit from DNNs’ advantages over classical alternatives, rather than 

treat deep learning as a panacea.   
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Introduction 

 Deep neural networks (DNNs) have enjoyed tremendous success in machine learning 

(Lecun et al., 2015). As such, there has been significant interest in the application of DNNs to 

neuroscience research. DNNs have been applied to neuroscience in at least two main ways. 

First, deep learning models have been used to simulate actual brain mechanisms, such as in 

vision (Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014; Eickenberg et al., 2017) 

and auditory perception (Kell et al., 2018). Second, DNNs have been applied as tools to 

analyze neuroscience data, including lesion and tumor segmentation (Pinto et al., 2016; 

Havaei et al., 2017; Kamnitsas et al., 2017b; G. Zhao et al., 2018), anatomical segmentation 

(Wachinger et al., 2018; X. Zhao et al., 2018), image modality/quality transfer (Bahrami et 

al., 2016; Nie et al., 2017; Blumberg et al., 2018), image registration (Yang et al., 2017; 

Dalca et al., 2018), as well as behavioral and disease prediction (Plis et al., 2014; van der 

Burgh et al., 2017; Vieira et al., 2017; Nguyen et al., 2018).  

Deep neural networks can perform well in certain scenarios where large quantities of 

data are unavailable, for example, winning multiple MICCAI predictive modeling challenges 

(Choi et al., 2016; Kamnitsas et al., 2017a; Hongwei Li et al., 2018). Yet, the conventional 

wisdom is that DNNs perform especially well when applied to well-powered samples, for 

instance, the 14 million images in ImageNet (Russakovsky et al., 2015) and Google 1 Billion 

Word Corpus (Chelba et al., 2014). However, in many neuroimaging applications, the 

available data often only involve hundreds or thousands of participants, while the associated 

feature dimensions can be significantly larger, such as entries of connectivity matrices with 

upwards of 100,000 edges. Consequently, we hypothesize that in certain neuroimaging 

applications, DNNs might not be the optimal choice for a machine learning problem (Bzdok 

and Yeo, 2017). Here, we investigated whether DNNs can outperform classical machine 

learning for behavioral prediction using resting-state functional connectivity (RSFC).  

RSFC measures the synchrony of resting-state functional magnetic resonance image 

(rs-fMRI) signals between brain regions (Biswal et al., 1995; Fox and Raichle, 2007; Buckner 

et al., 2013), while participants are lying at rest without any explicit task. RSFC has been 

widely used for exploring human brain organization and mental disorders (Smith et al., 2009; 

Assaf et al., 2010; Power et al., 2011; Yeo et al., 2011; Bertolero et al., 2015). For a given 

brain parcellation scheme (e.g., Shen et al., 2013; Gordon et al., 2016; Glasser et al., 2017; 

Eickhoff et al., 2018), the parcels can be used as regions of interest (ROIs), such that a whole 

brain (or cortical) RSFC matrix can be computed for each participant. Each entry of the 

RSFC matrix corresponds to the strength of functional connectivity between two brain 
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regions. The entries of the RSFC matrices can then be used as features for predicting 

behavioral measures (e.g., fluid intelligence) in individual participants (Finn et al., 2015; 

Smith et al., 2015; Dubois and Adolphs, 2016; Rosenberg et al., 2016; Reinen et al., 2018). 

In this work, we compared kernel regression with three DNN architectures in RSFC-

based behavioral prediction. Kernel regression is a non-parametric classical machine learning 

algorithm (Murphy, 2012) that has previously been utilized in various neuroimaging 

prediction problems, including RSFC-based behavioral prediction (Raz et al., 2017; Zhu et 

al., 2017; Li et al., 2018; Kong et al., 2018). Our three DNN implementations included a 

generic, fully-connected feedforward neural network, and two state-of-the-art DNNs 

specifically developed for RSFC-based prediction (Kawahara et al., 2017; Parisot et al., 2017, 

2018). An initial version of this study utilizing only the fluid intelligence measure in the HCP 

dataset has been previously presented at a workshop (He et al., 2018). By using RSFC data 

from nearly 10,000 participants and a broad range of behavioral (and demographic) measures 

from the HCP (Smith et al., 2013; Van Essen et al., 2013) and UK Biobank (Sudlow et al., 

2015; Miller et al., 2016), this current extended study represents one of the largest empirical 

evaluations of DNN’s utility in RSFC-based fingerprinting. 
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Methods 

Datasets 

Two datasets were considered: the Human Connectome Project (HCP) S1200 release 

(Van Essen et al., 2013) and the UK Biobank (Sudlow et al., 2015; Miller et al., 2016). Both 

datasets contained multiple types of neuroimaging data, including structural MRI, rs-fMRI, 

and multiple behavioral and demographic measures for each subject. 

HCP S1200 release comprised 1206 healthy young adults (age 22-35). There were 

1,094 subjects with both structural MRI and rs-fMRI. Both structural MRI and rs-fMRI were 

acquired on a customized Siemens 3T “Connectome Skyra” scanner at Washington 

University at St. Louis. The structural MRI was 0.7mm isotropic. The rs-fMRI was 2mm 

isotropic with TR of 0.72s and 1200 frames per run (14.4 minutes). Each subject had two 

sessions of rs-fMRI, and each session contained two rs-fMRI runs. A number of behavioral 

measures was also collected by HCP. More details can be found elsewhere (Van Essen et al., 

2012; Barch et al., 2013; Smith et al., 2013) .  

The UK Biobank is a prospective epidemiological study that have recruited 500,000 

adults (age 40-69) between 2006-2010 (Sudlow et al., 2015). 100,000 of these 500,000 

participants will be brought back for multimodal imaging by 2022 (Miller et al., 2016). Here 

we considered an initial release of 10065 subjects with both structural MRI and rs-fMRI data. 

Both structural MRI and rs-fMRI were acquired on harmonized Siemens 3T Skyra scanners 

at three UK Biobank imaging centres (Cheadle Manchester, Newcastle, and Reading). The 

structural MRI was 1.0mm isotropic. The rs-fMRI was 2.4mm isotropic with TR of 0.735s 

and 490 frames per run (6 minutes). Each subject had one rs-fMRI run. A number of 

behavioral measures was also collected by the UK Biobank. More details can be found 

elsewhere (Elliott and Peakman, 2008; Sudlow et al., 2015; Miller et al., 2016; Alfaro-

Almagro et al., 2018) .  

 

Preprocessing and RSFC 

We utilized ICA-FIX MSM-All grayordinate rs-fMRI data provided by the HCP 

S1200 release (HCP S1200 manual; Van Essen et al., 2012, 2013; Glasser et al., 2013; Smith 

et al., 2013; Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). To eliminate residual 

motion and respiratory-related artifacts (Burgess et al., 2016), we performed further 

censoring and nuisance regression (Li et al., 2018; Kong et al., 2018). Runs with more than 

50% censored frames were discarded. We considered 400 cortical (Schaefer et al., 2018) and 

19 sub-cortical (Fischl et al., 2002) ROIs. The preprocessed rs-fMRI time courses were 
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averaged across all grayordinate locations within each ROI. RSFC was then computed using 

Pearson’s correlation of the averaged time courses for each run of each subject (with the 

censored frames excluded for the computation). The RSFC was averaged across all runs, 

resulting in one 419 x 419 RSFC matrix for each subject.  

In the case of the UK Biobank, we utilized the 55 x 55 RSFC (Pearson’s correlation) 

matrices provided by the Biobank (Miller et al., 2016; Alfaro-Almagro et al., 2018). The 55 

ROIs were obtained from a 100-component whole-brain spatial-ICA (Beckmann and Smith, 

2004), of which 45 components were considered to be artifactual (Miller et al., 2016). The 

use of a different parcellation scheme in the UK Biobank (compared with the HCP dataset) 

ensures that our results are robust to the particular choice of ROIs.  

 

FC-based prediction setup 

 We considered 58 behavioral measures across cognition, emotion and personality 

from the HCP (Table S1; Kong et al., 2018). By restricting the dataset to participants with at 

least one run (that survived censoring) and all 58 behavioral measures, we were left with 953 

subjects. 23, 67, 62 and 801 subjects had 1, 2, 3 and 4 runs respectively.  

In the case of the UK Biobank, we considered four behavioral and demographic 

measures: age, sex, fluid intelligence and pairs matching1 (number of incorrect matches). By 

restricting the dataset to participants with 55 x 55 RSFC matrices and all four measures, we 

were left with 8868 subjects. 

For both datasets, kernel regression and three DNNs were applied to predict the 

behavioral and demographic measures of individual subjects based on individuals’ RSFC 

matrices. More specifically, the RSFC data of each participant was summarized as an N x N 

matrix, where N is the number of brain ROIs. Each entry in the RSFC matrix represented the 

strength of functional connectivity between two ROIs. The entries of the RSFC matrix were 

then used as features to predict behavioral and demographic measures in individual 

participants.  

 

Kernel ridge regression 

Kernel regression (Murphy, 2012) is a non-parametric classical machine learning 

algorithm. Let 𝑦 be the behavioral measure (e.g., fluid intelligence) and c be the RSFC matrix 

of a test subject. Let 𝑦௜ be the behavioral measure (e.g., fluid intelligence) and 𝑐௜ be the 

                                                
1 The pairs matching task requires participants to memorize the positions of matching pairs of cards.  
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RSFC matrix of the 𝑖-th training subject. Roughly speaking, kernel regression will predict the 

test subject’s behavioral measure to be the weighted average of the behavioral measures of all 

training subjects: 𝑦 ≈ ∑ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑐௜ , 𝑐)𝑦௜௜∈௧௥௔௜௡௜௡௚ ௦௘௧ , where 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑐௜ , 𝑐) is the 

similarity between the RSFC matrices of the test subject and 𝑖-th training subject. Here, we 

simply set  𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑐௜ , 𝑐) to be the Pearson’s correlation between the lower triangular 

entries of matrices 𝑐௜ and 𝑐. In practice, an 𝑙ଶ regularization term is needed to avoid 

overfitting (i.e., kernel ridge regression). The level of 𝑙ଶ regularization is controlled by the 

hyperparameter λ. More details are found in Appendix A1.  

 

Fully-connected neural network (FNN)  

Fully-connected neural networks (FNNs) belong to a generic class of feedforward 

neural networks (Lecun et al., 2015) illustrated in Figure 1. A FNN takes in vector data as an 

input and outputs a vector. A FNN consists of several fully connected layers. Each fully 

connected layer consists of multiple nodes. Data enters the FNN via the input layer nodes. 

Each node (except input layer nodes) is connected to all nodes in the previous layer. The 

values at each node is the weighted sum of node values from the previous layer. The weights 

are the trainable parameters in FNN. The outputs of the hidden layer nodes typically go 

through a nonlinear activation function, e.g., Rectified Linear Units (ReLU; 𝑓(𝑥) =

𝑚𝑎𝑥(0, 𝑥)), while the output layer tends to be linear. The value at each output layer node 

typically represents a predicted quantity. Thus, FNNs (and neural networks in general) allow 

the prediction of multiple quantities simultaneously. In this work, the inputs to the FNN are 

the vectorized RSFC (i.e., lower triangular entries of the RSFC matrices) and the outputs are 

the behavioral or demographic variables we seek to predict. 

 

Figure 1. Schematic of a feedforward neural network (FNN). A FNN takes in vectorized 
RSFC matrix entries as inputs and outputs behavioral or demographic predictions. A FNN 
consists of an input layer, several hidden layers (three layers are shown here) and an output 
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layer. The number of nodes in the input layer is equal to the number of elements in the lower 
triangular portion of the RSFC matrix. The number of nodes in the output layer is typically 
equal to the number of behavioral measures we are predicting. The number of hidden layers 
and number of nodes in the hidden layers are among the many hyperparameters that have to 
be tuned.  
 

BrainNetCNN 

 One potential weakness of the FNN is that it does not exploit the (mathematical and 

neurobiological) structure of the RSFC matrix, e.g., RSFC matrix is symmetric, positive 

definite and represents a network. On the other hand, BrainNetCNN (Kawahara et al., 2017) 

is a specially designed DNN for connectivity data, illustrated in Figure 2. BrainNetCNN 

allows the application of convolution to connectivity data, resulting in significantly less 

trainable parameters than the FNN. This leads to less parameters, which should theoretically 

improve the ease of training and reduce overfitting issues. In this work, the input to the 

BrainNetCNN is the 𝑁 ×  𝑁 RSFC matrix and the outputs are the behavioral or demographic 

variables we seek to predict. 

 

 

Figure 2. Schematic of the BrainNetCNN (Kawahara et al., 2017). The BrainNetCNN takes 
in the RSFC matrix as an input and outputs behavioral or demographic predictions. 
BrainNetCNN consists of four types of layers, Edge-to-Edge (E2E) layer, Edge-to-Node 
(E2N) layer, Node-to-Graph (N2G) layer, and a final fully connected (Linear) layer. The 
number of the E2E layers can be any number greater than or equal to zero. On the other hand, 
there is one E2N layer and one N2G layer. The number of convolution filters and number of 
nodes in these layers are among the many hyperparameters that have to be tuned.  
 
 

 The BrainNetCNN takes in any connectivity matrix directly as an input and outputs 

behavioral or demographic predictions. Kawahara et al. (2017) used this model for predicting 

age and neurodevelopmental outcomes from structural connectivity data. BrainNetCNN 

consists of four types of layers: Edge-to-Edge (E2E) layer, Edge-to-Node (E2N) layer, Node-

to-Graph (N2G) layer and a final fully connected (linear) layer. The first three types of layers 
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are specially designed layers introduced in the BrainNetCNN. The final fully connected layer 

is the same as that used in FNNs. 

 The Edge-to-Edge (E2E) layer is a convolution layer using cross-shaped filters 

(Figure 2). The cross-shaped filter is applied to each element of the input matrix. Thus, for 

each filter, the E2E layer takes in an 𝑁 ×  𝑁 matrix and outputs an 𝑁 ×  𝑁 matrix. The 

number of E2E layer is arbitrary and is a tunable hyperparameter. The outputs of the final 

E2E layer are inputs to the E2N layer. The E2N layer is similar to the E2E layer, except that 

the cross-shaped filter is applied to only the diagonal entries of the input matrix. Thus, for 

each filter, the E2N layer takes in an 𝑁 ×  𝑁 matrix and outputs a 𝑁 ×  1 vector. There is 

one E2N layer for BrainNetCNN. The outputs of the E2N layer are the inputs to the Node-to-

Graph (N2G) layer. The N2G layer is simply a fully connected hidden layer similar to the a 

FNN’s hidden layer. Finally, the outputs of the N2G layer are linearly summed by the final 

fully connected layer to provide a final set of prediction values.  

 

Graph convolutional neural network (GCNN) 

Standard convolution applies to data that lies on a Euclidean grid (e.g., images). 

Graph convolution exploits the graph Laplacian in order to generalize the concept of standard 

convolution to data lying on nodes connected together into a graph. This allows the extension 

of the standard CNN to graph convolutional neural networks (GCNNs; Defferrard et al., 

2016; Bronstein et al., 2017; Kipf and Welling, 2017). There are many different ways that 

GCNN can be applied to neuroimaging data (Kipf and Welling, 2017; Ktena et al., 2018; 

Zhang et al., 2018). Here we considered the innovative GCNN developed by Kipf and 

Welling (2017) and extended to neuroimaging data by Parisot and colleagues (Parisot et al., 

2017, 2018) . Figure 3 illustrates this approach.  

 

 

Figure 3. Schematic of a graph convolution neural network (GCNN; Parisot et al., 2017, 
2018). This particular GCNN takes in vectorized RSFC matrices of all subjects as input and 
outputs behavioral (or demographic) prediction of all subjects. Each node represents a 
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subject. The edges represent similarity between two subjects (e.g., based on the similarity 
between their RSFC matrices). The GCNN consists of several graph convolutional layers, 
which extends standard convolution to graph convolution. 
 

The input to an FNN (Figure 1) or a BrainNetCNN (Figure 2) is the RSFC data of a 

single subject. By contrast, the GCNN takes in data (e.g., vectorized RSFC) of all subjects as 

input and outputs behavioral (or demographic) predictions of all subjects (Parisot et al., 2017, 

2018). In other words, data from the training, validation, and testing sets are all input into the 

GCNN at the same time. To avoid leakage of information across training, validation and test 

sets, masking of data is applied during the calculation of the loss function and gradient 

descent.  

More importantly, the graph in GCNN does not represent connectivity matrices (like 

in BrainNetCNN). Instead, each node represents a subject and edges are determined by the 

similarity between subjects. This similarity is problem dependent. For example, in the case of 

autism spectrum disorder (ASD) classification, similarity between two subjects is defined 

based on sex, sites and RSFC, i.e., two subjects are more similar if they have the same sex, 

from the same site and have similar RSFC patterns (Parisot et al., 2017, 2018). The use of sex 

and sites in the graph definition were particular important for this specific application, since 

ASD is characterized by strong sex-specific effects and the database included data from 

multiple unharmonized sites (Di Martino et al., 2014).  

Similar to the original studies (Parisot et al., 2017, 2018), we utilized vectorized 

RSFC (lower triangular entries of the RSFC matrix) of all subjects as inputs to the GCNN. 

Edges between subjects were defined based on Pearson’s correlation between lower 

triangular portions of RSFC matrices.  

 

HCP training, validation and testing 

For the HCP dataset, 20-fold cross-validation was performed. The 953 subjects were 

divided into 20 folds, such that family members were not split across folds. Inner-loop cross-

validation was performed for hyperparameter tuning. More specifically, for a given test fold, 

cross-validation was performed on the remaining 19 folds with different hyperparameters. 

The best hyperparameters were then used to train on the 19 folds. The trained model was then 

applied to the test fold. This was repeated for all 20 test folds.  

In the case of kernel regression, there was only one single hyperparameter λ (that 

controls the 𝑙ଶ regularization; see Appendix A.1). A separate hyperparameter was tuned for 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/473603doi: bioRxiv preprint 

https://doi.org/10.1101/473603
http://creativecommons.org/licenses/by/4.0/


each test fold and each behavioral measure separately based on a grid search over the 

hyperparameter.  

In the case of the DNNs, there was a large number of hyperparameters, e.g., number 

of layers, number of nodes, number of training epochs, dropout rate, optimizer (e.g., 

stochastic gradient or ADAM), weight initialization, activation functions, regularization, etc. 

GCNN also has additional hyperparameters tuned, e.g., definition of the graph and graph 

Laplacian estimation.  

If we trained a different DNN for each of the 58 behavioral measures, a proper 

hyperparameter tuning would not be computationally feasible. Thus, a single FNN (or 

BrainNetCNN or GCNN) was trained for all 58 behavioral measures. We note that the joint 

prediction of multiple behavioral measures might not be a disadvantage for the DNNs and 

might potentially even improve prediction accuracies (Rahim et al., 2017). Furthermore, we 

tried to tune each DNN (FNN, BrainNetCNN or GCNN) for only fluid intelligence, but the 

performance for fluid intelligence prediction was not better than predicting all 58 behavioral 

measures simultaneously.  

Furthermore, a proper inner-loop 20-fold cross-validation would involve tuning the 

hyperparameters for each DNN 20 times (once for each split of the data into training-test 

folds), which was computationally prohibitive. Thus, for each DNN (FNN, BrainNetCNN 

and GCNN), we tuned the hyperparameters once, using the first split of the data into training-

test folds, and simply re-used the optimal hyperparameters for the remaining training-test 

splits of the data. Such a procedure biases the prediction performance in favor of the DNNs 

(relative to kernel regression), so the results should be interpreted accordingly (see 

Discussion). Such a bias is avoided in the UK Biobank dataset (see below). Further details 

about DNN hyperparameters are found in Appendix A2.  

As is common in the FC-based prediction literature (Finn et al., 2015), model 

performance was evaluated based on the correlation between predicted and actual behavioral 

measures across subjects within each test fold. Furthermore, since certain behavioral 

measures were correlated with motion (Siegel et al., 2017), age, sex, and motion (FD) were 

regressed from the behavioral measures from the training and test folds (Li et al., 2018; Kong 

et al., 2018). Regression coefficients were estimated from the training folds and applied to the 

test folds.  
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UK Biobank training, validation and testing 

The large UK Biobank dataset allowed us the luxury of splitting the 8868 subjects into 

training (N = 6868), validation (N = 1000) and test (N = 1000) sets, instead of employing an 

inner-loop cross-validation procedure like in the HCP dataset. Care were taken so that the 

distributions of various attributes (sex, age, fluid intelligence and pairs matching) were 

similar across training, validation and test sets.  

Hyperparameters were tuned using the training and validation sets. The test set was 

only utilized to evaluate the final prediction performance. A separate DNN was trained for 

each of the four behavioral and demographic measures. Thus, the hyperparameters were 

tuned independently for each behavioral/demographic measure. Further details about DNN 

hyperparameters are found in Appendix A2. Initial experiments using a single neural network 

to predict all four measures simultaneously (like in the HCP dataset) did not appear to 

improve performance and so was not further pursued.   

Like before, prediction accuracies for age, fluid intelligence and pairs matching were 

evaluated based on the correlation between predicted and actual measures across subjects 

within the test set. Since the age prediction literature often used mean absolute error (MAE) 

as an evaluation metric (Liem et al., 2017; Cole et al., 2018; Varikuti et al., 2018), we also 

included MAE as an evaluation metric. In the case of sex, accuracy was defined as the 

fraction of participants whose sex was correctly predicted. Like before, we regressed age, sex 

and motion from fluid intelligence and pairs matching measures in the training set and apply 

the regression coefficients to the validation and test sets. When predicting age and sex, no 

regression was performed.   

 

Deep neural network implementation 

 The DNNs were implemented using Keras (Chollet, 2015) or PyTorch (Paszke et al., 

2017) and run on NVIDIA Titan Xp GPU using CUDA. Our implementation of 

BrainNetCNN and GCNN were based on Github code from the original papers (Kawahara et 

al., 2017; Kipf and Welling, 2017). Our implementation achieved similar results for the 

experiments provided in the original Github implementations. More details can be found in 

Appendix A2. 

 

Statistical tests 

For the HCP dataset, we performed 20-fold cross-validation, yielding a prediction 

accuracy for each test fold. To compare two algorithms, the corrected resampled t-test was 
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performed (Nadeau and Bengio, 2003; Bouckaert and Frank, 2004). The corrected resampled 

t-test corrects for the fact that the accuracies across test folds were not independent. 

In the case of the UK Biobank, there was only a single test fold, so the corrected resampled t-

test could not be applied. Instead, when comparing correlations from two algorithms, the 

Steiger’s Z-test was utilized (Steiger, 1980). When comparing prediction errors for age 

(MAE; mean absolute error), a two-tailed paired sample t-test was performed. When 

comparing prediction accuracies for sex, the McNemar’s test was utilized (McNemar, 1947).  

 

Data and code availability 

This study utilized publicly available data from the HCP 

(https://www.humanconnectome.org/) and UK Biobank (https://www.ukbiobank.ac.uk/). The 

400 cortical ROIs (Schaefer et al., 2018) can be found here 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Sch

aefer2018_LocalGlobal). The code utilized in this study can be found here: 

https://www.dropbox.com/sh/iq2d4gttxe3qvct/AAAVw7YJnVSwtOjouZDhhyPGa?dl=0 

(note to readers/reviewers: we are in the midst of pushing our code to github. The dropbox 

link will be replaced by a github link).  
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Results 

Three DNNs, fully connected neural network (FNN), BrainNetCNN and Graph 

Convolution Neural Network (GCNN), were compared with kernel regression in FC-based 

behavioral prediction using the HCP and UK Biobank datasets. 

 

HCP behavioral prediction 

 Figure 4 shows the prediction accuracy (correlation) averaged across 58 HCP 

behavioral measures and 20 test folds. FNN achieved the highest average prediction accuracy 

of r = 0.121 ± 0.063 (mean ± std). On the other hand, kernel regression achieved an average 

prediction accuracy of r = 0.115 ± 0.036 (mean ± std). However, there was no statistical 

difference between FNN and kernel regression (p = 0.60; see Methods).  

Interestingly, BrainNetCNN (r = 0.110 ± 0.043) and GCNN (r = 0.072 ± 0.034) did 

not outperform FNN, even though the two DNNs were designed for neuroimaging data.  For 

completeness, Figures 5, S1, and S2 show the behavioral prediction accuracies for all 58 

behavioral measures.  

  

 

Figure 4. Prediction accuracy (correlation) averaged across 58 HCP behavioral 
measures and 20 test folds. Correlation was computed for each test fold and each behavior, 
and then averaged across the 58 behaviors. Bars show mean across test folds. Error bars show 
standard error of model performance across cross-validation folds. Kernel regression and 
FNN performed the best. There was no statistical difference (p = 0.60) between kernel 
regression and FNN. 
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Figure 5. Prediction accuracies (correlations) in a curated set of 13 HCP cognitive 
measures averaged across 20 test folds. Correlation was computed for each test fold and 
each behavior. Bars show mean across test folds. Error bars show standard errors of model 
performance across cross-validation folds. Prediction accuracies of the remaining 45 
behavioral measures are found in Figures S1 and S2. 
 

 

UK Biobank behavioral and demographics prediction 

Table 1 and Figure 6 show the prediction performances of sex, age, pairs matching 

and fluid intelligence. Kernel regression performed the best for age and fluid intelligence. 

BrainNetCNN performed the best for sex and pairs matching.  

Statistical tests were performed between kernel regression and the three DNNs (see 

Methods). False discovery rate (q < 0.05) was applied to correct for multiple comparisons 

correction. For age (MAE), kernel regression was statistically better than GCNN (p = 1.8e-6). 

For fluid intelligence, kernel regression was statistically better than GCNN (p = 5.5e-5).  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/473603doi: bioRxiv preprint 

https://doi.org/10.1101/473603
http://creativecommons.org/licenses/by/4.0/


On the other hand, there was no statistical difference between kernel regression and 

BrainNetCNN in the case of sex and pairs matching, even though BrainNetCNN achieved a 

nominally higher accuracy. 

Interestingly, the FNN achieved poor performance in the case pairs matching (r = -

0.0006). Upon further investigation, we found that FNN achieved an accuracy of r = 0.079 in 

the UK Biobank validation set. Without any hyperparameter tuning (i.e., using the default set 

of hyperparameters), FNN achieved accuracies of r = 0.046 and r = 0.031 in the validation 

and test sets respectively. Overall, this suggests that the hyperparameter tuning overfitted the 

validation set, despite the rather large sample size.  

 

Model 
Sex   Age     

Pairs 
matching 

  
Fluid 
intelligence 

Accuracy   Correlation MAE   Correlation   Correlation 
Kernel Regression 0.916  0.600 4.826  0.061  0.239 
FNN 0.908  0.598 4.896  -0.0006  0.239 
BrainNetCNN 0.917  0.596 4.836  0.063  0.236 
GCNN 0.908   0.577 5.110*   0.030   0.155* 
 

Table 1. Prediction performance of four behavioral and demographic measures in the 
UK Biobank. For age (MAE), lower values imply better performance. For all the other 
measures, larger values imply better performance. Bold indicates best performance, although 
it does not imply statistical significance. Statistical tests were performed to compare kernel 
regression with each of the three DNNs. * indicates statistical significance after FDR (q < 
0.05) correction. 
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Figure 6. Prediction performance of four behavioral and demographic measures in the 
UK Biobank. For age (MAE), lower values imply better performance. For all the other 
measures, larger values imply better performance. The horizontal lines represent statistical 
tests between kernel regression and the DNNs. “n.s” stands for not significant. “*” implies 
statistical significance after FDR (q < 0.05) correction. 
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Computational costs 

Kernel regression has a close-form solution (Appendix A1) and only one 

hyperparameter, so the computational cost is extremely low. For example, kernel regression 

training and grid search of 32 hyperparameter values in the UK Biobank validation set took 

about 20 minutes (single CPU core) for one behavioral measure. This is one reason why we 

considered kernel regression instead of other slower classical approaches (e.g., support vector 

regression or elastic net) requiring iterative optimization. On the other hand, FNN training 

and tuning of hyperparameters in the UK Biobank validation set took around 80 hours (single 

GPU) for one behavioral measure, excluding the manhours necessary for the manual tuning. 
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Discussion 

In this study, we showed that DNNs did not outperform kernel regression in RSFC-

based prediction of a wide range of behavioral and demographic measures across two large-

scale datasets totaling almost 10,000 participants. Furthermore, FNN performed as well as the 

two DNNs that were specifically designed for connectome data2. Given comparable 

performance between kernel regression and the DNNs and the significantly greater 

computational costs associated with DNNs, our results suggest that DNNs should be more 

critically evaluated in the neuroimaging literature despite their promise. 

 

Potential reasons why DNNs did not outperform kernel regression for RSFC-based 

prediction 

There are several potential reasons why DNNs did not outperform kernel regression in 

our experiments on RSFC-based behavioral prediction. First, given the much larger datasets 

used in computer vision and natural language processing (Chelba et al., 2014; Russakovsky et 

al., 2015), it is possible that there was not enough neuroimaging data (even in the UK 

Biobank) to fully exploit DNNs.  

Second, while the human brain is nonlinear and hierarchically organized (Deco et al., 

2011; Breakspear, 2017), such a structure might not be reflected in the RSFC matrix in a way 

that was exploitable by the DNNs we considered. This could be due to the measurements 

themselves (Pearson’s correlations of rs-fMRI timeseries), the particular representation (N x 

N connectivity matrices) or particular choices of DNNs, although we again note that 

BrainNetCNN and GCNN were specifically developed for connectome data.   

Third, it is well-known that hyper-parameter settings and architectural details can 

impact the performance of DNNs. Thus, it is possible that the benchmark DNNs we 

implemented in this work can be further optimized. However, we do not believe this would 

alter our conclusions for two reasons. First, for some measures (e.g., sex classification in the 

UK Biobank), we were achieving performance at or near the state-of-the-art. Second, 

experiments with an automatic algorithm for tuning DNN hyperparameters (Ilievski et al., 

2017) did not yield better performance than our hand-tuned hyperparameters (results not 

shown).  

 

                                                
2 FNN did seem to perform the worst for pairs matching in the UK Biobank, but the difference was not 
statistically significant. Furthermore, no approach seems to be able to predict pairs matching well. 
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Improving future DNNs research in neuroimaging 

 Given the exciting DNN results published in the top neuroimaging journals, we 

started this project with the expectation that DNNs would significantly outperform kernel 

regression. However, the results of this study suggest potential lessons for future DNN 

research in neuroimaging. 

 First, many DNN papers in neuroimaging do not utilize strong baseline algorithms for 

comparisons. In the case of RSFC-based behavioral prediction, our results suggest that kernel 

regression is a good baseline to be considered in future studies. Furthermore, in many (if not 

all) applications, a simple, but powerful baseline would be to replace the nonlinear activation 

functions (used in the DNN) with linear ones (Huang et al., 2018; Nguyen et al., 2018).  

 Second, the sample sizes of many DNN neuroimaging studies are often too small. In 

the case of behavioral prediction or disease classification, where the sample size is equal to 

the number of participants, we recommend at least a minimum of several hundred 

participants, since our results suggest that DNNs can achieve comparable performance with 

kernel regression. Thousands of participants would be better. Yet, given the results of this 

study, studies should perhaps aspire to even more participants. It is worth noting that what 

constitutes sample size depends on the problem. In the case of dense anatomical 

segmentation, the training data might involve manual segmentation of millions of voxels in a 

relatively small number of participants. In this scenario, the effective sample size might be 

closer to the number of labeled voxels than the number of labeled subjects. Consequently, 

this might explain the success of DNNs in segmentation challenges (Kamnitsas et al., 2017a; 

Hongwei Li et al., 2018). 

 Third, there are significantly more hyperparameters in DNNs compared with classical 

machine learning approaches. For example, for a fixed kernel (e.g., correlation metric in our 

study), kernel regression has one single regularization parameter. Even with a nonlinear 

kernel (e.g. radial basis function), there would only be two hyperparameters. This is in 

contrast to DNNs, where there can easily be more than ten hyperparameters. As such, it is 

important that studies spelled out clearly how those hyperparameters are tuned. In our 

experience, tuning large number of hyperparameters within a k-fold inner-loop (nested) 

cross-validation framework is difficult for two reasons. First, tuning so many 

hyperparameters k times (once for each fold) is prohibitively expensive. Second, if manual 

tuning is performed, information from tuning one fold will inevitably leak to another fold (via 

the person tuning the hyperparameters). Consequently, if the dataset is sufficiently large (e.g., 

UK Biobank), we recommend the data be divided into training, validation and test sets, just 
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like in our experiments. Hyperparameter tuning should be performed only using the training 

and validation sets, with the test set only be utilized in the final evaluation. In smaller datasets 

(e.g., HCP), an inner-loop k-fold cross-validation might unfortunately be necessary to ensure 

stability of results (Varoquaux, 2018). 

 Finally, we encourage studies to make their code publicly available. Publicly 

available code makes it significantly easier for other researchers to perform comparisons with 

the published algorithms. The current evaluation study is made possible due to generous code 

sharing by various authors (Kawahara et al., 2017; Parisot et al., 2017, 2018). Furthermore, 

there are simply too many DNN hyperparameters (and design choices) to be listed in a paper. 

In fact, there were hyperparameters too complex to completely specify in this paper. 

However, we have made our publicly available, so researchers can refer to the code for the 

exact hyperparameters.   

 

Limitations and caveats 

 Although the current study suggests that DNNs do not outperform kernel regression 

of RSFC-based behavioral prediction, it is possible that other DNNs (we have not considered) 

might outperform kernel regression. Furthermore, our study focused on the use of N x N 

RSFC matrices for behavioral prediction. Other RSFC features in combination with DNNs 

might potentially yield better performance (Hongming Li et al., 2018; Khosla et al., 2018). 

Furthermore, the final UK Biobank dataset will include 100,000 participants with 

neuroimaging data, which is ten times the number of participants used in the current study. 

The larger quantity of data might strongly benefit deep learning approaches.  

Given the success of DNNs in many fields and at various MICCAI predictive 

modeling challenges, we strongly believe that DNN remains a promising tool for 

neuroimaging. However, researchers should carefully consider whether and how their 

applications would benefit from DNNs’ advantages over classical alternatives, rather than 

simply assume that deep learning is a panacea for all problems.   
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Conclusion 

By using a combined sample of nearly 10,000 participants, we showed that three 

DNNs did not outperform kernel regression in RSFC-based prediction of a wide range of 

behavioral and demographic measures. Although we believe that deep learning remains a 

promising tool for neuroimaging data analysis, this suggests that DNNs should be more 

critically evaluated in the neuroimaging literature. Deep learning research in neuroimaging 

applications would benefit from comparisons with stronger baseline algorithms, large sample 

sizes, transparency in hyperparameter tuning and code availability.  
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Appendix 

A1. Kernel Regression 

 In this section, we describe kernel regression in detail (Liu et al., 2007; Murphy, 

2012). The kernel matrix 𝐾 encodes the similarity between pairs of subjects. Motivated by 

Finn and colleagues (2015), the 𝑖-th row and 𝑗-th column of the kernel matrix is defined as 

the Pearson’s correlation between the 𝑖-th subject’s vectorized RSFC and 𝑗-th subject’s 

vectorized RSFC (considering only the lower triangular portions of the RSFC matrices). The 

behavioral measure 𝑦௜ of subject i can be written as: 

 

𝑦௜ = ∑௝ୀଵ
ெ  𝛼௝𝐾൫𝑐௜ , 𝑐௝൯ + 𝑒௜ (1) 

 

where 𝑐௜ is the vectorized RSFC of the i-th subject, 𝐾൫𝑐௜, 𝑐௝൯ is the element at 𝑖-th row and 𝑗-

th column of kernel matrix, 𝑀 is the total number of training subjects, 𝑒௜ is the noise term and 

𝛼௝  is the trainable weight. The goal of kernel regression is to find an optimal set of 𝛼. To 

achieve this goal, we maximize the penalized likelihood function: 

 

𝐽 = −
1

2
∑௜ୀଵ

ெ ൛𝑦௜ − ∑௝ୀଵ
ெ  𝛼௝𝐾൫𝑐௜ , 𝑐௝൯ൟ

ଶ
(2) 

 

with respect to 𝜶 = [𝛼ଵ, 𝛼ଶ, … , 𝛼ெ]். To avoid overfitting, a 𝑙ଶ regularization (i.e., kernel 

ridge regression) can be added, so the resulting optimization problem becomes: 

 

𝜶 = argmin
ఈ

1

2
(𝒚 − 𝕂𝜶)்(𝒚 − 𝕂𝜶) +

𝜆

2
𝜶்𝕂𝜶 (3) 

 

where 𝕂 is the 𝑀 × 𝑀 kernel matrix, 𝒚 = [𝑦ଵ, 𝑦ଶ, … , 𝑦ெ]் and λ is a hyperparameter that 

controls the 𝑙ଶ regularization. By solving equation (3) with respect to 𝛼, we can predict a test 

subject’s behavioral measure 𝑦௦ as: 

 

𝑦௦ = 𝑲𝒔𝜶 = 𝑲𝒔(𝕂 + 𝜆𝑰)ିଵ𝒚 (4) 

 

where 𝑲𝒔 = [𝐾(𝑐௦ , 𝑐ଵ), 𝐾(𝑐௦ , 𝑐ଶ), … , 𝐾(𝑐௦, 𝑐ெ)]. 

 In the case of the HCP, λ was selected via inner-loop cross-validation. In the case of 

the UK biobank, λ was tuned on the validation set.  
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A2. More details of deep neural networks 

In this section, we describe further details of our DNN implementation. In the case of the 

HCP dataset: 

 For all three DNNs, all behavioral measures were z-normalized based on training 

data. The loss function was mean squared error (MSE). Optimizer was stochastic 

gradient descent (SGD). With the MSE loss, the output layer has 58 nodes (FNN and 

BrainNetCNN) or filters (GCNN). 

 Final FNN structure is shown in table 2. Dropout of 0.6 was added before each fully-

connected layer. L2 regularization of 0.02 was added for layer 2. 

 Final BrainNetCNN structure is shown in table 3. Dropout of 0.5 was added after E2N 

layer. LeakyReLU (Maas et al., 2013) with alpha of 0.1 was used as the activation 

function for the first three layers. 

 Final GCNN structure is shown in table 4. Dropout of 0.3 was added for each layer. 

L2 regularization of 8e-4 was added for layer 1. The nodes of the graph corresponded 

to subjects. Edges were constructed based on Pearson’s correlation between subjects’ 

vectorized RSFC. The graph was thresholded by only retaining edges with top 5% 

correlation (across the entire graph). However, this might result in a disconnected 

graph. Therefore, the top five correlated edges of each node were also retained (even 

if these edges were not among the top 5% correlated edges). The graph convolution 

filters were estimated using a 5-degree Chebyshev polynomial (Defferrard et al., 

2016). 

 

In the case of the UK Biobank: 

 For all three DNNs, model ensemble was used to improve final test result: for each 

DNN and each behavior, five models were trained separately. The prediction results 

were then averaged across the five models. All four behavioral measures were z-

normalized based on training data. The loss function for sex prediction was cross 

entropy, i.e., the output layer for sex prediction have 2 nodes (FNN and 

BrainNetCNN) or filters (GCNN). The loss function was MSE for the other three 

measures. The output layer for these three measures have 1 node (FNN and 

BrainNetCNN) or filter (GCNN). Adam (Kingma and Ba, 2015) or SGD were used. 

See details in Tables 2, 3 and 4. 
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 For all DNNs, model was tuned for each behavior separately. Tables 2, 3 and 4 show 

the final DNN structures 

 Final FNN structure is shown in table 2. For FNN, dropout of 0.2/0.3/0.4/0.4 (for 

sex/age/pairs matching/fluid intelligence respectively) was added before each fully-

connected layer. L2 regularization of 0.02 was added for layer 2. Weight decay of 

0.01/0.01/0.001/0.016 (for sex/age/pairs matching/fluid intelligence respectively) 

were applied to the weights of all fully connected layers. 

 Final BrainNetCNN structure is shown in table 3. For BrainNetCNN, dropout of 

0.21/0.6/0.25/0.54 (for sex/age/pairs matching/fluid intelligence respectively) was 

added after the E2E, E2N, and N2G layers. LeakyReLU was replaced by linear 

activation for all four models. 

 Final GCNN structure is shown in table 4. Dropout of 0.3/0.6/0.6/0.7 (for 

sex/age/pairs matching/fluid intelligence respectively) was added for each layer. L2 

regularization of 2e-5/2e-4/2e-4/2e-6 (for sex/age/pairs matching/fluid intelligence 

respectively) was added for layer 1. The nodes of the graph corresponded to subjects. 

Edges were constructed based on Pearson’s correlation between subjects’ vectorized 

RSFC. Thresholding of the graph was tuned separately for each behavior or 

demographic measure. For sex prediction, the top five correlated edges of each node 

were retained. For age, pairs matching and fluid intelligence prediction, the graph was 

thresholded by only retaining edges with top 5% correlation (across the entire graph). 

Furthermore, the top five correlated edges of each node were also retained (even if 

these edges were not among the top 5% correlated edges). The graph convolution 

filters for all four GCNNs were estimated by a 1-degree Chebyshev polynomial 

(Defferrard et al., 2016). 

 

Dataset Predicting Model structure Optimizer 
HCP 58 behaviors 224, 128, 192, 58 SGD 

UK Biobank 

Sex 8, 32, 2 SGD 
Age 8, 8, 1 SGD 
Pairs matching 16, 384, 1 SGD 
Fluid intelligence 32, 32, 1 SGD 

 

Table 2. FNN structure and hyperparameter settings for HCP and UK Biobank. Under 
“Model structure”, the numbers represent the number of nodes at each fully connected layer. 
For example, “256, 96, 256, 58” represents a 4-layer FNN with 256, 96, 256 and 58 nodes.   
 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/473603doi: bioRxiv preprint 

https://doi.org/10.1101/473603
http://creativecommons.org/licenses/by/4.0/


 
 

 

Dataset Predicting Model structure Optimizer 
HCP 58 behaviors 16, 128, 26, 58 SGD 

UK Biobank 

Sex 15, 93, 106, 2 SGD 
Age 32, 92, 24, 1 SGD 
Pairs matching 30, 72, 96, 1 SGD 
Fluid intelligence 37, 40, 34, 1 SGD 

 

Table 3. BrainNetCNN structure and hyperparameter settings for HCP and UK 
Biobank. Under “Model structure”, the numbers represent the number of filters or nodes at 
each layer. For example, “15, 93, 106, 2” represents a BrainNetCNN with 15 filters for the 
E2E layer, 93 filters for the E2N layer, 106 filters (nodes) for the N2G layer and 2 nodes in 
the final fully connected layer. All BrainNetCNNs follow the same layer order: E2E, E2N, 
N2G and then a final fully connected layer.  
 
 

 

Dataset Predicting Model structure Optimizer 
HCP 58 behaviors 256, 58 SGD 

UK Biobank 

Sex 6, 2 Adam 
Age 64, 1 SGD 
Pairs matching 20, 1 Adam 
Fluid intelligence 64, 1 Adam 

 

Table 4. GCNN structure and hyperparameter settings for HCP and UK Biobank. 
Under “Model structure”, the numbers represent the number of filters for each graph 
convolutional layer. For example, “64, 1” represents a 2-layer GCNN with 64 and 1 filters 
respectively.  
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Supplementary Materials 

Description HCP field 

Visual Episodic Memory PicSeq_Unadj 

Cognitive Flexibility (DCCS) CardSort_Unadj 

Inhibition (Flanker Task) Flanker_Unadj 

Fluid Intelligence (PMAT) PMAT24_A_CR 

Vocabulary (Pronunciation) ReadEng_Unadj 

Vocabulary (Picture Matching) PicVocab_Unadj 

Processing Speed ProcSpeed_Unadj 

Delay Discounting DDic_AUC_40K 

Spatial Orientation VSPLOT_TC 

Sustained Attention – Sens. SCPT_SEN 

Sustained Attention – Spec. SCPT_SPEC 

Verbal Episodic Memory IWRD_TOT 

Working Memory (List Sorting) ListSort_Unadj 

Cognitive Status (MMSE) MMSE_Score 

Sleep Quality (PSQI) PSQI_Score 

Walking Endurance Endurance_Unadj 

Walking Speed GaitSpeed_Unadj 

Manual Dexterity Dexterity_Unadj 

Grip Strength Strength_Unadj 

Odor Identification Odor_Unadj 

Pain Interference Survey PainInterf_Tscore 

Taste Intensity Taste_Unadj 

Contrast Sensitivity Mars_Final 

Emotional Face Matching Emotion_Task_Face_Acc 

Arithmetic Language_Task_Math_Avg_Difficulty_Level 

Story Comprehension Language_Task_Story_Avg_Difficulty_Level 

Relational Processing Relational_Task_Acc 

Social Cognition – Random Social_Task_Perc_Random 

Social Cognition – Interaction Social_Task_Perc_TOM 

 
Table S1. Table showing original HCP variable names and corresponding descriptive labels 
used in the manuscript.  
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Description HCP field 

Working Memory (N-back) WM_Task_Acc 

Agreeableness (NEO) NEOFAC_A 

Openness (NEO) NEOFAC_O 

Conscientiousness (NEO) NEOFAC_C 

Neuroticism (NEO) NEOFAC_N 

Extraversion (NEO) NEOFAC_E 

Emot. Recog. – Total ER40_CR 

Emot. Recog. – Angry ER40ANG 

Emot. Recog. – Fear ER40FEAR 

Emot. Recog. – Happy ER40HAP 

Emot. Recog. - Neutral ER40NOE 

Emot. Recog. – Sad ER40SAD 

Anger – Affect AngAffect_Unadj 

Anger – Hostility AngHostil_Unadj 

Anger – Aggression AngAggr_Unadj 

Fear – Affect FearAffect_Unadj 

Fear – Somatic Arousal FearSomat_Unadj 

Sadness Sadness_Unadj 

Life Satisfaction LifeSatisf_Unadj 

Meaning & Purpose MeanPurp_Unadj 

Positive Affect PosAffect_Unadj 

Friendship Friendship_Unadj 

Loneliness Loneliness_Unadj 

Perceived Hostility PercHostil_Unadj 

Perceived Rejection PercReject_Unadj 

Emotional Support EmotSupp_Unadj 

Instrument Support InstruSupp_Unadj 

Perceived Stress PercStress_Unadj 

Self-Efficacy SelfEff_Unadj 

 

Table S1 (cont.). Table showing original HCP variable names and corresponding descriptive 
labels used in the manuscript. 
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Figure S1. Prediction accuracy (correlation) of 22 HCP measures averaged across 20 
test folds. Correlation was computed for each test fold and each behavior. Bars show mean 
across test folds. Error bars show standard errors. 
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Figure S2. Prediction accuracy (correlation) of 23 HCP cognitive measures averaged 
across 20 test folds. Correlation was computed for each test fold and each behavior. Bars 
show mean across test folds. Error bars show standard errors. 
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