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Abstract 

The speed of voluntary reaction to an external stimulus varies substantially between individuals 

and is impaired in ageing. However, the neuroanatomical origins of inter-individual variability in 

reaction time (RT) remain largely unknown. Here, we combined a cognitive model of RT and a 

biophysical compartmental model of diffusion-weighted MRI (DWI) to characterize the 

relationship between RT and microstructure of the corticospinal tract (CST) and the optic radiation 

(OR), the primary motor output and visual input pathways associated with visual-motor responses. 

We fitted an accumulator model of RT to 46 female participants’ behavioral performance in a 

simple reaction time task. The non-decision time parameter (Ter) derived from the model was used 

to account for the latencies of stimulus encoding and action initiation. From multi-shell DWI data, 

we quantified tissue microstructure of the CST and OR with the neurite orientation dispersion and 

density imaging (NODDI) model as well as the conventional diffusion tensor imaging (DTI) model. 

Using novel skeletonization and segmentation approaches, we showed that DWI-based 

microstructure metrics varied substantially along CST and OR. The Ter of individual participants 

was negatively correlated with the NODDI measure of the neurite density in the bilateral superior 

CST. At an uncorrected threshold, the Ter positively correlated with the DTI measure of fractional 

anisotropy in an anterior segment of left OR. Further, we found no significant correlation between 

the microstructural measures and mean RT. Thus, our findings suggest a link between the inter-

individual variability of sensorimotor speed and selective microstructural properties in white 

matter tracts. 
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Introduction 

Voluntary response to external stimuli is a hallmark of cognitive control that encompasses 

perceptual, decision and motor processes. The reaction time (RT), measured as the latency between 

a preparatory stimulus and a pre-defined action, varies substantially across individuals (Jensen, 

2006), changes during development (Dykiert et al., 2012), ageing (Woods et al., 2015) and 

neurodegeneration (Gorus et al., 2008), and have implications for mortality (Der and Deary, 2018). 

RT has also been identified as a marker of mental processing speed (Ho et al., 1988; Sheppard and 

Vernon, 2008), a heritable trait relating to intelligence (Vernon, 1989; Rabbitt, 1996). 

Individual differences in RT have been regarded as reflections of a “primitive” neurophysiological 

characteristic (Rabbitt et al., 2001) , and the potential of RT as a behavioral phenotype requires to 

understand its microstructural underpinnings (Turken et al., 2008; Penke et al., 2010). In humans, 

the diffusion tensor imaging (DTI) is commonly used to estimate tissue microstructure from 

diffusion-weighted MRI (DWI) (Basser and Pierpaoli, 1996), which is sensitive to the degree of 

anisotropic water diffusion due to cellular structures. The DTI measures of several white matter 

pathways have been shown to correlate with RT, both in adults (Tuch et al., 2005; Turken et al., 

2008; Konrad et al., 2009; Mayer and Vuong, 2014) and children (Madsen et al., 2011; Tamnes et 

al., 2012; Scantlebury et al., 2014), possibly owing to the difference in experiments and cohorts 

across studies. One hypothesis of these structural-functional correlations is that the inter-individual 

variability in RT is due to variations in tissue microstructure, such as axon diameter or myelination 

that affect the nerve conduction velocity (Waxman, 1980; Fields, 2008; Seidl, 2014; Buskey et al., 

2017) and in turn affect RT (Chevalier et al., 2015; Chopra et al., 2018).  
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However, research on the relationship between RT and DTI raises two unresolved issues. First, 

RT, even in simple behavioral tasks, is a hybrid measure of multiple intermixed cognitive 

processes (Gold and Shadlen, 2007; Forstmann et al., 2016; Ratcliff et al., 2016). Second, the 

conventional DTI model cannot distinguish microstructural properties between intra- and extra-

cellular space, because it assumes a single tissue compartment (Beaulieu, 2002).  

This study addressed these questions by combining a cognitive model of RT and a biophysical 

compartment model of the DWI signal. We used the cognitive model (Brown and Heathcote, 2008) 

to decompose a non-decision time measure from individual participant’s RT distribution in a 

simple reaction time task, which accounts for the latencies of stimulus encoding and action 

initiation (Lo and Wang, 2006; Donkin et al., 2011). DWI data was analyzed with the Neurite 

Orientation Dispersion and Density Imaging (NODDI) model (Zhang et al., 2012a). NODDI 

estimates separately the isotropic and anisotropic diffusion in multiple compartments, allowing 

two specific measures of tissue microstructure: the neurite density index (NDI) as the intra-cellular 

volume fraction and the orientation dispersion index (ODI) explaining the bending or fanning of 

axon orientations. 

Furthermore, using probabilistic tractography and volume skeletonization, we developed a new 

method to quantify the changes of microstructural metrics along white matter tracts. We focused 

on two a priori tracts according to the functional anatomy of voluntary movement and visual 

processing that are relevant to the simple reaction time task. The first tract was the corticospinal 

tract (CST), a major output pathway carrying motor impulses from the giant pyramidal cells in the 

motor area to the midbrain, vital for voluntary movements (Bortoff and Strick, 1993; Lemon, 2008). 

The second was the optic radiation (OR), the prominent white matter relay in the visual system, 
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transmitting information from the lateral geniculate nucleus to V1 (Garey and Powell, 1971; 

Ebeling and Reulen, 1988).  

Our results demonstrated that microstructural metrics varied substantially along CST and OR. 

Higher neurite density in bilateral superior CST was associated with faster non-decision time 

across participants, but not with the mean RT. These findings suggested the existence of 

microstructural-specific influence of inter-individual variability in subcomponents of the action 

decision process.  

 

Materials and Methods 

Participants 

Forty-six healthy young adults participated in the study (all females, age range 19-24 years; mean 

age 20.8 years) following written informed consent. Participants had normal or corrected-to-

normal vision, and none reported a history of neurological or psychiatric illness. This study was 

approved by the Cardiff University School of Psychology Research Ethics Committee. 

 

Experimental design 

Participants performed a visually paced simple reaction time (SRT) task adapted from previous 

studies (Zhang et al., 2012b; Shafto et al., 2014). The task was conducted in a behavioral testing 

room. The participants were presented with an image of a right hand on a 24-inch LED monitor 

with 1920×1080 screen resolution (ASUS VG248QE) and pressed the spacebar on the keyboard 

button with their right index finger. Four transparent circles superimposed above the four fingers 
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in the hand image to serve as task cues (Fig. 1A). On each trial, the task cue above the index finger 

in the image turned to an opaque circle, indicating the start of the trial, and the participants were 

instructed to respond as quickly as possible. After participants’ response or after a maximum of 3 

seconds response window, the opaque task cue extinguished and changed back to a transparent 

circle. Visual stimuli were presented by using Visual Basic 5.0. 

After a short practice, the participants performed 50 trials of the SRT task. To discourage proactive 

response strategies, the inter-trial interval randomly varied across trials with a skewed distribution 

(minimum 1800 ms, maximum 6800 ms, and mean 3700 ms). Reaction time (RT) was measured 

as the latency between task cue onset and button press. Trials with RT shorter than 150 ms or 

larger than 1500 ms were excluded from further analysis (0.65 % of the total number of trials 

across all participants). Mean RT was then calculated as the behavioral dependent measure for 

each participant. 

 

Accumulator model of simple actions and parameter estimation 

We further analyzed the RT data using a cognitive model of RT, the linear ballistic accumulator 

(LBA) model (Brown and Heathcote, 2008). The LBA model is a simplified implementation of a 

large family of sequential sampling models (Ratcliff and Smith, 2004; Bogacz et al., 2006; Gold 

and Shadlen, 2007; Zhang, 2012) and has been used to study the cognitive processes underlying 

decision making (Ho et al., 2009; Forstmann et al., 2011) and action selection (Zhang et al., 2012b).  

For the SRT task with one possible action, we assumed that the process is governed by a linear 

evidence accumulation process (Fig. 1B), from a randomly sampled starting point to a decision 

threshold B (see also (Ratcliff and Van Dongen, 2011) and (Schurger et al., 2012) for similar 
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approaches). The speed of evidence accumulation varies across trials as a Gaussian random 

variable with a mean µ and standard deviation σ. The model-predicted RT is given by the duration 

of the accumulation process to reach a decision threshold B, plus a constant non-decision time Ter. 

The non-decision time Ter does not relate to evidence accumulation, but accounts for the latency 

of other processes including motor response initiation and stimulus encoding (Gold and Shadlen, 

2007; Brown and Heathcote, 2008). 

We fitted the LBA model to the RT distribution from the SRT task using a minimization procedure 

validated in previous studies of RT modelling (Bogacz and Cohen, 2004; Bogacz et al., 2006; 

Boucher et al., 2007; Dean et al., 2011; Zhang et al., 2012b, 2016). For each participant, the 

observed RT distribution was binned into the 0.1, 0.3, 0.5, 0.7, and 0.9 quantiles (Ratcliff and 

Smith, 2004), and the model prediction of the five RT quantiles were estimated from 100,000 

numerical simulations. The starting point variability was fixed at 0.5 as the scaling parameter 

(Brown and Heathcote, 2008; Donkin et al., 2009). The model parameters (Ter, B, µ, and σ) were 

determined by minimizing the likelihood ratio chi-square statistic between the observed and 

predicted RT distributions using the Simplex search algorithm (Nelder and Mead, 1965). To 

optimize the chance of locating the optimal model parameters, the minimization procedure started 

with a set of initial parameter values. Each initial parameter set was chosen from 100 randomly 

generated values that produced the best fit. The entire minimization procedure was then repeated 

20 iterations to identify the best-fitting model parameters. The two time-dependent measures, the 

non-decision time Ter and the mean RT, were then associated with microstructural metrics from 

diffusion MRI. 
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Figure 1. (A) Experimental paradigm of the simple reaction time (SRT) task. Participants were 

instructed to respond when a filled circle appeared over the index finger in the hand picture. (B) 

Exemplar time course of the linear ballistic accumulator (LBA) model. The LBA assumes that 

accumulated evidence for an action decision is accumulated linearly over time, and a decision is 

made once the accumulated evidence reaches a threshold. In each trial, the starting point of the 

accumulation process is sampled from a uniform distribution. The rate of accumulation is sampled 

from a Gaussian. The model predicted RT includes the duration of the accumulation process and 

a non-decision time (Ter), which accounts for the latencies of non-decision processes such as 

stimulus encoding and action initiation which are shown as shaded area. (C) Violin plots (mean 

and density) of the mean RT and Ter across participants. (D) The fit of the LBA model to RT 

quantiles in the SRT task. Error bars denote the 95% confidence intervals. 
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MRI data acquisition 

Whole-brain two-shell DWI data were acquired using a Siemens 3T Prisma MRI scanner and a 

32-channel receiver head coil (Siemens Medical Systems, Germany) at the Cardiff University 

Brain Research Imaging Centre (CUBRIC) with single-shot spin-echo echo-planar imaging pulse 

sequence (echo time 67 ms, repetition time 9400 ms, field of view 256×256 mm, acquisition matrix 

size 128×128, voxel size 2×2×2 mm). Diffusion sensitizing gradients were applied in 30 isotropic 

directions at a b-value of 1200 s/mm2 and in 60 isotropic directions at a b-value of 2400 s/mm2. 

Six images with no diffusion weighting (b = 0 s/mm2) were also acquired. Participants also 

underwent high-resolution T1-weighted magnetization prepared rapid gradient echo scanning 

(MPRAGE: echo time 3.06 ms; repetition time 2250 ms sequence, flip angle 9°, field of view=256 

× 256 mm, acquisition matrix 256 × 256, voxel size 1 × 1 × 1 mm).  

 

DWI data processing and modelling 

DWI data were converted from DICOM to NIfTI format using dcm2nii 

(www.nitrc.org/projects/dcm2nii). The images were skull-stripped, corrected for eddy currents 

and head motion using FSL (FSL 5.0.9 www.fmrib.ox.ac.uk/fsl). DWI data from both shells were 

registered to the first non-diffusion (b = 0 s/mm2) volume. 

After pre-processing, diffusion tensors were fitted to the DWI data using DTIFIT in FSL for each 

shell (b=1200 s/mm2 and b=2400 s/mm2). Local fiber orientation distributions in each voxel were 

estimated by using the ball and stick model for multiple shells (Behrens et al., 2003; Jbabdi et al., 

2012). For each voxel, we calculated two diffusion tensor imaging (DTI) measures, fractional 

anisotropy (FA) and mean diffusivity (MD) by using the b=1200 s/mm2 shell data (Fig. 2A). FA 
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is a scalar ranging from 0 to 1 that quantifies the coherence of water diffusion, with 0 indicating 

low coherence and 1 indicating high coherence, while MD measures the average rate of water 

diffusion, with higher rates indicating fewer boundaries for water diffusion (Basser and Pierpaoli, 

1996).  

The same pre-processed DWI data was fitted to the Neurite Orientation Dispersion and Density 

Imaging (NODDI) model using the NODDI toolbox (www.nitrc.org/projects/noddi_toolbox). The 

NODDI model contains three tissue compartments: intra-cellular space, extra-cellular space and 

cerebrospinal fluid (CSF). The intra-cellular estimation uses the stick model to capture the 

restricted diffusion perpendicular to neurites and unhindered diffusion along them. The extra-

cellular compartment models the hindered diffusion of water molecules by Gaussian anisotropic 

diffusion with parallel and perpendicular diffusivities. The CSF compartment is modelled as 

isotropic Gaussian diffusion to minimize the confounding effect of CSF contamination (Zhang et 

al., 2012a). From the model-derived intra- and extra-cellular compartments, we calculated two 

voxel-wise NODDI measures, Neurite Density Index (NDI) and Orientation Dispersion Index 

(ODI) (Fig. 2A). NDI represents the volume fraction of the intracellular compartment that contains 

the axons and dendrites, and ODI quantifies the angular variation in neurite orientation. 

The high-resolution T1-weighted MPRAGE image was linearly co-registered to the native DWI 

space using mutual information with 6 degrees of freedom. The co-registered MPRAGE image 

was segmented and normalized to the Montreal Neurological Institute (MNI) standard template by 

linear and non-linear deformations using FSL. The forward and inverse deformation fields between 

the native DWI space and the MNI template space were used for subsequent tractography and 

along-tract analysis. 
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Tractography 

For each participant, we conducted probabilistic tractography to reconstruct bilateral corticospinal 

tracts (CST) and optic radiation (OR) in the individual’s native space using FMRIB’s Diffusion 

Toolbox (Behrens et al., 2007). For both tracts, we used multiple regions of interest (ROI) from 

the Jülich histological atlas (Bürgel et al., 2006) and John Hopkins University (JHU) DTI-based 

white matter atlases (Hua et al., 2008) to define seed masks, target masks, waypoints and exclusion 

masks.  

Each tract was reconstructed by sampling 5000 streamlines per voxel with 0.5 mm step length, 0.2 

curvature threshold, 0.1 fiber threshold and 3 mm minimum streamline length. The probabilistic 

tractography procedure generates an image in which the intensity of each voxel is the ratio of 

number of streamlines that pass through that voxel over the total number of streamlines generated 

in the seed voxels (Fig. 2B). We thresholded the probabilistic tractography outputs at 5 x 10-6 to 

discard false negatives (Rilling et al., 2008).  

For the CST, we followed a previous method (Zhang et al., 2010) to use the ROIs from the JHU 

atlases. The tractography was seeded from the cerebral peduncle (CP) and extended through the 

posterior limb of interior capsule (PLIC) and superior corona radiata (SCR). The target mask was 

the intersection of the precentral gyrus with the individual grey matter images. The target mask 

was dilated with a 2mm disk-shaped kernel using the Image Processing Toolbox in Matlab to 

account for anatomical variability across individuals (Clatworthy et al., 2010). Exclusion masks 

included the contralateral hemisphere, anterior limb of the internal capsule, the retrolenticular part 

of the internal capsule, the pontine crossing tract, the inferior and superior cerebellar peduncle.  
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For the OR, the tractography was seeded from the lateral geniculate nucleus (LGN) in each 

hemisphere, and a central slice of OR defined in the Jülich histological atlas was used as a waypoint 

mask to avoid the fibers that transverse Meyer’s loop (Clatworthy et al., 2010). The target mask 

was the primary visual cortex, jointly defined by the Jülich histological atlas and the individual 

grey matter mask from MPRAGE segmentation. This target mask was further dilated with a 2mm 

disk-shaped kernel to account for the individual anatomical variability. Exclusion masks included 

the anterior boundary of the OR in the Jülich atlas and the contralateral hemisphere (Clatworthy 

et al., 2010).  

After tractography, we generated a group-based representation of each tract in the MNI space 

across all participants (Fig. 2C, Fig. 3A and 4A). The individual thresholded tractography results 

were binarized following the transformation to the MNI space by applying the forward 

deformation field from MPRAGE normalization. A group-based tract image was calculated from 

the union of all participants’ normalized tracts.  

 

Tract skeletonization 

For both CST and OR, we generated a skeletal profile of the group tract images using in-house 

scripts and the volume skeleton toolbox in Matlab (Fig. 2D, see also (Cornea et al., 2007)). First, 

the group tract image was binarized. The isolated voxels with no second order neighbors were 

removed. Holes and discontinuities in the tract image volume were removed by dilating the whole 

tract volume with a 2mm disk-shaped kernel. Second, we applied the thinning algorithm to 

estimate the skeleton of the cleaned tract images (Cornea et al., 2007). The thinning algorithm 

estimates the curve-skeleton of a three-dimensional object by iteratively removing simple voxels 
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from the surface boundary. Simple voxels are defined as the ones whose removal would not change 

the topology of the volume. This operation was repeated until no simple voxels are remained. To 

find the main curvature of the tract, branches along the main trunk of the skeleton were removed. 

A cubic spline interpolation was fitted to the principal trunk of the skeleton to obtain a smoothed 

three-dimensional skeleton of the tract. Third, similar to previous approaches (Yeatman et al., 

2012), we focused on the central portion of the tracts, where fiber bundle morphology is most 

consistent across individuals. Therefore, we clipped the group-based CST image and the skeleton 

to the portion between the cerebral peduncle and the superior corona radiata, and we clipped the 

group-based OR image and the skeleton to the portion closer to anterior regions of V1 and posterior 

regions of LGN. 

 

Microstructural measures along tracts 

To quantify microstructural metrics and their changes along tracts, we divided the spline 

interpolation of each group-based tract skeleton into 30 segments with equal length and 20% 

overlap between adjacent segments, although our main results were not dependent on the exact 

number of segments. All the voxels in the group-based tract image were assigned to the 

corresponding segment based on the closest Euclidean distance. This procedure was repeated for 

all the four tracts (CST and OR in the left and right hemispheres), resulting in 30 equidistant sub-

volumes along the principal skeleton of each group-based tract image (Fig. 2E). Because adjacent 

segments were overlapping, the labelled sub-volumes also had overlapping voxels. This 

interpolation ensured the along tract microstructural measures were less affected by segment 

boundaries (Yeatman et al., 2012). 
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All the sub-volumes were transformed back to the individual’s native space to reconstruct 

participant specific sub-volumes along tracts. For each participant, a voxel in a sub-volume was 

included in the calculation of individual microstructural metrics only if: (1) it was in the individual 

white matter mask from MPRAGE segmentation; (2) it had a FA value greater than 0.2 from DTI 

modelling; and (3) it had a suprathreshold probability of connection from the tractography results. 

The combination of group-level segments and individual-level constraints balances the 

consistency and variability across participants when making inferences along tracts. 

For each participant, the four microstructural metrics (NDI, ODI and FA, MD) at each sub-volume 

of each tract were calculated as a weighted average of the metrics from all voxels within the sub-

volume M: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑀𝑒𝑡𝑟𝑖𝑐 ൌ
1

∑ 𝑃ሺ𝑣ሻ௩∈ெ
෍ 𝑃ሺ𝑣ሻ ∙ 𝑀𝑒𝑡𝑟𝑖𝑐
௩∈ெ

 

where the weight P(v) for voxel v is the normalized probability of connection from tractography, 

given by: 

𝑃ሺ𝑣ሻ ൌ  
𝑇ሺ𝑣ሻ

∑ 𝑇ሺ𝑢ሻ௎
௨ୀଵ

 

where U is the total number of the voxels in the brain accounted for tractography and T(v) is the 

probability of connection. 
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Figure 2. Analysis pipeline of along tract microstructural metrics. (A) After pre-processing, whole 

brain voxel-wise NODDI (NDI and ODI) and DTI (FA and MD) metrics were calculated from the 

two-shell DWI data. (B) Probabilistic tractography of CST and OR were calculated and 

thresholded in individual participant’s native space. (C) Individual tractography results of CST 

and OR were normalized to the MNI space and united to obtain group-based tract images. The 

voxel intensity in the group-based tract images denotes the proportion of overlapping across 
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participants. (D) Isolated voxels (denoted as red) with no second order neighbors were removed 

from the group-based tract volumes. (E) Three-dimensional group-based tract volume image was 

skeletonized using thinning algorithms. Subsidiary branches of the skeleton were trimmed. (F) 

The main skeleton was smoothed with cubic spline interpolation. The central portion of the group-

based tract volume (between the two blue planes shown in C) and the skeleton were clipped for 

further processing. (G) The skeletons of the CST and OR were divided into 30 segments with 

equal lengths and 20% overlap between adjacent segments. Voxels in each group-based tract 

volume were assigned to the nearest segment based on Euclidean distance, resulting in 30 

equidistant sub-volumes along the principal skeleton. Each sub-volume was transformed back to 

the individual’s native space to calculate microstructural metrics along tracts. 

 

Statistical analysis  

To examine the relationships between RT and Ter, we used both frequentist and Bayesian Pearson’s 

correlation test across participants (JASP team, 2018). We used repeated-measures ANOVA with 

two factors of track segments and hemispheres to examine the change of microstructural measures 

along tracts and across hemispheres. Greenhouse-Geisser correction was applied where Mauchly's 

Sphericity test indicated that the assumption of sphericity was violated. 

For each sub-volume along a tract, we used general linear models to associate the weighted average 

of microstructural metrics to individual mean RT and Ter from the behavioral data. Because of the 

age-related changes in DWI signal (Yeatman et al., 2014; Cox et al., 2016) , we included age as a 

nuisance variable in all the models. To correct for multiple comparisons from the 30 overlapping 

segments along each tract, we used threshold-free cluster enhancement in FSL with 10,000 
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permutations to control family-wise error in each tract and microstructural metric (Smith and 

Nichols, 2009; Winkler et al., 2014). 

 

Software Accessibility 

The algorithms for tract skeletonization, tract segmentation and other analyses used in the current 

study was open-source and freely available online (https://github.com/esinkarahan/ATA). 

 

Results 

We examined whether individual-differences in brain microstructure would be associated with the 

reaction time of simple motor actions. Participants were required to perform a right-hand simple 

reaction time (SRT) task (Fig. 1A) to measure their mean RT (Fig. 1C). Next, we used the LBA 

model (Brown and Heathcote, 2008) to quantify the non-decision time Ter during simple actions 

(Fig. 1B), a model-derived parameter to account for the latency of motor initiation and stimulus 

encoding (Lo and Wang, 2006; Cavanagh et al., 2011; Donkin et al., 2011). The two behavioral 

measures were then associated with microstructural metrics from NODDI and DTI models in the 

primary motor and visual pathways: the corticospinal tract (CST) and optical radiation (OR). 

 

Behavioral results 

The mean RT across 46 participants was 363.02 ± 30.832 ms (S.D.) and the mean Ter was 249.238 

± 48.227 ms (S.D.) (Fig. 1C). The LBA model provided an adequate fit to the observed RT 

distributions (Fig. 1D). We used frequentist and Bayesian Pearson’s correlation to examine the 
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relations between behavioral measures. There was no significant correlation between mean RT 

and Ter (R = 0.114, p = 0.45, 95% CI = [-0.182, 0.392], BF10 = 0.243), and no correlations between 

the behavioral measures and age (RT: R = 0.074, p = 0.624, 95% CI = [-0.221, 0.357], BF10 = 

0.206; Ter: R = 0.062, p = 0.683, 95% CI = [-0.233, 0.346], BF10 = 0.199).  

Tractography and along-tract microstructural metrics  

We used a ROI-based probabilistic tractography approach to reconstruct four tracts (left CST, right 

CST, left OR and right OR) in the individual’s native space and obtained group-based tract images 

after normalizing individual tracts to the MNI space. From the group-based tract images (Fig. 3A), 

the inferior CST close to the brainstem showed high consistency across participants and the 

superior CST had large individual variability when it approaches the cortex. Similarly, there was 

a large tract variability where the OR approaches V1 (Fig. 4A).  

We calculated the weighted NODDI (ODI, NDI) and weighted DTI (FA, MD) metrics from the 

30 segments of each tract, equidistant along the tract’s principal skeleton (Fig. 3C and 4C). A 

repeated-measures ANOVA on microstructural metrics showed significant main effects of 

segments in CST (NDI: F(5.04, 226.65) = 20.82, p = 3.44E-17; ODI: F(4.18,188.28) = 550.94, p 

= 3.01E-104; FA: F(5.47,246.29) = 730.35, p = 1.408E-149; MD: F(5.14,231.08) = 168.80, p = 

5.48E-76, Greenhouse-Geisser corrected) and OR (NDI: F(8.01,360.37) = 64.13, p = 9.99 E-65; 

ODI: F(8.08,363.42) = 126.63, p = 1.1E-100; FA: F(8.72,392.55) = 71.62, p=1.01E-245; MD: 

F(11.65,524.08) = 32.38, p = 9.75E-132). 

In the CST, there was significant hemispheric difference in NDI (F(1,45) = 18.35, p = 0.000095) 

and MD (F(1,45) = 17, p = 0.00016) and the hemispheric difference in ODI and FA did not reach 

significance (ODI: F(1,45) = 3.81, p = 0.057; FA: F(1,45) = 1.85, p = 0.18). In the OR, there was 
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significant hemispheric difference in all metrics (NDI: F(1,45) = 61.18, p=6.27E-10; ODI: F(1,45) 

= 34.89, p=4.29E-7; FA: F(1,45)=15.22, p=.00032; MD: F(1,45)=6.7, p=0.013). 

These main effects were qualified by significant interactions between segment locations and 

hemispheres in CST (NDI: F(6.04,271.79) = 3.569, p = 0.002; ODI: F(6.43,289.33) = 20.13, p = 

1.15E-20; FA: F(8.78,395.14) = 23.41, p = 1.98E-31; MD: F(9.15,411.59) = 4.4, p = 0.000014) 

and OR (NDI: F(9.55,429.75) = 17.862, p = 4.134E-75; ODI: F(10.39,467.53) = 9.72, p = 2.995E-

15; FA: F(9.43,424.34) = 3.8, p = 0.000095; MD: F(11.43,514.51) = 4.76, p = 3.59E-7). Therefore, 

there were substantial variations in microstructural metrics along CST and OR.  

 

 

Figure 3. (A) Group-based image of the corticospinal tract (CST). The voxel intensity denotes the 

proportion of overlapping across participants. (B) Visualization of the CST with the skeleton and 

the approximate locations of segments 1, 10, 20 and 30. (C) The means of NDI, ODI, MD and FA 
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profiles of the left and right CST across participants. Shaded areas represent 95% CI. The segments 

1 to 30 were from Cerebral Peduncle to Superior Corona Radiata as in B.  

 

Figure 4. (A) Group-based image of the optic radiation (OR). The voxel intensity denotes the 

proportion of overlapping across participants. (B) Visualization of the OR with the skeleton and 

the approximate locations of segments 1, 10, 20 and 30. (C) The means of NDI, ODI, MD and FA 

profiles of the left and right OR across participants. Shaded areas represent 95% CI. The segments 

1 to 30 were from V1 to posterior lateral geniculate nucleus as in B. 

 

We examined the correlations between the microstructural metrics along tract segments (Fig. 5). 

Threshold-free cluster enhancement (TFCE) with 10,000 permutations was used to correct 

multiple comparisons for the number of segments along tracts. The NODDI measure of NDI was 

positively correlated with ODI in superior segments of the CST and anterior segments of OR, and 
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ODI was negatively correlated with FA and MD in most of the segments, consistent with previous 

results (Zhang et al., 2012a). FA and MD showed both positive and negative correlations in some 

segments, which may be due to changes in local tract geometry along the tracts.  

 

 

Figure 5. Correlation between NODDI and DTI metrics along the CST (A) and OR (B) segments 

across participants. As in Figs. 3B and 4B, the anatomical locations of the segments were from 

inferior to superior for CST, and posterior to anterior for OR. Positive and negative Pearson’s 

correlation coefficients are color-coded separately. Bars at right of each graph indicate segments 

with significant correlations (p<0.05, 10,000 permutations) after threshold-free cluster 

enhancement correction for the number of segments. 
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Correlating response speed measures with tract microstructure 

We used general linear models to examine the associations between response speed measures (SRT 

and Ter) and microstructure metrics in all tract segments, including age as a nuisance variable. 

Threshold-free cluster enhancement (TFCE) with 10,000 permutations was used to correct 

multiple comparisons for the number of segments along tracts. 

For the CST (Fig. 6A), faster Ter was associated with higher NDI values in the superior segments 

of both left (segments 18-30, p<0.05, TFCE corrected) and right tracts (segments 15-28, p<0.05, 

TFCE corrected). The segments with significant correlations comprised the posterior limb of 

interior capsule and the superior corona radiata that connect to the precentral gyrus (Fig. 7A). No 

other microstructural metrics of the CST had significant correlation with the Ter (across all 

segments of the left CST: p>0.331; right CST: p>0.116).  

For the OR (Fig. 6A), there was no significant correlation between Ter and any microstructural 

metrics after correction of multiple comparison (across all segments of the left OR: p>0.075; right 

OR: p>0.24). At an uncorrected threshold of p<0.01, Ter was positively correlated with the FA in 

segment 27 of the left OR.  

There was no significant correlation between mean RT and microstructural metrics in CST (across 

all segments of the left CST: p>0.425; right CST: p>0.31) or OR (across all segments of the left 

OR: p>0.108; right OR: p>0.479) (Fig 6B).  

To examine further in a post-hoc exploratory analysis whether the significant Ter - NDI 

associations in CST extended to the entire tract, we calculated the NDI of the whole CST and its 

partial correlations with the Ter, controlling for the effect of age. There were significant negative 
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correlations between the Ter and the NDI values of bilateral CST (Fig. 7B; left CST: R = -0.390, p 

= 0.008, 95% CI = [-0.582, -0.157], BF10 = 5.118; right CST: R = -0.341, p = 0.022, 95% CI = [-

0.544, -0.101], BF10 = 2.097). 

 

 

Figure 6. Standardized linear regression coefficients between microstructural metrics and Ter (A) 

and mean RT (B). the behavioral parameters. The segments with significant associations after 

threshold-free cluster enhancement correction (p<0.05, 10,000 permutations) are presented with 

increased line thickness.  
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Figure 7. (A) CST segments that exhibited a significant negative NDI-Ter correlation are 

highlighted (in blue) over the group-based tract volume. (B) Correlation between the Ter and the 

NDI from the entire left (blue) and right (red) CST. Each data point represents an individual 

participant. Shaded areas represent the 95% confidence intervals.  
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Discussion 

By combining cognitive and biophysical models with novel along-tract analyses in healthy adults, 

we found that the neurite density index (NDI) of superior segments of bilateral CST negatively 

correlated with the non-decision time (Ter), a model-derived component of RT that represents the 

duration of non-decision processes in simple actions (Lo and Wang, 2006; Cavanagh et al., 2011; 

Donkin et al., 2011). At an uncorrected threshold, Ter positively correlated with the FA in an 

anterior segment of the left OR. Together, our findings provide new insights into how 

microstructural properties in white matter pathways contributed to inter-individual differences in 

response speed in young adults. 

The compartmental model of NODDI quantifies intracellular neurite density separately from 

orientation dispersion (Zhang et al., 2012a), which are otherwise indistinguishable in standard DTI 

measures (e.g., FA). The specific tissue property measures offered by NODDI are sensitive to 

microstructural changes in previous studies of brain development (Kunz et al., 2014; Chang et al., 

2015; Kodiweera et al., 2016; Genc et al., 2018), psychosis (Rae et al., 2017) and 

neurodegeneration (Colgan et al., 2016; Slattery et al., 2017). We demonstrated that faster non-

decision time was associated with higher NODDI-derived neurite density index in the superior 

segments of bilateral CST, including a part of the superior corona radiata and its connections to 

the precentral gyrus. This region had a large dispersion of fiber orientation, as indicated by the 

large ODI values (segments 14-30, Fig. 3C) and positive correlation between ODI and NDI metrics 

(segments 23-30 in left CST and segments 25-30 in right CST, Fig. 5A). The significant correlation 

observed in this region may relate to somatotopic organization of the CST (Hong et al., 2010; Seo 

et al., 2012) and distal (finger) movements used in the task, which needs to be confirmed in future 

studies combining functional localizers and tractography (Dalamagkas et al., 2018). 
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In humans, neurite density estimates from diffusion MRI correlate strongly with cortical myelin 

content (Fukutomi et al., 2018) and are sensitive to demyelination disorders such as multiple 

sclerosis (Grussu et al., 2017; Schneider, 2017). In rodents, neurite density estimates have a good 

agreement with the intensity of myelin stain under light microscopy (Jespersen et al., 2010). 

Therefore, although the NDI does not distinguish between myelin and axonal volume fraction 

(Jelescu et al., 2015; Stikov et al., 2015), the negative Ter-NDI correlation in the current study 

supports the hypothesis that participants with faster motor speed have thicker myelin sheaths or 

axonal diameter in the CST, which in turn results in faster nerve conduction velocity (Waxman, 

1980; Fields, 2008; Seidl, 2014; Buskey et al., 2017).  

In the left OR, the positive correlation between FA and Ter did not survive the correction for 

multiple comparisons. Nevertheless, previous studies using a voxel-wise approach reported similar 

associations between FA and choice RT in OR (Tuch et al., 2005). The SRT task in the current 

study may not be sensitive to the inter-individual variability in the visual processing pathway, as 

suggested by the lack of change of early visual event-related potential in the SRT task compared 

with a choice RT task (Mangun and Hillyard, 1991).  

Our study provides new methods for studying brain, behavior and cognition relationships. First, 

we used microstructural measures weighted by connection probability and along tract analysis 

based on volumetric skeletonization and segmentation. Similar to previous studies (Yeatman et al., 

2012), we showed significant variations in all DTI and NODDI measures along CST and OR. 

These variations may be due to changes in microscopic tissue properties (Murray and Coulter, 

1981), local tract geometry, or neighboring environments such as partial volumes and crossing 

fibers. More importantly, correlations with behavioral measures were observed only in a portion 

along the tracts, confirming the needs to take into account microstructural variations along tracts 
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(Yeatman et al., 2014). Several methods have previously been proposed for characterizing 

microstructural metrics along tracts, including medial axis representations (Yushkevich et al., 2008; 

Cheng et al., 2012), b-spline resampling of streamlines (Colby et al., 2012), arc length matching 

to prototype fibers (O’Donnell et al., 2009) and centroid fibers based on the minimum (Wang et 

al., 2016) or mean (Yeatman et al., 2012) distance of fibers within a tract. 

The current study co-registered individual participant’s tractography results to a template space 

and generated group-level tract probability maps (Hua et al., 2008), from which the tract skeleton 

and equidistant segments were calculated for subsequent along tract analysis. In both CST and OR, 

voxels close to the tract skeleton had high tract probabilities in the group maps (Fig. 3A and 4A), 

suggesting a good agreement across participants. This approach allows reduction of the noise from 

individual tractography and obtain representative volumetric tract profiles. Nevertheless, 

normalization errors and variances of tract geometries across participants may hamper the 

precision of inference at the individual level. To address this issue, we transformed segments along 

the tract skeleton back to the native space and accounted for individual heterogeneity using masks 

from individual tissue probability and tractography. Furthermore, in contrast to simply averaging 

across voxels, we capitalized on the connection distributions from probabilistic tractography to 

downweight the contributions from voxels with high noise or low certainty in the calculation of 

microstructural measures (Olvet et al., 2016). As a result, our method combined group-level along 

tract profiling as well as individual-level fiber tracking.  

Our automated analysis pipeline can be applied to other tracts and suit to larger datasets. We note 

that, like other methods for along tract analysis, further tests are needed to ensure the robustness 

in smaller tracts with more substantial variability than demonstrated here, which beyond the scope 
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of the current study. To facilitate future research, we have made our analysis scripts open source 

and freely available. 

Second, our study highlighted the benefits of computational modelling of behavioral data 

(Forstmann et al., 2016). The LBA model decomposed RT distributions into the duration of an 

evidence accumulation process (Gold and Shadlen, 2007) and non-decision time Ter. Individual 

differences in Ter are likely subject to influences at multiple processing levels. Along CST and OR, 

we found that microstructural metrics correlated with the Ter but not mean RT. Considering the 

predominate roles of these tracts in transmitting motor and visual information, our results provide 

anatomical evidence to support the common assumption that the Ter includes motor execution and 

visual encoding latencies. The Ter is a unitary estimate and hence cannot distinguish between visual 

and motor latencies. It is possible to combine our approach with other imaging modalities to 

dissociate the Ter into subcomponents that occur before and after decisions (White et al., 2014; 

Nunez et al., 2018). 

There are several limitations to this study. Our experimental samples included only female 

participants with a narrow age range. Both gender (Maccoby, 1991; Dykiert et al., 2012) and age 

(Wilkinson and Allison, 1989) have been shown to affect RT (Yang et al., 2015). A cross-sectional 

study of over 3,000 participants showed that gender and age also affect NODDI and DTI measures 

in multiple white matter tracts (Cox et al., 2016), in line with other smaller-sample studies (Good 

et al., 2001; Toosy et al., 2004; Lebel et al., 2012; Bede et al., 2014; Kodiweera et al., 2016). 

Further research could extend our results to heterogeneous or genetically-informed samples to 

examine the source of inter-individual variability, because both white-matter microstructure and 

RT are affected by genetic and environmental factors (Martin, 2004; Chiang et al., 2011; Rüber et 

al., 2015). 
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We focused on two a priori tracts of primary motor and visual pathways: CST and OR, because 

the latencies of motor initiation and stimulus encoding are commonly assumed to comprise the Ter. 

This does not rule out the possibility that RT in other behavioral tasks associate with 

microstructural measures in different fiber tracts. Indeed, the RT in a visual oddball task correlated 

with the MD in tracts connecting the visual cortex with frontal and temporal cortices (Konrad et 

al., 2009), and the RT in a selective attention task correlated with the FA in the superior and inferior 

longitudinal fasciculus (Mayer and Vuong, 2014). The current study only estimated the Ter and 

mean RT from a single SRT task, and hence cannot infer the extent to which the microstructural 

correlates of the response speed may vary as a function of different tasks. Furthermore, other 

imaging sequences and models are now available to obtain histologically validated microstructural 

measures beyond NODDI, such as axon diameters and g-ratios (Deoni et al., 2008; Alexander et 

al., 2010; Thiessen et al., 2013). An important future direction is to have a mechanistical 

understanding of how quantitative tissue microstructure may selectively influence behavioral 

performance across cognitive domains. 

In conclusion, inter-individual differences in non-decision time during simple actions were 

reflected in the extent of neurite density in white matter tracts responsible for motor information 

transmission. These findings helped to validate the functional origin of non-decision time assumed 

in current models of decision making and action selection. Our results further raised an intriguing 

possibility that tissue microstructure in key fiber tracts relate to response speed in basic cognitive 

processes.  
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