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ABSTRACT 
Convergent evolution describes the process of different populations acquiring 
similar phenotypes or genotypes. Complex organisms with large genomes only 
rarely and only under very strong selection converge to the same genotype. In 
contrast, independent virus populations with very small genomes often acquire 
identical mutations. Here we test the hypothesis of whether convergence in early 
HIV-1 infection is common enough to serve as an indicator for selection. To this end, 
we measure the number of convergent mutations in a well-studied dataset of full-
length HIV-1 env genes sampled from HIV-1 infected individuals during early 
infection. We compare this data to a neutral model and find an excess of 
convergent mutations. Convergent mutations are not evenly distributed across the 
env gene, but more likely to occur in gp41, which suggests that convergent 
mutations provide a selective advantage and hence are positively selected. In 
contrast, mutations that are only found in an HIV-1 population of a single individual 
are significantly affected by purifying selection. Our analysis suggests that 
comparisons between convergent and private mutations with neutral models allow 
us to identify positive and negative selection in small viral genomes. Our results also 
show that selection significantly shapes HIV-1 populations even before the onset of 
the adaptive immune system. 
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Introduction  

 
Convergent evolution is ubiquitous in nature. Phenotypic convergence is the 
repeated and independent evolution of a particular phenotype. Textbook examples 
are the evolution of flight, which occurred in bats, birds and insects independently, or 
the evolution of the eye, which arose many times independently across the tree of 
life (Serb and Eernisse 2008). We can also observe convergent evolution at the level 
of the genotype, which usually occurs when organisms are under extremely high 
selection pressure. Well known examples are the evolution of antibiotic resistance 
through the acquisition of mutations in the same gene or even at the same position 
in that gene (Farhat et al. 2013; Lindsey et al. 2013) or the evolution of cancer, which 
usually involves a driver mutation in a typical cancer or cancer suppressor gene (Miki 
et al. 1994). Convergent evolution in viruses is particularly common due to the small 
and functionally constrained viral genomes (Bull et al. 1997; Crandall et al. 1999; 
Wichman et al. 2000; Xue et al. 2017).  
 
To study convergent evolution in viruses we focus on one of the best studied human 
viruses: Human immunodeficiency virus type 1 (HIV-1). HIV-1 is an RNA virus with a 
small genome and an extremely high mutation rate. The high mutation rate allows 
the virus to evade the human immune response and persist for years within the host 
(Coffin 1995; Koenig et al. 1995; Borrow et al. 1997; Goulder et al. 1997; Wei et al. 
2003; Trkola et al. 2005; Liao et al. 2013). Over this time span HIV-1 evolves and 
acquires a large number of mutations (Shankarappa et al. 1999; Lemey et al. 2006; 
Keele et al. 2008; Poon et al. 2010).  
 
During early infection of HIV-1 when immune escape does not seem to play a major 
role for HIV-1 evolution, HIV-1 evolution has been modeled as a neutral process (Lee 
et al. 2009; Giorgi et al. 2013). Similarly, diversification rates of the virus population 
have been shown to largely adhere to a molecular clock (Herbeck et al. 2011; Park et 
al. 2016). However, the adherence to a molecular clock does not mean that there is 
no selection during early HIV-1 infection. It is more likely that the fast accumulation 
of neutral mutations obscures selective footprints. Selection is more visible once viral 
phenotypes are taken into account. Typical phenotypes considered include the set-
point viral load, which designates the average level of the virus during the chronic 
disease stage, or disease progression. For example, high evolutionary rates have 
been shown to correlate with fast disease progression and strong selection has been 
shown to correlate with slower disease progression (Boutwell et al. 2010; Garcia-
Knight et al. 2016). Hence the data suggests that strong immune selection constrains 
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viral diversification and hence leads to low evolutionary rates, which in turn leads to 
lower set point viral loads and therefore lower levels of disease progression. 
 
Selection can be measured in various different ways: (1) Probably the most common 
way of determining selected nucleotide sites is by comparing the evolutionary rates 
of non-synonymous nucleotide sites to those of synonymous sites (dN/dS) on a 
phylogenetic tree (Kosakovsky Pond et al. 2008; Wood et al. 2009; Boutwell et al. 
2010; Yoshida et al. 2011). (2) If population sequence data that spans multiple time 
points is available then it is possible to identify positively selected sites by assessing 
the change in mutant frequency over time (Henn et al. 2012; Foll et al. 2014). (3) 
More recently it has been demonstrated that it is possible to determine nucleotide 
sites under selection by analyzing the distribution of those sites across a gene (Zhang 
and Townsend 2009; Zhao et al. 2017).  
 
Here we will focus on yet another way of determining nucleotide sites affected by 
selection: measuring the frequency of convergent mutations across different HIV-1 
populations from different hosts (i.e. we define an HIV-1 population as all viruses 
from the same infected individual). Convergent mutations are mutations that occur 
in independent HIV-1 populations in parallel. More specifically convergence requires 
that two populations that share the same nucleotide at a specific position in the 
genome acquire the same mutation. However, due to the small HIV-1 genome it is 
possible that convergent mutations are the result of chance and not selection. 
Appropriate null models are necessary to distinguish adaptive from neutral 
mutations (Stayton 2015). Once we have made the distinction between selected and 
accidental convergence we reserve the term convergent mutation for mutations that 
occur in parallel in different populations.  
 
By comparing mutations from HIV-1 populations to a random null model, we identify 
convergent mutations that are positively selected for. To this end we reanalyze a 
dataset of full length env genes sampled from infected individuals during early 
infection (Keele et al. 2008; Li et al. 2010). We find that some mutations are over-
represented in the Keele and Li datasets compared to a neutral model. These 
convergent mutations are significantly skewed towards gp41. This biased distribution 
of mutations indicates that convergent mutations are positively selected. In contrast, 
the biased distribution of private mutations (mutations that are found in a single HIV-
1 population only) towards high diversity sites in the env gene suggests that private 
mutations are strongly affected by purifying selection. Hence our results show that 
HIV-1 is under a range of selection pressures immediately after infection of a new 
host even before the onset of the adaptive immune system. 
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Results  

We reanalyzed two datasets from previous studies on the evolution of HIV-1 during 
early infection of a single founder virus.  The samples are estimated to have been 
taken less than 50 days after infection (Keele et al. 2008; Li et al. 2010).  In total there 
are 95 env sequence alignments each from a single HIV-1 infected individual. 
 
 

 
Figure 1. Convergent mutations are unusually frequent during early infection of 
HIV-1. Comparison between nucleotide mutations observed in one or more HIV-1 
populations. Each HIV-1 population is isolated from a different infected individual. 
The Keele and Li data is compared to a neutral model of the same number of 
mutations as observed for each HIV-1 population using the same substitution rates as 
measured from the Keele and Li data. Data generated under the neutral model show 
the mean and standard deviations of 1000 simulations. 
 
Convergent mutations are unlikely under a neutral model of evolution 
We observed convergent evolution for a large number of the 1059 mutations 
identified in the Keele and Li datasets (Figure 1, Supplementary Data 1, 
Supplementary Data 2). We compared the mutations observed in the Keele and Li 
data to 1000 random distributions of the same number and identical substitution 
rates as observed in the data (Supplementary Figure 1, Figure 1). When we 
redistributed mutations we distributed the same number of mutation we observed in 
each infected individual across the genome of this individuals HIV-1 consensus 
sequence. We also maintained transition and transversion rates of the original 
mutations. In a comparison with the neutral model we found that mutations 
occurring in three or more populations in parallel are overrepresented in the Keele 
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and Li dataset. Mutations occurring in more than five HIV-1 populations in parallel 
are even more inconsistent with the neutral model. The number of convergent 
mutations declines linearly on a log scale for the neutral model. We do not see a 
linear decline for the Keele and Li data. Instead the decline levels off for highly 
convergent mutations (Figure 1). For example, there is one mutation that occurs in 
seven individuals in parallel, the likelihood to observe this in a neutral model is about 
0.001. For lower levels of convergence the deviation between neutral model and 
observation is still significant. For example, in our simulations we observe on average 
one mutation that occurs in four HIV populations in parallel. In contrast, there are 
four such mutations in the Keele and Li data (Figure 1).  
 
In total we determined 10 mutations that occur in four or more HIV-1 populations for 
which we expect to see a total of only one mutation under a neutral model of 
evolution (Table 1). Among these mutations there is one synonymous convergent 
mutation, which occurs in five populations in parallel. Mutations that occur in three 
populations in parallel are also overrepresented. We expect about 12 such mutations 
under our neutral model but observe 20 in the Keele and Li data. In 5 out of 1000 
neutral models we observed 20 or more mutations occurring in parallel. Hence, 
probably some of the 20 mutations are positively selected. The exact identity and 
number of these mutations cannot be determined by considering parallelism.  
 
Despite the exclusion of hypermutated sequences the majority of the convergent 
mutations are G to A mutations (observing 6 out of 10 G to A mutations occurs in 
only 808 out of 10,000 random trials when we randomly draw mutations out of all 
observed mutations in the Keele and Li data, p=0.0808). Even though G to A 
mutations are not significantly overrepresented the number of G to A mutations is 
high and it is possible that residual or low APOBEC activity has caused some of these 
mutations. To test this hypothesis we analyzed the mutations that occur in all 
hypermutated sequences (sequences that contain four or more mutations) contained 
in the full dataset that we have excluded from the previous analysis. Only 30 HIV 
populations contain sequences with four or more mutations. The mutations in these 
sequences are predominantly G to A mutations (65% compared to 36% in the data 
lacking hypermutated sequences). Despite the low number of HIV populations that 
contain hypermutated sequences, mutations are shared in this dataset. The most 
common mutation occurs in nine HIV populations and is also the most common 
mutation in the dataset lacking hypermutated sequences (G7668A). The next two 
most common mutations occur in four HIV populations in parallel, one of them also 
occurs in the dataset lacking hypermutated sequences (G8311A). In total, six of the 
10 convergent mutations also occur in hypermutated sequences. Of these six 
mutations, three occur in the hypermutated dataset in two or more HIV populations. 
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If we exclude those three mutations as these may still be the result of residual 
APOBEC activity then there are seven mutations that are likely the result of positive 
selection. Among these seven mutations three are G to A mutations. Observing three 
or more G to A mutations is a very likely outcome of a sampling experiment when 
using the observed substitution rates (6551 out of 10,000 trials, p=0.6551).  
 
 

 
Figure 2. Convergent mutations are predominantly located in gp41. (A) Shows the 
positions of mutations across the env gene on the x-axis and the number of HIV-1 
populations the mutations were observed in on the y-axis. Red bars indicate the 
mean of all positions of the mutations that occur in the same number of HIV-1 
populations. (B) Shows whether there is a significant difference (adjusted p-value on 
y-axis) in the distribution of mutations before a certain position in the env gene 
compared to after this position. There is no significant signal for the distribution of 
private mutations (blue line). The red line shows the adjusted p-values for the 
distribution of mutations that occur in at least three HIV populations in parallel. The 
lowest p-value is found at nucleotide position 1438 in the env gene (position 7663 in 
HXB2, 479 in the env protein). For convergent mutations, a low mutation density 
region was identified by MACML (Zhang and Townsend 2009) and is indicated in 
green. The end of this region is also the minimum of the adjusted mutation 
distribution p-value from above. The black vertical line indicates the start of the Gp41 
protein, a fusion protein that is part of the env gene. Black dots above the blue line 
indicate the positions of mutations that occur in three or more HIV-1 populations. 
 
Convergent mutations occur predominantly in gp41 
Convergent mutations are also differently distributed across the env gene compared 
to mutations that only occur in a single HIV-1 population (private mutations).  
Convergent mutations are more likely to be located at the end of the env gene 
(Figure 2). Private mutations are relatively evenly distributed across the entire env 
gene. The mean of the positions of private mutations is 439, which is very close to 
half the length of the env gene (428). However, the mean increases for mutations 
that occur in more than one HIV-1 population.  
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Table 1. Convergent mutations occurring in four or more HIV-1 populations in 
parallel. 

Nuc. Mut. AA Mut. Freq.# Subtype 
freq.* of 
mutation1 

env 
part 

Observed in 
other studies 

Identi-
fied by 
Wood 
et al. 

C6420T H66Y 4(1) 0 gp120 --- Y 

A7770G M516V  
4 

0 gp41 --- N 

A8226G S668G 4 1 gp41  Confers 
neutralization 
sensitivity 
(O'Rourke et 
al. 2012) 

N 

G8552A D84N 4(2) 47 REV  --- N 
G8624A A108T 5(1) 31 REV  --- N 
A7745G Q507Q 5 49 gp41  --- N 

G8561A E87K 5 8 REV  --- N 
G8311A R696K 5(4) 6 gp41  --- Y 

G7752A E510K 6(1) 163 gp120 Reversion from 
E to the 
database 
consensus K. 

Y 

G7668A E482K 7(9) 1 gp120  Most common 
mutation 
observed in an 
in vivo 
experiment 
with 
humanized 
mice (Ince et 
al. 2010). 

Y 

*Frequency of mutant in subtype consensus out of 170 sequences 
#Frequency of mutation in hypermutated sequences from 30 different HIV 
populations 
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When dividing the env gene at every possible position and comparing the number of 
mutations observed before and after this position then we find, again, that there is 
not a single position that shows a significant difference between the distribution of 
mutations for the 5’ and 3’ end of the gene after adjusting for multiple testing (Figure 
2B). However, mutations that occur in three or more HIV populations show very 
significant differences in their distribution. We found the largest difference at 
position 479 (adj. p-value 1e-12), separating the 5’ part of the env gene with few 
mutations from the 3’ part with many mutations. The 3’ part of the env gene encodes 
for Gp41, a protein responsible for forming the six-helix bundle during cell fusion 
with the host cell (Chan et al. 1997; Skehel and Wiley 1998; Melikyan et al. 2000).  
 

 
Figure 3. Private mutations show lower proportions of non-synonymous mutations 
than expected by chance. The proportion of synonymous mutations in the Keele and 
Li data compared to a neutral model (randomly distributed mutations,1000 
simulations). For each randomization the number of mutations in each convergence 
category (x-axis) was kept constant. A “—“ means there is no significant difference 
between the neutral model and the Keele and Li data, whereas a “*” means that the 
proportion of non-synonymous mutations in the Keele and Li data was lower in at 
least 950 out of 1000 simulations. Mutations in overlapping reading frames are 
excluded. The error bars show standard deviations.  
 
Private mutations are more likely to cause synonymous changes 
The proportion of synonymous mutations in the Keele and Li data differ significantly 
from the predictions of a neutral model for private mutations (Figure 3). For private 
mutations we observe more synonymous mutations in the Keele and Li data than 
expected under a neutral model. This phenomenon can probably be explained by 
purifying selection. Purifying selection has probably led to the disappearance of non-
synonymous mutations due to lethal or highly deleterious effects. The disappearance 
of lethal and highly deleterious mutations then leads to an overrepresentation of 
synonymous mutations in the data set. Generally synonymous mutations are more 
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likely to have less deleterious effects because they do not change the amino acid 
sequence of proteins.  
 

 
Figure 4. Private mutations occur in positions of high nucleotide diversity. The 
figure shows the nucleotide diversity (mean and standard deviation) at nucleotide 
positions, for which Keele and Li mutations were identified (orange) as well as the 
positions for 1000 individual random mutation distributions (turquois). The positions 
of the same number of mutations we observe in N HIV-1 populations was 
randomized in the neutral model. The diversity was determined at each position in 
the env consensus sequence alignment of all 95 HIV-1 populations (see Methods). A 
diversity of 1 means that all nucleotides observed at a certain position occur at equal 
frequencies. “***” indicates that among 1000 simulations there was not a single 
simulation that showed a mean diversity higher or equal to that observed in the 
Keele and Li data. “—“ indicates that there was no significant difference between the 
diversity observed in the Keele and Li data and 1000 random distributions of 
mutations. 
 
Private mutations are found significantly more frequently in regions of high 
diversity  
Private mutations are mutations that we only see in a single HIV population in our 
dataset. These mutations are not simply a sample of all mutations that occur during 
the replication of HIV. Rather, because viral genomes replicate for more than one 
generation, the appearance of a mutation is the result of mutation and selection (see 
measuring mutation rates literature (Mansky 1996)). Selection will act because 
mutations that, for example, introduce stop codons in the middle of an essential 
gene will be lost in the next generation. Those kinds of mutations we expect to be 
underrepresented in our set of 770 env mutations. The distribution of those 770 
mutations across the env gene does not seem particularly biased, as clustering 
approaches have shown (Figure 2).  
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Other than the location of mutations across the gene, we can also measure 
nucleotide diversity at each site in the env gene. We measure nucleotide diversity in 
an alignment of all 95 different consensus sequences. For these measures we do not 
take the mutations that we have observed in the Keele and Li data into account. For 
comparison to a neutral model, we randomly distribute mutations across the entire 
env gene and measure the mean diversity across all 770 positions. Interestingly the 
mean diversity of randomly distributed mutations in 1000 independent simulations 
was always lower than the mean diversity at the positions, at which the Keele and Li 
mutations occurred (Figure 4). This means that mutations do not occur in low 
diversity regions in the Keele and Li data. We propose that this pattern is caused by 
purifying selection, i.e. when mutations occur at low diversity sites they cause 
strongly deleterious or lethal phenotypes that will not leave offspring in the viral 
population and hence will be underrepresented in the Keele and Li dataset. 
 
Non-synonymous private mutations occur in highly diverse regions of the env gene 
The significantly higher proportion of synonymous mutations does not cause the 
significantly higher nucleotide diversity for private mutations. We can understand the 
causal relationship by comparing the nucleotide diversity of synonymous and non-
synonymous mutations and their effect sizes for randomly distributed mutations.  
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Figure 5. Nucleotide diversity of private non-synonymous and synonymous 
mutations in the Keele and Li data compared to our neutral model. The blue lines 
indicate the mean diversity of all private mutations. The purple line indicates the 
diversity of the neutral model if we adjust the proportion of synonymous mutations 
to that observed in the Keele and Li data. The red line shows the mean diversity of 
randomly distributed mutations if the proportion of synonymous mutations and the 
diversity of synonymous mutations is set to that observed in the Keele and Li data. 
Error bars show standard deviations. 
 
The nucleotide diversity of all private Keele and Li mutations is on average 0.26, the 
mean diversity of private mutations from a set of randomly distributed mutations is 
0.22 (the maximum of all 1000 randomizations is 0.24, Figure 5). The nucleotide 
diversity at synonymous sites increases from a mean of 0.29 for randomly distributed 
mutations to 0.3 in the Keele and Li data. The mean diversity of non-synonymous 
sites increases from 0.19 in the randomization to 0.24 in the Keele and Li data. 
Hence, non-synonymous mutations deviate much more from the neutral expectation 
than synonymous mutations, which are almost identical to the neutral expectation.  
 
If we set the proportion of synonymous sites in one of our random simulations to the 
value observed in the Keele and Li data then the nucleotide diversity increases only 
slightly from 0.217 to 0.221 (purple line in Figure 5). If we instead increase the 
diversity of non-synonymous mutations to that observed in the Keele and Li data, 
then the mean diversity increases by 0.04, a ten-fold difference in effect size 
compared to increasing the proportion of synonymous mutations. This demonstrates 
that the increased proportion of synonymous mutations is not the main driver for the 
significantly higher nucleotide diversity of private mutations compared to our neutral 
simulation. Instead, the differences in diversity can be explained by non-synonymous 
mutations that are more likely to occur at highly diverse sites of the env gene (see 
also Supplementary Figure 2).  
 
If purifying selection is the cause for the observed distribution of non-synonymous 
mutations then non-synonymous mutations do not preferentially occur in high 
diversity regions of the gene (although mutational hot spots could also cause part of 
the signal). Instead non-synonymous mutations in conserved regions are absent from 
the data because these mutations are likely to cause highly deleterious changes, 
which immediately disappear from the population. We do not see this bias in 
synonymous mutations because synonymous mutations are more likely to cause 
neutral or only slightly deleterious changes. Hence, it is more likely for us to observe 
the complete spectrum of synonymous mutations.  
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Therefore we can infer that non-synonymous mutations in low diversity regions have 
very strong negative effects on viral fitness. As one would expect these effects are 
much smaller for synonymous mutations where the difference between neutral 
model and Keele and Li data is much smaller (Figure 5). Nevertheless, there is a 
difference (although small) between the neutral model and Keele and Li data for 
synonymous mutations and we also identify one synonymous convergent mutation 
(Table 1) suggesting that synonymous mutations can have non-neutral effects on 
HIV-1 evolution.  
 

Discussion 

Convergent evolution, here defined as acquiring identical mutations in independent 
evolving populations, can be a good indicator for selection when a large number of 
independent populations can be sampled. In our example, mutations that emerge 
more than three times in independent HIV populations are very unlikely to occur in 
parallel by chance. Furthermore convergent mutations occur preferentially in gp41, 
which is not the case for private mutations and hence supports the hypothesis that 
convergent mutations are positively selected.  
 
Gp41 is the C-terminal part of Env and responsible for fusion with the host cell (Chan 
et al. 1997; Skehel and Wiley 1998; Melikyan et al. 2000). It is conceivable that 
increased fusion efficiency with the host cell provides significant fitness benefits even 
during exponential growth in the early stages of infection by HIV-1. An example for 
one of these mutations is E510K. This mutation is a reversion from a relatively rare 
amino acid to the database consensus (Foley et al. 2013; Davey et al. 2014). 
Reversions to ancestral states have been observed to continue for years after 
infection, consistent with our observation (Carlson et al. 2014). The most common 
mutation E482K (occurs in seven infected individuals) is not in gp41 but has also been 
observed in a previous experiment as the most common mutation in a humanized 
mouse experiment (Ince et al. 2010). However, we also find that E482K is even more 
common in hypermutated sequences (occurs in nine out of 30 HIV populations), 
which could mean that E482K is induced by APOBEC activity and may not be 
positively selected.  
 
Wood et al. identified 36 env positions that are potentially under strong positive 
selection (Wood et al. 2009) mainly using methods based on dN/dS measurements. 
We identified a total of 10 mutations that occurred in four or more populations and 
among these seven that likely arose due to positive selection (Table 1). Only four 
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mutations are shared between our list and the list published by Wood et al. We 
identify five novel putatively selected sites one is a synonymous site and hence could 
not have been identified with dN/dS. There are several reasons for the small overlap 
between the mutations identified by us and by Wood et al. First, because we wanted 
to exclude mutations caused by APOBEC as well as sequences that are unlikely to 
replicate due to a high mutational load, we excluded all sequences that contained 
three or more mutations compared to the consensus sequence. Second, Wood et al. 
have not included the Li dataset and hence only used 81 infected individuals instead 
of 95 in their analysis. Third, it is likely that some non-convergent mutations are also 
positively selected. These mutations may be beneficial only in a particular host and 
hence it would be impossible for our analysis to identify such mutations. Fourth, we 
have not included mutations that occur in three HIV-1 populations in parallel in our 
list, although about eight of those mutations are potentially the result of positive 
selection. Wood et al also identified one of the 20 mutations that occur in three 
populations in parallel (E322K) as under positive selection.  
 
Although an excess of convergent mutations compared to a neutral model is a good 
indicator of selection, the strength of selection is difficult to infer from the number of 
convergent mutations. A mutation that occurs in a large number of individuals may 
be a mutation that is beneficial in a large number of different environments. Such a 
mutation may still have a smaller fitness effect than a mutation that increases the 
viral fitness only in a single environment but deleterious in the rest. Nevertheless, it 
is likely that the convergent mutations we identified have large fitness effects, as 
they need to have significantly increased in frequency since infection to be present in 
the Keele and Li dataset. It is possible to explicitly simulate the evolution of HIV-1 and 
to thus infer fitness effect distributions of convergent mutations (Bons et al. 2018).  
 
One major advantage for identifying selected sites by analyzing convergent 
mutations over identification of selection in time course experiments is that linkage 
effects do not have to be considered. Mutations that rise in frequency in a 
population as the result of selection can sometimes also lead to sweeps of neutral or 
even detrimental mutations. However, the probability that an identical mutation 
hitchhikes multiple times independently with a beneficial mutation to fixation or high 
frequency should be similar to that of our neutral model. Hence hitchhiking 
mutations should not become convergent mutations. 
 
Finally, our work also raises the question of why these mutations have not been 
present in the ancestral strain if they arose in parallel in up to 7% of all subjects. 
There may be multiple reasons for this phenomenon. First, it is possible that the 
observed mutations are only beneficial in a small proportion of all hosts. Second, it is 
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possible that the convergent mutations we observed are beneficial during 
exponential growth but do not confer benefits after the immune response takes 
effect and hence will be lost during later stages of infection.  
 
One could also wonder why there are only few mutations that occur in parallel in few 
hosts. This may be because mutations that are beneficial in most environments 
(human hosts) have probably already swept through the entire HIV-1 population and 
are now part of the consensus sequence. There may have been more convergent 
evolution early on during the HIV-1 epidemic when HIV diversity was low and the 
virus was still adapting to the human host. 
 

Methods 

 
Identification of mutations 
The Keele and Li datasets consist of full-length env sequence alignments from a total 
of 102 and 30 infected individuals, respectively, containing on average 29 (minimum 
of 11 to a maximum of 63) full-length env sequences per infected individual amplified 
by single genome amplification (Keele et al. 2008; Li et al. 2010). The sequences are 
from viruses at different stages of early infection but each infected individual was 
sampled only once. In 78 of the 102 infected individuals from the Keele study and in 
17 out of 30 infected individuals of the Li study the infection was likely caused by a 
single founder strain. We only analyzed those sequence alignments (a total of 95), 
because it becomes almost impossible to distinguish mutations from recombination 
events for the other cases (Keele et al. 2008).  
 
We defined a mutation as a change from the consensus sequence of the virus 
population. The consensus sequence of each HIV-1 population is likely to be identical 
to the most recent common ancestor or even the sequence of the founder virus 
(Keele et al. 2008). Between infected individuals the consensus sequences differ. 
Hence to be able to compare mutations between individuals we also aligned all 
sequences to each other. 
 
Mutation comparison between HIV populations 
To be able to compare mutations that occurred in virus populations from different 
infected individuals we aligned all of 95 alignments to each other as well as a 
reference sequence (HXB2). Alignments were performed using Clustal-Omega with 
standard settings (Sievers et al. 2011). Mutations that occur in virus populations of 
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different infected individuals that changed the same consensus nucleotide to the 
same mutated nucleotide are considered identical.  
 
Neutral mutation distribution model 
To assess whether the number of observed convergent mutations is indicative of 
selection we compared the Keele and Li data to a neutral model. We constructed the 
model in the following way: 
1) We determined all possible mutations for each consensus sequence individually to 
generate a pool of mutations from which we can later randomly draw mutations. 
2) To make sure that our results are not affected by mutation biases we amplified 
mutations according to their respective substitution rates measured from the Keele 
and Li dataset. First we counted the frequency of each of the twelve possible 
substitutions (A to C, A to G…). We normalized the lowest value in the substitution 
matrix to one and the remaining values in the matrix were scaled up accordingly. 
Each mutation from step one was amplified by the respective value in the 
substitution matrix. 
3) This means for each of the 95 individual HIV-1 populations we end up with a set of 
possible mutations that are normalized by substitution frequency (e.g. G to A 
substitutions are more frequent than G to C mutations). From these normalized sets 
of mutations we randomly draw mutations without replacement (we cannot draw 
the same mutation twice). The number of mutations we draw is determined by how 
many mutations were originally observed in each of the 95 HIV-1 populations 
(identical mutations are only counted once!).  
4) For the resulting dataset convergence analyses can be performed.  
5) We repeated step 3) and 5) 1000 times to obtain statistically robust results. 
 
Randomly distributing mutations keeping the number of convergent mutations 
constant 
To compare characteristics of convergent mutations to a neutral null model we 
randomized mutations for each convergence category (i.e. mutations occurring in 
different numbers of HIV-1 populations). In this randomization, we (1) maintain 
substitution rates; (2) maintain the origin of the mutation, i.e. mutations are 
randomly selected from the same HIV-1 population where they were observed in the 
Keele and Li dataset; and (3) only chose identical mutations if they were identical in 
the Keele and Li datasets.  
 
Measuring nucleotide diversity 
Here we define nucleotide diversity as Shannon entropy at a certain position 𝑖 for all 
consensus sequences. 
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𝑝( 

 
Where 𝑝( is the proportion of nucleotide 𝑗 in all consensus sequences at reference 
position 𝑖. 
 
The diversity at a particular position in the env gene was determined by calculating 
the Shannon entropy across all positions of a consensus sequence alignment. To 
normalize the diversity value to a range from 0 to 1, we determined the number of 
different bases present in all consensus sequences at each position and used this 
number as the base for the logarithm. Hence a diversity of 1 means that all observed 
nucleotides at a certain position occur in equal quantities. If only a single nucleotide 
occurred at a given position then the nucleotide diversity was set to 0. 
 
Measuring the proportion of synonymous mutations 
For each mutation we can determine whether it causes a synonymous or non-
synonymous change. The proportion of synonymous mutations is the number of 
synonymous changes divided by the number of total changes. For Figure 3 we 
excluded all positions from 8379 to 8653 in the HXB2 reference sequence because 
this region overlaps with the rev reading frame. 
 
Measuring differences in the distribution of mutations across the env gene 
We performed a chi-square test that tested whether the number of mutations before 
a given position is significantly different from the number of mutations after this 
position for the corresponding sequence lengths. This means we performed a total of 
2623 chi-square tests. We then adjusted the p-values from these test for multiple 
tests with the Bonferroni Correction. All tests were used as implemented in R (Team). 
 
Figures were created using cowplot and ggplot2 (Wickham 2016; Wilke 2016). 
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Supporting Information 

Supplementary Data 1. Position of all identified mutations in the env gene. This file 
contains detailed information about the identity of the observed mutations. It 
provides the position in the HXB2 genome, the amino acid change they cause in the 
different genetic backgrounds and the number of HIV-1 subtypes (out of a total of 
170) the mutations occurs in. 
 
Supplementary Data 2. Position of all identified mutations in the rev exon part of 
the env gene. Same as Supplementary Data 1, except that only mutations and amino 
acid substitutions in the rev exon 2 are shown. 
 

 

Supplementary Figure 1. Convergent mutations are unusually frequent during early 
infection of HIV-1. Same as Figure 1 except that mutations occurring in more than 
three HIV populations independently were grouped together. 
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Supplementary Figure 2. Correlation between the presence of nonsynonymous and 
synonymous mutations with diversity across the env gene. Linear clusters were 
computed with MACML (Zhang and Townsend 2009). 

Supplementary Program. With this program one can redo the analyses and 
simulations of the manuscript. 
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