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Behavior arises from neuronal activity, but it is not known how the active neurons are 
distributed across brain regions and how their activity unfolds in time. Here, we used 
high-density Neuropixels probes to record from ~30,000 neurons in mice performing a 
visual contrast discrimination task. The task activated 60% of the neurons, involving 
nearly all 42 recorded brain regions, well beyond the regions activated by passive 
visual stimulation. However, neurons selective for choice (left vs. right) were rare, and 
found mostly in midbrain, striatum, and frontal cortex. Those in midbrain were typically 
activated prior to contralateral choices and suppressed prior to ipsilateral choices, 
consistent with a competitive midbrain circuit for adjudicating the subject’s choice. A 
brain-wide state shift distinguished trials in which visual stimuli led to movement. 
These results reveal concurrent representations of movement and choice in neurons 
widely distributed across the brain.  

Many studies have examined the role of 
individual brain regions in sensory processing 
and decision making1–5, but it remains unclear 
whether these processes are implemented by 
specialized regions or by distributed circuits. For 
example, activity in sensory cortices correlates 
not only with sensory stimuli but also with motor 
planning6,7, movement8, upcoming behavioral 
reports9–14, spatial attention15,16 and reward17. 
Similarly, in motor regions such as the deep 
layers of the superior colliculus18, activity 
correlates with aspects of decision making and 
other cognitive functions5,19–23. The brain regions 
implicated to date in sensory-guided behavior 
include neocortex, basal ganglia, thalamus, and 
midbrain. These regions are widely and 
reciprocally connected24–26, suggesting that any 
particular aspect of sensory, decision, or motor 
processing that involves neurons in one region 
may also involve the coordinated activity of 
neurons across others. This hypothesis is 
consistent with evidence that task 
engagement27, rewards28, and spontaneous 
beahviors29 modulate activity across wide 
cortical and subcortical territories. However, 
testing this hypothesis would require a 
systematic survey of how neurons across the 
brain correlate with goal-directed behavior. Such 
a survey has now become possible thanks to the 
introduction of high-density probes30 able to 
record from hundreds of neurons simultaneously 
across multiple regions of mouse brain.  

Widespread activity accompanies 
visually guided decisions 
We trained mice in a head-fixed two-alternative 
unforced choice (2AUC) task31, in which they 
indicated whether a stimulus on the left or right 
had higher contrast by turning a wheel with their 
forepaws (Fig 1a,b), or indicated the lack of 
either stimulus by holding the wheel still. Trained 
mice successfully chose Left or Right according 
to contrast difference, and withheld movements 
when no stimuli were present (Fig 1c). They 
performed the task accurately for high-contrast 
single stimuli (i.e. when the other stimulus was 
absent; 88 ± 9% correct, mean ± s.d., n = 39 
sessions, 10 mice), but less accurately in more 
challenging conditions: with low-contrast single 
stimuli (65 ± 20% correct mean±s.d); or with 
competing stimuli of similar contrast (66 ± 11% 
correct mean±s.d., on trials with high vs. medium 
or medium vs. low contrast).  Reaction times 
were slower for trials with two competing stimuli 
than with single stimuli of the same contrast (Fig 
1d, p<10-4, multi-way ANOVA), suggesting that 
mice selected a choice by resolving a 
competition between sensory information from 
the two stimulus locations.  
We used Neuropixels probes30,32 to record from 
~30,000 neurons in 42 brain regions during task 
performance, and found that nearly 60% of them 
were modulated during the task (Fig 1e-j). 
Inserting two or three probes at a time yielded 
simultaneous recordings from hundreds of 
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neurons in multiple brain areas during each 
recording session, for multiple days per mouse 
(n=92 probe insertions over 39 sessions in 10 
mice, Fig 1h-j). We identified the firing times of 
individual neurons using Kilosort33 and 
determined their anatomical locations by 
combining electrophysiological features with 

histological reconstruction of fluorescently-
labeled probe tracks (Fig 1g, see Methods). 
Across all sessions we recorded from 29,134 
neurons (n=747 ± 38 neurons per session, 
mean±s.e.), of which 22,458 were localizable to 
one of 42 brain regions. Of these, 60.0% 

 
Figure 1 | Recordings in 42 brain regions during a two-alternative unforced choice task. a, Mice earned water rewards 
by turning a wheel to indicate which of two visual gratings had higher contrast, or not turning if no stimulus was presented. 
When stimuli had equal contrast, a Left or Right choice was rewarded with 50% probability. Grey rectangles with dashed 
dividers indicate the three computer screens surrounding the mouse. Arrows (not visible to the mouse) indicate the coupled 
movement of the visual stimulus with the wheel, and the colored dashed circle (not visible to the mouse) indicates the 
stimulus location at which a reward was delivered. b, Timeline of the task. Subjects were free to move as soon as the 
stimulus appeared, but the stimulus was fixed in place and rewards were unavailable until after an auditory go cue. If no 
movement was made for 1.5 s after the go cue, a NoGo was registered. The grey region is the analysis window, from 0 to 
0.4 s after stimulus onset. c, Average task performance across subjects, n=10 subjects, 39 sessions, 9,538 trials. Colormaps 
depict the probability of each choice given the combination of contrasts presented. d, Reaction time as a function of stimulus 
contrast and presence of competing stimuli. e, Mice were head-fixed with forepaws on the wheel while multiple Neuropixels 
probes were inserted for each recording. f, Frontal view of subject performing the behavioral task during Neuropixels 
recording, with forepaws on wheel and lick spout for acquiring rewards. g, Example electrode track histology with atlas 
alignment overlaid. h, Recording track locations as registered to the Allen Common Coordinate Framework 3D space. Each 
colored line represents the span recorded by a single probe on a single session, colored by mouse identity. D, dorsal; A, 
anterior; L, left. i, Summary of recording locations. Recordings were made from each of the 42 brain regions colored on the 
top-down view of cortex (left) and sagittal section (right). For each region, number in parentheses indicates total recorded 
neurons. j, Spiking raster from an example individual trial, in which populations of neurons were simultaneously recorded 
across visual and frontal cortical areas, hippocampus, and thalamus. For abbreviations, see Extended Data Table 1. 
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Figure 2 | Propagation of activity during task performance. a, Activity of example neurons in VISp and VISam, showing 
the neuron’s waveform and anatomical location (top), rasters sorted by contralateral contrast (middle), and peri-stimulus 
time histograms (PSTHs, smoothed with 30 ms causal half-Gaussian) for each of the four contralateral contrasts (bottom). 
PSTH shaded regions: ± s.e. across trials. b, Colormap showing PSTHs of all highly-activated neurons (p<10-4 compared 
to pre-trial activity) in posterior cortex, vertically sorted by firing latency. Gray scale represents average normalized firing 
rate across all trials with contralateral stimuli and with movement. c, Left: colormap showing PSTHs of neurons from all 
recorded brain regions (left), and curves showing mean stimulus-aligned PSTH of all neurons in each area (right). Shaded 
regions: ± s.e. across neurons. d, Curves showing mean PSTH of the same neurons on the same trials, aligned to 
movement onset. e, Curves showing mean PSTH of the same neurons, aligned reward delivery following successful NoGo 
trials (i.e. trials with no visual stimulus and no overt movement). f, Left: colormap showing average PSTH for all neurons 
in each region on trials with contralateral stimuli and contralateral choices. Right: percentage of neurons in each area 
significantly active on these trials. g, Same as f, for trials with ipsilateral stimuli and ipsilateral choices. h, Same as f, for 
passive presentation of contralateral visual stimuli, excluding any trials with wheel movements. i, Same as h, for ipsilateral 
visual stimuli. 
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(13,467) neurons distributed in all regions had 
detectable modulation of firing rate during the 
time between stimulus onset and movement and 
were included in subsequent analyses. The 
dataset collected for this study will be shared 
publicly at the time of publication.  
Trial onset was followed by increased neuronal 
activity in nearly all recorded regions (Figure 2a-
c). Neurons were diverse in the times they 
became active during trials, with timing 
differences both within and between brain areas. 
Activity emerged first in visual regions 
contralateral to presented stimuli, and soon 
afterwards spread to most recorded regions, 
including areas ipsilateral to the stimulus (Figure 
2f-g). This widespread activity began prior to the 
earliest detectable movement onset in most 
regions (Fig 2d). Similarly widespread activity 
was observed following reward delivery (Fig 2e).  
The widespread activity following trial onset was 
not a direct consequence of the visual stimulus 
(Fig 2h,i). To isolate circuits responding to the 

visual stimulus itself, we followed the behavioral 
sessions with passive replay periods, recording 
the same neurons and presenting the stimuli the 
subjects had just experienced in the task, but 
without the opportunity to earn rewards. In 
contrast to the widespread activity evoked in the 
task, responses to these passive visual stimuli 
were limited to contralateral visual cortex, visual 
thalamus, striatum and superficial superior 
colliculus, along with sparse neurons in parts of 
in frontal cortex, midbrain, and thalamus (Fig 2h). 
In the passive condition, moreover, we observed 
no activity in the hemisphere ipsilateral to the 
stimulus (Fig 2i). Activity across the brain 
therefore differed greatly depending on whether 
mice were engaged in the task: although the 
visual stimulus itself generated activity in a 
restricted set of regions, this response spread 
widely across the brain when the stimulus 
triggered a movement.  

 
Figure 3 | Contextual modulation of pre-stimulus firing rates between passive and active task conditions. 
a, Comparison of population average spiking activity for several brain regions, for trials when contralateral stimuli 
were presented but subjects did not make a choice (i.e. ‘miss’ trials, blue) and for stimulus presentations during the 
passive condition (grey). Visual stimulus contrasts were matched between the two conditions so that differences in 
activity do not reflect differing visual drive. b, Difference in log-transformed pre-stimulus firing rate between neurons 
recorded during task performance and the same neurons recorded during the passive condition. Positive numbers 
indicate higher firing rate in pre-stimulus periods during the task than in passive. *, p<0.0012. c, Left, As in Fig 2f, 
but for miss trials. Right, the excess proportion of neurons active in this condition relative to the passive condition, 
for matched contrast stimuli. d, Histogram of differences in pre-stimulus engagement index for movement versus 
miss trials for each recording. Inverted triangle represents the mean value across recordings (mean = 8.42 a.u.). 
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Engagement in the task is 
accompanied by a brain-wide state 
change 
A possible clue to how task engagement gates 
the spread of activity comes from its effect on 
pre-stimulus activity (Figure 3a,b). We 
considered activity in the 0.2 s prior to stimulus 
onset, when the subjects waited motionless for 
the next trial to begin. In this pre-stimulus 
interval, the firing rate of many regions differed 
markedly between passive and task conditions 
(Figure 3b). Relative to the passive condition, 
pre-stimulus firing rates measured during the 
task were lower in visual cortex and visual 
thalamus, but higher in several subcortical 
regions, including basal ganglia and midbrain 
structures (p<0.05 with Bonferroni correction, 
nested ANOVA).  
Activity on miss trials within the task constituted 
a state intermediate between engaged and 
passive (Fig 3c,d). Following stimulus onset on 
miss trials (stimulus presented but no 
movement), activity spread to more contralateral 
regions than in the passive context, and a greater 
number of neurons became active (p<10-7, 
Fisher exact test, matched stimulus contrasts; 
Fig 3c), although activity on miss trials was not 
as widespread as in trials with movement. 
Moreover, pre-stimulus activity resembled 
passive state activity more on miss trials than on 
movement trials. For each trial we computed an 
“engagement index” by projecting the Nneurons-
dimensional vector of pre-stimulus firing rates 
from each trial onto the vector of average pre-
stimulus differences between all active and all 
passive trials. The engagement index was 
significantly greater for movement trials than 
miss trials (t-test, p<10-4; Fig 3d; matched 
stimulus contrasts), indicating that brain-wide 
state measured prior to stimulus onset exhibited 
a continuum, with the state prior to miss trials 
intermediate between passive and movement 
conditions. We hypothesize that this state 
change reflects an enhanced excitability of 
certain structures (such as basal ganglia and 
midbrain, which showed stronger activity), that 
amplifies stimulus-driven activity during the task. 

Neurons encoding choices are rare 
but distributed  
While most neurons active prior to the movement 
fired equally for left and right choices, rare 
neurons showed strong correlates of choice 

direction (Figure 4a). To distinguish neurons 
genuinely encoding a choice from neurons 
encoding stimulus contrast, we employed a 
statistical method that disentangled these two 
correlated quantities, exploiting the fact that 
difficult stimuli elicited variable choices, with 
variable timings (cf. Figures 1c,d). We first fitted 
each neuron's activity with a sum of kernel 
functions time-locked to stimulus presentation 
and to movement onset34. We fit six stimulus-
locked kernels - one for each of three possible 
contrast values on each side - which captured 
variations in amplitude and timing of the visual 
activity driven by different stimuli (cf. Figure 2a). 
We fit two movement-locked kernels: one 
triggered by a movement in either direction 
(‘Move’), and one capturing differences in activity 
between Left and Right movement directions 
(‘Choice’). To avoid overfitting, we devised a 
kernel estimation method based on reduced-
rank regression, leveraging the large number of 
recorded neurons to identify a low-dimensional 
representation that accurately fit the activity of 
neurons across brain regions and recordings.   
To determine whether a neuron encoded 
stimulus, movement, or choice, we asked 
whether the corresponding kernel was 
necessary to predict its activity. We first fit a 
model including all kernels except the one to be 
tested, and asked whether adding the test kernel 
improved this fit for held out data. For example, 
a representative neuron in primary visual cortex 
(VISp) showed strong firing rate differences 
between Left and Right choices (Figure 4a, first 
panel, shaded regions), but these were time-
locked to the visual stimuli and could be 
accurately predicted with or without the choice 
kernel (solid and dashed lines), suggesting the 
neuron only encoded visual contrast. However, 
other neurons which increased their firing time-
locked to movements of a particular direction 
could not be predicted without the Choice kernel 
(Figure 4a, other panels). Consistent with the 
previous comparison of trial and passive 
stimulus responses (Fig. 2), we found encoding 
of upcoming movement (independent of 
direction) in nearly all brain regions (Figure 4c), 
but encoding of the contralateral stimulus 
primarily in visual and frontal cortex, visual 
thalamus, striatum, and superficial superior 
colliculus (Figure 4b). 

Neurons encoding the upcoming choice were 
rare, and limited to a distinctive set of regions in 
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cortex, striatum, and midbrain (Fig 4d). Neurons 
for which the Choice kernel was required to 
accurately predict activity were found in frontal 
cortex (MOs, PL, and MOp), striatum (CP), and 
midbrain (SNr, SCm, MRN, and ZI). Although 
many neurons in these regions had strong choice 
correlates (e.g. Fig. 4a), choice-selective 
neurons accounted for a small fraction of cells in 
these regions (at most 6% in ZI, notice different 
scale between Fig. 4d and Fig. 4b,c). This small 
population, however, sufficed to predict the 
mouse’s impending choice prior to movement 
onset (Fig 4e; last panel). The time-course of 
choice decoding from population activity was not 
significantly different in these regions (two-way 
ANOVA, p > 0.05; Fig 4f).  

Choices are encoded differently in 
midbrain and forebrain  
Although the encoding of choice emerged 
simultaneously in midbrain and forebrain, it was 
encoded differently in these regions (Figure 5). 
Nearly all (53/54, 98%) choice-selective neurons 
in midbrain (MRN, SCm, SNr, and ZI) preferred 
contralateral choices (Fig. 5a, top, and Fig. 5b,c). 
By contrast, neurons in forebrain (MOs, PL, 
MOp, and CP) could prefer either choice (29/48, 
60% preferred contralateral; Fig. 5a, bottom, and 
Fig. 5e,f). This difference between midbrain and 
forebrain was significant (p=<10-5, Fisher’s exact 
test; Figure 5e,f). Midbrain neurons, moreover, 
exhibited directionally-opposed activity: their 
activity increased before one choice and 

 
Figure 4 | Regression analysis reveals widespread representation of movement occurrence but rare representation 
of choice. a, Example neurons from indicated brain regions, with registered atlas location (upper left) and waveform (lower 
left). Rasters (upper right) show each neuron’s activity aligned to movement onset, with trials color coded and vertically 
arranged by the subject’s choice (grey circles represent stimulus onsets; for NoGo trials, spikes are aligned to the expected 
movement time for the contrasts shown). Lower right panels show PSTHs (shaded regions indicating mean ± s.e.), cross-
validated predictions of the full kernel model (solid lines, derived from stimulus identity and timing, choice identity and timing), 
and model missing the Choice kernel (dashed lines). b, Proportion of individual neurons for which accurate prediction required 
the Contralateral Stimulus kernel (cross-validated variance explained > 2%). Empty bars indicate those for which the number 
of observed neurons was < 5. c, As in b, but for the Move kernel. d, As in b, but for the Choice kernel. Note the difference in 
y-scale from b and c. e, Population decoding of Stimulus Contra identity from residual activity in each area after fitting a model 
including all other kernels. Subsequent three panels depict the same analysis for the other three kernel types. f, Time course 
of population decoding of choice from frontal cortex (MOs, PL, and MOp), striatum (CP), and midbrain (MRN, SCm, ZI, SNr). 
Shaded regions represent s.e. across recordings. 
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decreased below baseline before the other 
(29/54, 54%; Figure 5d), as though competitively 
inhibited prior to ipsilateral choices by other 
neurons preferring that choice. Forebrain 
neurons typically exhibited a qualitatively distinct 
encoding: neurons in one hemisphere became 
active prior to both left and right choices (10/48, 
21% suppressed for non-preferred choice). This 
difference between midbrain and forebrain was 
also significant (p<10-3, Fisher’s exact test; 
Figure 5f).  

Discussion 
We found that neurons across many disparate 
brain regions were activated when mice 
performed the task. Nevertheless, the key 
signals required for task performance were 
encoded by smaller networks. Visual onset was 
encoded by neurons in superficial SC, visual 
cortex, visual thalamus, frontal cortex, striatum, 
and sparse neurons elsewhere. An even smaller 
subset of neurons in frontal cortex, basal ganglia, 
and midbrain structures encoded left/right 
choices. Choice-selective neurons in the 
midbrain but not forebrain exhibited competitive 
coding, with contralateral choices preceded by 

increases in rate, and ipsilateral choices 
preceded by decreases. Taken together, these 
observations indicate that signals reflecting an 
impending choice emerge across a coordinated 
network of neurons in midbrain, frontal cortex, 
striatum and thalamus; and that competitive 
circuits within the midbrain may ultimately 
adjudicate the decision. 
In contrast, we saw a global but nonspecific brain 
activation around the time of movement onset. 
This activation may largely reflect a corollary 
discharge, downstream of the decision to initiate 
a movement35,36. Although observational results 
cannot alone determine causal involvement of a 
particular brain region in the task, another study37 
using the same task confirms this hypothesis at 
least for some parts of dorsal cortex: while 
optogenetic inactivation of visual and frontal 
cortex affected the mouse’s performance, 
inactivation of primary somatomotor cortex and 
retrosplenial cortex did not despite the robust 
pre-movement activity we observed in these 
regions.  
The hypothesis that a network of midbrain areas 
adjudicates competition between two alternative 

 
Figure 5 | Choices are encoded distinctly in midbrain and forebrain neurons. a, Example neurons recorded in the 
midbrain (top row) and forebrain (bottom row). Conventions as in Fig 4a. b, Scatter plot of activity of individual midbrain 
neurons at movement onset vs baseline activity, for trials with contralateral versus ipsilateral choices (estimated from the 
kernel model). Darker points represent neurons with significant choice encoding (c.f. Fig 4d). c, The difference in response 
amplitude between contralateral and ipsilateral choice trials, for midbrain neurons with significant choice encoding. d, 
Amplitude on non-preferred trials relative to baseline. e, f, g, as in b, c, d but for forebrain neurons. 
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choices is consistent with work describing roles 
for SC in decision-making in rats5 and 
primates22,38. The competitive interaction could 
arise from mutually inhibitory circuitry within the 
SC39, or from intra-midbrain inhibitory projections 
from SNr to SC4,40. Although the MRN and ZI 
have been less well-studied than SC, recordings 
in primates during arm movements suggest that 
MRN and SC carry similar signals41. Our results 

suggest that these midbrain nuclei are involved 
in action selection, not just motor execution. 
Their near-exclusive firing for contralateral 
choices – executed through both forelimbs – 
suggests a high-level representation of the 
choice, rather than a low-level representation of 
muscle contractions. Nevertheless, our results 
argue against SC and MRN as the sole locus for 
the decision at the end of a feedforward pathway. 
Choice-predictive signals emerged in frontal 
cortex and striatum at approximately the same 
time, albeit with a primarily non-competitive 
encoding. These data are therefore compatible 
with a view that midbrain neurons mediate 
competition between wider recurrently-
connected circuits in each hemisphere. 
The idea that actions are selected through 
recurrent self-exciting subnetworks that are 
coupled by inter-network inhibition has been 
studied in computational models42,43. In these 
models, recurrent excitation causes threshold 
behavior: a self-exciting subnetwork receiving 
inputs proportional to the evidence in favor of a 
choice generates all-or-none responses when 
this evidence exceeds a threshold; and mutual 
inhibition between two such subnetworks allows 
the choice with more evidence to suppress the 
choice with less. Our data are consistent with a 
choice mechanism consisting of a recurrent 
circuit in each hemisphere, spanning frontal 
cortex, basal ganglia, and midbrain nuclei, with a 
net self-excitation in each side, and coupled by 
inhibition within the midbrain (Fig 6a). 
Engagement in the task correlated with a boost 
in pre-stimulus activity in these same structures, 
suggesting that engagement is accompanied by 
tonic input specifically to these networks. This 
input could come from dopamine or other 
neuromodulator systems44, and might reflect 
either a task-specific command, or a general 
increase in arousal. We hypothesize that only 
with this tonic input are sensory stimuli sufficient 
to bring the network past threshold, explaining 
why movements follow sensory stimuli only when 
the subjects are engaged in the task (Fig 6b-d).  
In conclusion, the correlates of choice in a single 
task are distributed and near-simultaneous 
across disparate brain systems. This finding 
motivates a change in focus in the search for the 
neural basis of behavior: from specialized brain 
regions to coordinated circuits of individual 
neurons distributed across the brain. 

 
Figure 6 | Hypothetical circuit organization and 
dynamics. a, Visual activity first arises in in SCs, visual 
thalamic nuclei and visual cortex, then propagates to a 
self-exciting decision network containing frontal cortex, 
basal ganglia, and midbrain circuits. Competition 
between left and right choices is adjudicated by 
inhibitory interactions within the midbrain. Arrowheads 
represent excitatory connections, and circles represent 
inhibition. Arrow color represents time of activity during 
the task. Green outlines represent areas with boosted 
pre-stimulus activity during the task; red those with 
suppressed. b-d, A cartoon dynamical model of decision 
initiation. X- and y-axes represent activity in right and left 
decision networks. The three panels represent 
dynamical trajectories in the passive condition, task 
condition on NoGo-biased trials, and task condition on 
movement-biased trials, characterized by progressively 
higher baseline activity in both decision networks. 
Stimulus onset increases activity in the two decision 
networks according to its contrast in the corresponding 
side. In the passive condition (b), baseline activity is so 
low that activity cannot cross threshold even for high-
contrast stimuli. In the NoGo-biased task condition (c), 
high-contrast stimuli are sufficient to bring one decision 
network to threshold, which then suppresses activity in 
the other, but low contrast stimuli do not cause either 
network to cross threshold.  In the movement-biased 
task condition (d), even low-contrast stimuli are sufficient 
to bring one or other decision network to threshold.  
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Methods 
Experimental procedures were conducted according to the UK Animals Scientific Procedures 
Act (1986) and under personal and project licenses released by the Home Office following 
appropriate ethics review. 
Subjects 

Experiments were performed on male and female mice, between 11 and 46 weeks of age 
(Extended Data Table 2). Multiple genotypes were employed, including: Ai95;Vglut1-Cre 
(B6J.Cg-Gt(ROSA)26Sortm95.1(CAG-GCaMP6f)Hze/MwarJ crossed with B6;129S-
Slc17a7tm1.1(cre)Hze/J), TetO-G6s;Camk2a-tTa (B6;DBA-Tg(tetO-GCaMP6s)2Niell/J crossed 
with B6.Cg-Tg(Camk2a-tTA)1Mmay/DboJ), Snap25-G6s (B6.Cg-Snap25tm3.1Hze/J), Vglut1-
Cre, and wild-type (C57Bl6/J). None of these lines are known to exhibit aberrant epileptiform 
activity45. 
Surgery 

A brief (~1 h) initial surgery was performed under isoflurane (1-3% in O2) anesthesia to implant 
a steel headplate (~15 x 3 x 0.5mm, ~1 g) and, in most cases, a 3D-printed recording chamber. 
The chamber was a semi-conical, opaque piece of polylactic acid (PLA) with 12 mm diameter 
upper surface, and lower surface designed to fit to the shape of an average mouse skull, 
exposing approximately the area from 3.5 anterior to 5.5 posterior to bregma, and 4.5 left to 
4.5 right, and narrowing near the eyes. The implantation method largely followed the method 
of Guo et al46 with some modifications and was described previously45. In brief, the dorsal 
surface of the skull was cleared of skin and periosteum and prepared with a brief application 
of green activator (Super-Bond C&B, Sun Medical Co.). The chamber was attached to the 
skull with cyanoacrylate (VetBond; World Precision Instruments) and the gaps between the 
cone and the skull were filled with L-type radiopaque polymer (Super-Bond C&B). A thin layer 
of cyanoacrylate was applied to the skull inside the cone and allowed to dry. Thin layers of 
UV-curing optical glue (Norland Optical Adhesives #81, Norland Products) were applied inside 
the cone and cured until the exposed skull was covered. The headplate was attached to the 
skull over the interparietal bone with Super-Bond polymer, and more polymer was applied 
around the headplate and cone. 
Following recovery, mice were given three days to recover while being treated with carprofen, 
then acclimated to handling and head-fixation prior to training. 
Two-alternative unforced choice task 

The two-alternative unforced choice task design was described previously31. In this task, mice 
were seated on a plastic apparatus with forepaws on a rotating wheel, and were surrounded 
by three computer screens (Adafruit, LP097QX1) at right angles covering 270 x 70 degrees 
of visual angle (d.v.a.). Each screen was ~11cm from the mouse’s eyes at its nearest point 
and refreshed at 60Hz. The screens were fitted with Fresnel lenses (Wuxi Bohai Optics, 
BHPA220-2-5) to ameliorate reductions in luminance and contrast at larger viewing angles 
near their edges, and these lenses were coated with scattering window film (“frostbite”, The 
Window Film Company) to reduce reflections. The wheel was a ridged rubber Lego wheel 
affixed to a rotary encoder (Kubler 05.2400.1122.0360). A plastic tube for delivery of water 
rewards was placed near the subject’s mouth. Licking behavior was monitored by attaching a 
piezo film (TE Connectivity, CAT-PFS0004) to the plastic tube and recording its voltage. Eye 
movements were monitored by illuminating the subject with IR light (830nm, Mightex SLS-
0208-A) and monitoring the right eye with a camera (The Imaging Source, DMK 23U618) fitted 
with zoom lens (Thorlabs MVL7000) and long-pass filter (Thorlabs FEL0750). Body 
movements were monitored with another camera situated above the central screen. Full 
details of the experimental apparatus including detailed parts list can be found at 
http://www.ucl.ac.uk/cortexlab/tools/wheel.  
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A trial was initiated after the subject had held the wheel still for a short interval (duration 
uniformly distributed between 0.2-0.5 sec on each trial; Figure 1b). At trial initiation, a visual 
stimulus was presented on the left, right, both, or neither screen. The stimulus was a gabor 
patch with orientation 45 degrees, sigma 9 d.v.a., and spatial frequency 0.1 cycles/degree. 
After stimulus onset there was a random delay interval of 0.5-1.2 sec, during which time the 
subject could turn the wheel without penalty, but visual stimuli were locked in place and 
rewards could not be earned. The subjects nevertheless typically responded immediately to 
the stimulus onset. At the end of the delay interval, an auditory go cue was delivered (8 kHz 
pure tone for 0.2 sec) after which the visual stimulus position became coupled to movements 
of the wheel. Wheel turns in which the top surface of the wheel was moved to the subject’s 
right led to rightward movements of stimuli on the screen, i.e. a stimulus on the subject’s left 
moved towards the central screen. Put another way, clockwise turns of the wheel, from the 
perspective of the mouse, led to clockwise movement of the stimuli around the subject. A left 
or right turn was registered when the wheel was turned by an amount sufficient to move the 
visual stimuli by 90 d.v.a. in either direction. When at least one stimulus was presented, the 
subject was rewarded for driving the higher contrast visual stimulus to the central screen (if 
both stimuli had equal contrast, left/right turns were rewarded with 50% probability). When no 
stimuli were presented, the subject was rewarded if no turn was registered during the 1.5 s 
following the go cue. Immediately following registration of a choice or expiry of the 1.5 s 
window, feedback was delivered. If correct, feedback was a water reward (2 – 3 µL) delivered 
by the opening of a valve on the water tube for a calibrated duration. If incorrect, feedback 
was a white noise sound played for 1 s. During the 1 s feedback period, the visual stimulus 
remained on the screen. After a subsequent inter-trial interval of 1 s, the mouse could initiate 
another trial by again holding the wheel still for the prescribed duration.  
Mice were trained on this task with the following shaping protocol. First, high contrast stimuli 
(50 or 100%) were presented only on the left or the right, with an unlimited choice window, 
and repeating trial conditions following incorrect choices (‘repeat on incorrect’). Once mice 
achieved high accuracy and initiated movements rapidly – approximately 70 or 80% 
performance on non-repeat trials, and with reaction times nearly all < 1 second, but at the 
experimenter’s discretion – trials with no stimuli were introduced, again repeating on incorrect. 
Once subjects responded accurately on these trials (70 or 80% performance, at 
experimenter’s discretion), lower contrast trials were introduced without repeat on incorrect. 
Finally, contrast comparison trials were introduced, starting with high vs low contrast, then 
high vs medium and medium vs low, then trials with equal contrast on both sides. The final 
proportion of trials presented was weighted towards easy trials (high contrast vs zero, high vs 
low, medium vs zero, and no-stimulus trials) to encourage high overall reward rates and 
sustained motivation. 
On most trials for which subjects eventually made a left or right turn by the end of the trial, the 
subjects responded immediately to the stimulus presentation, turning the wheel within 400 ms 
of stimulus appearance (64.9 ± 14.0% s.d., n=39 sessions), nearly always in the same 
direction as their final choice (96.6 ± 3.4%). For this study, data analyses focused on this initial 
400 ms period, and we defined Left and Right Choice trials as in which this period contained 
a clockwise or counterclockwise turn of sufficient amplitude (90 d.v.a.), and NoGo trials as 
those where it contained no detectable movement. To exclude trials in which wheel turns were 
coincidentally made before subjects could respond to the stimuli, only trials with movement 
onset between 125 to 400ms post-stimulus onset, or with no movement of any kind during the 
window from -50 to 400ms post-stimulus onset, were included. Trials with other movements, 
that were detectable but would not have resulted in registering a choice by the end of the 
movement, were excluded.  
Behavioral trials when the mouse was disengaged were excluded from analysis. These trials 
were defined as Miss trials (stimulus present but wheel not turned) preceded by two or more 
other Miss trials, as well as all NoGo trials occurring consecutively at the end of the session.  
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When analyzing activity following reward delivery, only correct NoGo trials were included, i.e. 
trials with no visual stimulus and no wheel movement.  
Sessions were included when at least 12 trials of each type (Left, Right, NoGo) could be 
included for analysis, and when anatomical localization was sufficiently confident (see below). 
For analyses requiring trials with different choices but matched for stimulus contrast, we 
considered all trials with contralateral stimulus contrast greater than zero, and split them by 
low, medium, and high contralateral contrast. For each contrast level, we counted the number 
of trials with that contrast and each response type (Left or Right; NoGo; or passive condition). 
We took the minimum of these three numbers, and selected that many trials randomly from 
each group. This resulted in three sets of trials - trials with Left or Right choices; trials with 
NoGos; and trials in the passive condition – which each contained low, medium, and high 
contralateral contrasts but which all contained exactly the same numbers of each contrast. 
When fewer than 10 such trials could be found, the session was excluded for the matched-
contrast analyses (n=34 of 39 sessions included). 
Neuronal recordings 

Recordings were made using Neuropixels (“Phase3A”) electrode arrays30, which have 384 
selectable recording sites out of 960 sites on a 1 cm shank. Probes were mounted to a custom 
3D-printed PLA piece and affixed to a steel rod held by a micromanipulator (uMP-4, Sensapex 
Inc.). To allow later track localization, prior to insertion probes were coated with a solution of 
DiI (ThermoFisher Vybrant V22888 or V22885) by holding 2µL in a droplet on the end of a 
micropipette and touching the droplet to the probe shank, letting it dry, and repeating until the 
droplet was gone, after which the probe appeared pink. 
On the day of recording or within two days before, mice were briefly anaesthetized with 
isoflurane while one or more craniotomies were made, either with a dental drill or a biopsy 
punch. After at least three hours of recovery, mice were head-fixed in the setup. Probes had 
a soldered connection to short external reference to ground; the ground connection at the 
headstage was subsequently connected to an Ag/AgCl wire positioned on the skull. The 
craniotomies as well as the wire were covered with saline-based agar. The agar was covered 
with silicone oil to prevent drying. In some experiments a saline bath was used rather than 
agar. Probes were advanced through the agar and through the dura, then lowered to their final 
position at ~10µm/sec. Electrodes were allowed to settle for ~15 min before starting recording. 
Recordings were made in external reference mode with LFP gain = 250 and AP gain = 500. 
Recordings were repeated at different locations on each of multiple subsequent days, 
performing new craniotomy procedures as necessary. All recordings were made in the left 
hemisphere.  
Passive stimulus presentation 

After each behavior session we performed a passive replay experiment while continuing to 
record from the same electrodes. Mice were presented with two types of sensory stimuli 
without possibility of receiving reward for any behavior: replay of task stimuli; and sparse 
flashed visual stimuli for receptive field mapping. 
The replayed task stimuli were: left and right visual stimuli of each contrast; some 
combinations of left and right visual stimuli simultaneously; go cue beeps; white noise bursts; 
and reward valve clicks (but with a manual valve closed so that no water was delivered). These 
stimuli were replayed at 1-2 sec randomized intervals for 10 or 25 randomly interleaved 
repetitions each. 
Receptive fields were mapped with white squares of 8 d.v.a. edge length, positioned on a 10 
x 36 grid (some stimulus positions were located partially off-screen) on a black background. 
The stimuli were shown for 10 monitor frames (167ms) at a time, and their times of appearance 
were independently randomly selected to yield an average rate of ~0.12 Hz. 
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Data analysis 

The data were automatically spike sorted with Kilosort33 (https://github.com/cortex-
lab/Kilosort) and then manually curated with the ‘phy’ gui (https://github.com/kwikteam/phy). 
Extracellular voltage traces were preprocessed common-average referencing47: subtracting 
each channel’s median to remove baseline offsets, then subtracting the median across all 
channels at each time point to remove artifacts. During manual curation, each set of events 
(‘unit’) detected by a particular template was inspected and if the events (‘spikes’) comprising 
the unit were judged to correspond to noise (zero or near-zero amplitude; non-physiological 
waveform shape or pattern of activity across channels), the entire unit was discarded. Units 
containing low-amplitude spikes, spikes with inconsistent waveform shapes, and/or refractory 
period contamination were labeled as ‘multi-unit activity’ and not included for further analysis. 
Finally, each unit was compared to similar, spatially neighboring units to determine whether 
they should be merged, based on spike waveform similarity, drift patterns, or cross-
correlogram features. Units were also excluded if their average rate in the analysis window 
(stimulus onset to 0.4 sec after; ‘trial firing rate’) was less than 0.1 Hz. Units passing these 
criteria were considered to reflect the spiking activity of a neuron.  
Neurons were only included for further analysis least 13 neurons passing the above criteria 
were identified as coming from the same brain region, in the same experiment. Furthermore, 
brain regions were only included for which at least two recordings had sufficient numbers of 
neurons. 
To determine whether a neuron was active during the task (Fig. 1i), a set of six statistical tests 
were used to detect changes in activity during various task epochs and conditions: 1) Wilcoxon 
signrank test between trial firing rate (rate of spikes between stimulus onset and 400 ms post-
stimulus) and baseline rate (defined in period -0.2 to 0 s relative to stimulus onset on each 
trial); 2) signrank test between stimulus driven rate (firing rate between0.05 and 0.15 s after 
stimulus onset) and baseline rate; 3) signrank test between pre-movement rates (-0.1 to 0.05 
s relative to movement onset) and baseline rate (for trials with movements); 4) Wilcoxon 
ranksum test between pre-movement rates on left choice trials and those on right choice trials; 
5) signrank test between post-movement rates (-0.05 to 0.2 s relative to movement onset) and 
baseline rate; 6) ranksum test between post-reward rates (0 to 0.15 s relative to reward 
delivery for correct NoGos) and baseline rates. A neuron was considered active during the 
task, or to have detectable modulation during some part of the task, if any of the p-values on 
these tests were below a Bonferroni-corrected alpha value (0.05/6 = 0.0083). However, 
because the tests were coarse and would be relatively insensitive to neurons with transient 
activity, a looser threshold was used to determine the neurons included for statistical analyses 
(Figs. 3-5): if any of the first four tests (i.e. those concerning the period between stimulus onset 
and movement onset) had a p-value less than 0.05.   
For visualizing PSTHs (Figs. 2 and 3c), the activity of each neuron was then binned at 0.005 
s, smoothed with a causal half-Gaussian filter with standard deviation 0.02 s, averaged across 
trials, smoothed with another causal half-gaussian filter with standard deviation 0.03 s, 
baseline subtracted (baseline period -0.02 to 0 s relative to stimulus onset, including all trials 
in the task), and divided by baseline + 0.5 sp/s. Neurons were selected for PSTH display if 
they had a significant difference between firing rates on trials in the task with stimuli and 
movements versus those without both, using a sliding window 0.1 s wide and in steps of 0.005 
s (ranksum p<0.0001 for at least three consecutive bins).  
Visual receptive fields were determined by sparse noise mapping outside the context of the 
behavioral task. The evoked rates for each presentation were measured as the spike count in 
the 200ms following stimulus onset. The rates evoked by stimuli at the peak location and 
surrounding four nearest locations were combined and compared to the rates for all locations 
> 45 d.v.a. from the peak location using a Wilcoxon ranksum test. Any neurons for which the 
p value of the test was less than 10-6 were counted as having a significant visual receptive 
field. If the peak receptive field location was within 18 d.v.a. of the location used for the visual 
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stimulus in the behavioral task (i.e. within 2x the standard deviation of the Gaussian aperture 
of that stimulus), the neuron was counted as having an ‘on-target’ receptive field. 
To statistically compare pre-trial firing rates between the active and passive conditions (i.e. 
between trials of active task performance, versus later passive stimulus replay, Fig. 3b), we 
performed a nested multiple ANOVA test, in order to account for correlated variability between 
neurons within recording sessions. Each observation was a neuron’s average measured pre-
trial firing rate in the window between 250 and 50ms prior to stimulus onset, log transformed 
(log$%(x + 1	sp/s)) to make distributions approximately normal. Any trials with detectable 
wheel movement in this interval were excluded. The ANOVA had three factors: active/passive 
condition, recording session, and neuron identity (nested within recording session). The null 
hypothesis of no difference between baseline rates in active and passive conditions for 
neurons from a given brain region was rejected if the p-value for the active/passive condition 
factor was less than 0.0012, i.e. less than 0.05 after applying a Bonferroni correction for the 
42 brain regions tested.  
To compute the trial-by-trial ‘engagement index’, we took the difference in pre-stimulus firing 
between the average of all task (‘active’) trials a and of all passive trials p, 

x0 = f034 (−0.2 < t < 0) − f0
;4 (−0.2 < t < 0) 

This quantity was computed for each neuron in one of the areas with significant differences 
between task and passive determined by nested ANOVA analysis (319 ± 32.5 mean ± s.e. 
neurons included per session, n=34 sessions), and accumulated into a vector 𝐱 for each 
session. We normalized each session’s vector to unit magnitude. We computed the dot 
product 𝐱 ⋅ 𝐟? of 𝐱	with the vector of pre-stimulus firing rates for each trial 𝑖. We then computed 
the mean across movement and the mean across miss trials, and took the difference of the 
two.  
Reduced rank kernel regression 

To identify choice-selective neurons, we began by fitting a ‘kernel regression’ model34,48,49. In 
this analysis, the firing rate of each neuron is described as a linear sum of temporal filters 
aligned to task events. For the current study, only visual stimulus onset and wheel movement 
onset kernels were required, since we consider here only the period in between the two. In 
the model, the predicted firing rate 𝑓BC (𝑡) for neuron 𝑛 is given as  

𝑓BC (𝑡) =F F 𝐾H,B(𝑡 − 𝑡J)
KL∈NOP

+ F Q𝐾R,B(𝑡 − 𝑡R) + 𝐷R	𝐾T,B(𝑡 − 𝑡R)U
KV∈W

 

Here, 𝑐 represents of the the 6 stimulus types (contralateral low, medium, or high, or ipsilateral 
low, medium, or high), 𝑆H represents the set of times for which this contrast appeared, and 
𝐾H,B(𝑡) represents the Stimulus kernel function of this contrast for neuron 𝑛. 𝑀	represents  the 
set of movement times and 𝐾R,B(𝑡) represents the Movement kernel for neuron 𝑛; 𝐷R 
represents direction of movement 𝑚 (encoded as ±1), and 𝐾T,B represents the Choice kernel 
for neuron 𝑛. The Stimulus kernels 𝐾H,B(𝑡) are supported over the window -0.05 to 0.4 s relative 
to stimulus onset, and the Movement and Choice kernels are supported over the window -
0.25 to 0.025 s relative to movement onset. Prior to estimating the kernels, the discretized 
firing rates 𝑓B(𝑡) for each neuron were estimated by binning spikes into 0.005 s bins and then 
smoothing with a causal half-Gaussian filter with standard deviation 0.025 s. The stimulus 
kernels therefore contain 𝐿H = 90 time bins, while movement kernels contain 𝐿^ = 55 time 
bins. 
The large number of parameters to be fit, combined with the relatively small number of trials 
of each type pose a challenge for estimation. We devised a solution to this problem that 
leverages the large number of neurons recorded using reduced rank regression.  
First, for each kernel to be fit, we construct a Toeplitz predictor matrix. For stimuli of contrast 
𝑐, we define a Toeplitz predictor matrix 𝐏H of size 𝑇 ×	𝐿H, where 𝑇 is the total number of time 
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points in the training set, and  𝐿H is the number of lags required for the stimulus kernels. The 
predictor matrix contains diagonal stripes starting each time a stimulus of contrast 𝑐 is 
presented: 𝐏H(𝑡, 𝑙) = 1 if 𝑡 − 𝑙 ∈ 𝑆H and 0 otherwise. Predictor matrices for the Movement and 
Choice kernels are defined similarly, and the six stimulus predictor matrices and two 
movement predictors are horizontally concatenated to yield a global prediction matrix 𝐏 of size 
𝑇 × 650. (650 = 	6𝐿H + 2𝐿^ is the total length of all kernels for one neuron.) 
The simplest approach to fit the kernel shapes would be to minimize the squared error 
between true and predicted firing rate using linear regression. To do this, we would horizontally 
concatenating the rate vectors of all 𝑁	neurons together into a 𝑇 × 𝑁 matrix 𝐅, and estimate 
the kernels for each neuron by finding a matrix 𝐊 of size 650 ×𝑁 to minimize the squared 
error:  

𝐸 =	 ‖𝐅 − 𝐏𝐊‖𝟐 
However, as each 𝐤B has 650 parameters, linear regression results in noisy and overfit kernels 
when fit to a single neuron, particularly given the high trial-to-trial variability of neuronal firing. 
Although expressing the kernels as a sum of basis functions can reduce the number of 
required parameters34, the success of this method depends strongly on the choice of basis 
functions, with an appropriate choice will differ depending on properties of the task and stimuli. 
However, as each neuron’s kernel has 650 parameters, linear regression results in noisy and 
overfit kernels when fit to a single neuron, particularly given the high trial-to-trial variability of 
neuronal firing. Although expressing the kernels as a sum of basis functions can reduce the 
number of required parameters34, the success of this method depends strongly on the choice 
of basis functions, with an appropriate choice will differ depending on properties of the task 
and stimuli. The large number of neurons in the current dataset allows an alternative approach.  
This approach is based on reduced rank regression50, which allows regularized estimation by 
factorizing the kernel matrix 𝐊	into the product of a 650 × 650 matrix 𝐁 and 650 × 𝑁 matrix 𝐖 
minimizing the total error: 

𝐸 = ‖𝐅 − 𝐏𝐁𝐖‖n 

The 𝑇 × 𝑟 matrix 𝐏𝐁 may be considered as a set of temporal basis functions, which can be 
linearly combined to estimate each neuron’s firing rate over the whole training set. Reduced 
rank regression ensures that these basis functions are ordered, so that predicting population 
activity from only the first 𝑟 columns will result in the best possible prediction from any rank 𝑟 
matrix.  
To estimate each neuron’s kernel functions, we estimated a weight vector 𝐰B to minimize an 
error 𝐸B = |𝐟𝐧 − 𝐏𝐁𝐰B|n for each neuron with elastic net regularization (using the package 
cvglmnet for Matlab with parameters 𝛼 = 0.5 and 𝜆 = 0.5), and used cross-validation to 
determine the optimal number of columns 𝑟B of 𝐏𝐁 to keep when predicting neuron 𝑛. The 
kernel functions for neuron 𝑛	were then unpacked from the 650-dimensional vector obtained 
by multiplying the first 𝑟B columns of 𝐁 by 𝐰B. Neurons with maximal cross-validated variance 
explained of <2% were excluded from subsequent analyses.  
To assess the selectivity of individual neurons for each kernel, we first fit the activity of each 
neuron again using the reduced rank regression procedure above (including deriving a new 
basis set) but excluding the kernel to be tested. We subtracted this prediction from the raw 
data to yield residuals, representing aspects of the neuron’s activity not explainable from the 
other kernels. We then repeated the reduced rank regression procedure one more time, using 
the residual firing rates as the independent variable, and using only the test kernel. The cross-
validated quality of this fit determined the variance explainable only by the test kernel. If this 
variance explained was >2%, the neuron was deemed selective for that kernel and was 
included in Figure 4b-d.  
To perform population decoding, we began with the residual firing rates produced as described 
above, produced by fitting without a test kernel. We then split trials in a binary fashion: trials 
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that had vs. did not have an ipsilateral stimulus; had vs. did not have a contralateral stimulus; 
had vs. did not have any movement (either left or right); had left choice vs. had right choice 
(considering only trials with one of the two). We identified a population coding direction 
encoding the difference between the two sets of trials, by fitting an L1-regularized logistic 
regression on data from training trials, using the period 0.05 to 0.15 sec relative to stimulus 
onset for Stimulus decoding, and the period -0.05 to 0 sec relative to movement onset for 
Move or Choice decoding. We then predicted the binary category of test data by projecting 
firing rates from test set trials, from each time point during the trial, onto the weight vector of 
the logistic regression. The population decoding was taken as the difference between 
projections between test set trials of each binary category.   
To compare decoding timecourse across areas, we took the population decoding from each 
key area in each recording (n=29 populations from frontal cortex including MOs, PL, and MOp; 
n=29 populations from midbrain including SCm, MRN, SNr, ZI; n = 5 striatum, CP), normalized 
each so that the mean across recordings within an area was 1, and performed a two-way 
ANOVA. The two factors were time relative to movement onset and area (frontal, midbrain, 
striatum). We found a significant effect of time (50 d.f., F = 10.43, p<10-71) but no significant 
effect of area (2 d.f., F = 0.28, p>0.05) and no significant interaction between time and area 
(100 d.f., F = 0.12, p>0.05).  
Anatomical targeting and probe localization 

To determine probe insertion trajectories, we first selected desired recording sites, and then 
designed appropriate trajectories using the allen_atlas_probe gui (A. J. Peters, 
www.github.com/cortex-lab/allenCCF). In doing so, Allen CCF coordinate [5.4 mm AP, 0 DV, 
5.7 LR] was taken as the location of bregma. Craniotomies were targeted accordingly and 
angles of insertion were set manually. For some of the visual cortex recordings, surface 
insertion coordinates were targeted based on prior widefield calcium imaging. Using 
techniques described previously45, we imaged activity across cortex during presentation of the 
sparse visual noise receptive field mapping stimulus described above. Responses to visual 
stimuli near the intended location of the task stimuli were combined and used to identify 
cortical locations with retinotopically-aligned neurons. In some cases, these same imaging 
sessions were used to target MOp and SSp recordings to the area of large activity observed 
during forelimb movements that covers both of those areas51. Finally, MOs recordings were 
targeted at and around the cortical coordinates identified as disrupting task performance when 
inactivated, around +2 mm AP, 1 mm ML51.  
Recording sites were localized to brain regions by manual inspection of histologically identified 
recording tracks, in combination with alignment to the Allen Institute Common Coordinate 
Framework, as follows. 
Mice were perfused with 4% PFA, the brain was extracted and fixed for 24 hours at 4 C in 
PFA, then transferred to 30% sucrose in PBS at 4 C. The brain was mounted on a microtome 
in dry ice and sectioned at 60 µm slice thickness. Sections were washed in PBS, mounted on 
glass adhesion slides, and stained with DAPI (Vector Laboratories, H-1500). Images were 
taken at 4x magnification for each section using a Zeiss AxioScan, in three colors: blue for 
DAPI, green for GCaMP (when present), and red for DiI. 
An individual DiI track was typically visible across multiple slices, and recording locations 
along the track were manually identified by comparing structural aspects of the histological 
slice with features in the atlas. In most cases, this identification was aided by reconstruction 
of the track in Allen CCF coordinates. To achieve this, a manual initial guess was made of the 
3D Allen CCF coordinate for each observed DiI mark. In some cases, this guess was aided 
by a control-point registration of the histological slice to an atlas slice. Once the 3D coordinates 
were identified for each DiI mark along the track, a line was fitted to these coordinates in 3D 
and the atlas labels were extracted from along this line. Together, these approaches resulted 
in identification of the list of brain regions each probe track passed through. 
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We observed idiosyncratic scaling of each brain relative to the size of the atlas, and also that 
the electrode tip was difficult to precisely localize in the histological data. To overcome these 
problems, in a final step, the set of brain regions along the probe track was aligned to the 
recording sites by use of physiological signatures. For instance, segments of the probe that 
were located in ventricles, fiber tracts, or dendrite layers of the hippocampus were readily 
identifiable due to the low observed spike rate. Other identifiers included LFP signatures of 
hippocampus and olfactory areas, firing rates and spike amplitudes for cortical layers and 
certain subcortical areas, and presence of features such as visual receptive fields for 
superficial layers of SC and for visual thalamic nuclei. Such signatures were used to find a 
scaling and shift that aligned the list of identified brain regions along the track to recorded 
positions on the probe. Data recorded during the behavioral task was not considered during 
this alignment procedure. 
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Extended Data Table 1 | Brain regions recorded 
 

Abbreviation Full name N 
recordings 

N 
responsive 
neurons 

N total 
neurons 

% 
responsive 

ACA Anterior cingulate area 11 395 608 65.0 
ACB  ACB Nucleus accumbens 3 152 255 59.6 
APN  APN Anterior pretectal nucleus 2 177 235 75.3 
BLA Basolateral amygdalar nucleus 2 107 261 41.0 
CA1 Field CA1 21 494 1129 43.8 
CA3 Field CA3 10 243 438 55.5 
CP Caudoputamen 5 524 914 57.3 
DG Dentate gyrus 16 336 711 47.3 
GPe Globus pallidus external segment 3 146 274 53.3 
ILA Infralimbic area 3 192 338 56.8 
LD Lateral dorsal nucleus of the thalamus 6 209 308 67.9 
LGd Dorsal part of the lateral geniculate complex 10 397 811 49.0 
LP Lateral posterior nucleus of the thalamus 11 393 732 53.7 
LS Lateral septal nucleus 7 508 844 60.2 
MD Mediodorsal nucleus of the thalamus 3 244 381 64.0 
MG Medial geniculate complex of the thalamus 2 180 276 65.2 
MOp Primary motor area 3 553 682 81.1 
MOs Secondary motor area 19 993 1534 64.7 
MRN Midbrain reticular nucleus 11 722 857 84.2 
OLF Olfactory areas 9 210 684 30.7 
ORB Orbital area 6 281 770 36.5 
PAG Periaqueductal gray 3 72 130 55.4 
PL Prelimbic area 10 438 728 60.2 
PO Posterior complex of the thalamus 5 342 620 55.2 
POL Posterior limiting nucleus of the thalamus 3 132 190 69.5 
POST Postsubiculum 4 163 272 59.9 
RSP Retrosplenial area 9 308 598 51.5 
RT Reticular nucleus of the thalamus 2 111 160 69.4 
SCm Superior colliculus motor related 11 738 997 74.0 
SCs Superior colliculus sensory related 10 192 317 60.6 
SNr Substantia nigra reticular part 4 201 274 73.4 
SSp Primary somatosensory area 5 296 461 64.2 
SUB Subiculum 9 494 669 73.8 
VISa Anterior visual area 5 207 285 72.6 
VISam Anteromedial visual area 11 501 805 62.2 
VISl Lateral visual area 3 248 403 61.5 
VISp Primary visual area 12 649 923 70.3 
VISpm Posteromedial visual area 4 230 516 44.6 
VISrl Rostrolateral visual area 2 85 236 36.0 
VPL Ventral posterolateral nucleus of the thalamus 4 202 255 79.2 
VPM Ventral posteromedial nucleus of the thalamus 4 235 357 65.8 
ZI Zona incerta 4 167 220 75.9 
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Extended Data Table 2 | Subjects included in the study 
 
Subject ID Sex Genotype 
Cori F tetO-G6s x CaMK-tTA 
Forssmann M C57BL/6J 
Hench M tetO-G6s x CaMK-tTA 
Lederberg F Vglut1-IRES2-Cre-D 
Moniz M RCL-GCaMP6f x VGlut-Cre 
Muller F RCL-GCaMP6f x VGlut-Cre 
Radnitz F Snap25-GCaMP6s 
Richards M C57BL/6J 
Tatum F Vglut1-IRES2-Cre-D 
Theiler F RCL-GCaMP6f x VGlut-Cre 
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Extended Data Table 3 | Recording sessions 
Subject 
ID 

Recording 
date 

Subject age 
(weeks) 

Areas recorded 

Cori 2016-12-14 11 ACA, CA3, DG, LS, MOs, SUB, VISp 
Cori 2016-12-17 12 CA1, POST, VISl, VISpm 
Cori 2016-12-18 12 CA1, DG, LP, MG, MRN, POST, VISam, VISp 
Radnitz 2017-01-08 20 ACA, ILA, MOs, MRN, OLF, PL, RSP, SCm, SCs, VISp 
Radnitz 2017-01-09 20 MOs, MRN, SCm, VISp 
Radnitz 2017-01-10 20 ACA, ACB, CA1, DG, LD, LP, MOs, PL, PO, VISam 
Radnitz 2017-01-11 20 APN, CA1, DG, LP, MRN, POL, RSP, SCm, SCs, VISpm 
Radnitz 2017-01-12 20 CP, MOp, SSp 
Muller 2017-01-07 17 ACA, ACB, MOs, MRN, OLF, PL, RSP, SCs, VISp 
Muller 2017-01-08 17 CA1, DG, LP, MOs, PO, VISam 
Muller 2017-01-09 17 CA1, MRN, RSP, SCm, SCs, VISpm, VISrl 
Moniz 2017-05-15 30 APN, CA1, DG, LP, POL, SUB, VISam, VISpm 
Moniz 2017-05-16 30 CA1, DG, LGd, LP, MG, SUB, VISa, VISp 
Moniz 2017-05-18 30 LD, MOp, SSp 
Hench 2017-06-15 31 CA1, CA3, DG, ILA, LD, LP, LS, MOs, OLF, PL, PO, SUB, VISa, VISp 
Hench 2017-06-16 32 CA1, CA3, LD, LS, OLF, ORB, PL, VISam, VISl, VPL 
Hench 2017-06-17 32 CA1, DG, GPe, MRN, POL, POST, SCm, SCs, VISl, VISp, VISrl 
Hench 2017-06-18 32 CP, LS, MOp 
Theiler 2017-10-11 46 ACA, CA1, DG, ILA, LP, MOs, PL, SUB, VISam, VISp 
Richards 2017-10-29 26 ACA, CA1, DG, LP, LS, MD, MOs, PO, RSP, SUB, VISa, VPM 
Richards 2017-10-30 26 CA3, MOs, OLF, ORB, POST, SCm, SNr 
Richards 2017-10-31 26 MOs, MRN, OLF, ORB, PAG, RSP, SCm, SCs 
Richards 2017-11-01 26 CA1, CA3, CP, LGd, SNr, VPM, ZI 
Richards 2017-11-02 26 LP, OLF, PO, RT 
Forssmann 2017-11-01 26 ACA, CA1, DG, LGd, LS, MOs, SUB, VISa, VISp, VPL 
Forssmann 2017-11-02 26 ACA, CA1, DG, MOs, OLF, ORB, PL, SUB, VISa 
Forssmann 2017-11-04 27 CA1, SSp 
Forssmann 2017-11-05 27 CA3, CP, LD, OLF, SSp, VPL 
Lederberg 2017-12-05 15 ACA, CA1, DG, LGd, MD, MOs, PL, SUB, VISam, VISp 
Lederberg 2017-12-06 15 ACA, CA1, DG, LGd, MOs, MRN, PL, SCm, SCs, VISam, ZI 
Lederberg 2017-12-07 15 CA1, MOs, MRN, ORB, PAG, RSP, SCm, SCs, VISp 
Lederberg 2017-12-08 15 BLA, CA3, GPe, LGd, VPM, ZI 
Lederberg 2017-12-09 15 CA3, LGd, SSp 
Lederberg 2017-12-10 15 LD, RT, VPL, VPM 
Lederberg 2017-12-11 15 ACB, CA3, CP, LGd, SNr, ZI 
Tatum 2017-12-06 15 ACA, CA1, DG, LGd, LP, LS, MD, MOs, RSP, VISam 
Tatum 2017-12-07 15 MOs, MRN, PL, SCm, SCs, VISam 
Tatum 2017-12-08 15 MOs, ORB, PAG, RSP, SCm, SCs, VISam 
Tatum 2017-12-09 15 BLA, CA3, GPe, LGd, SNr 
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