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Abstract
Background: Single-cell RNA-seq (scRNA-seq) pro�ling has revealed remarkable variation in transcription, suggesting
that expression of many genes at the single-cell level are intrinsically stochastic and noisy. Yet, on cell population level, a
subset of genes traditionally referred to as housekeeping genes (HKGs) are found to be stably expressed in di�erent cell
and tissue types. It is therefore critical to question whether stably expressed genes (SEGs) can be identi�ed on the
single-cell level, and if so, how their expression stability can be assessed? We have developed a computational framework
for ranking expression stability of genes in single cells. Here we evaluate the proposed framework and characterize SEGs
derived from two scRNA-seq datasets that pro�le early human and mouse development.
Results: Here, we show that gene expression stability indices derived from the early human and mouse development
scRNA-seq datasets are highly reproducible and conserved across species. We demonstrate that SEGs identi�ed from single
cells based on their stability indices are considerably more stable than HKGs de�ned previously from cell populations across
10 diverse biological systems. Our analyses indicate that SEGs are inherently more stable at the single-cell level and their
characteristics reminiscent of HKGs, suggesting their potential role in sustaining essential functions in individual cells.
Conclusions: SEGs identi�ed in this study have immediate utility both for understanding variation/stability of single-cell
transcriptomes and for practical applications including scRNA-seq data normalization, the proposed framework can be
applied to identify genes with stable expression in other scRNA-seq datasets.
Key words: Stably expressed genes; Single cells; scRNA-seq; Single-cell transcriptome; Housekeeping genes; Bulk
transcriptome

Background

A hallmark of single-cell RNA-seq (scRNA-seq) data has been
the remarkable variation in gene transcription that occurs at
the level of individual cells [1]. The high degree of variation
has led to the appreciation that transcription of genes at the

single-cell level are comparatively noisier than on the cell pop-
ulation level [2]. Indeed, a subset of genes are thought to be
characterized by their stochastic expression [3]. Supporting
this notion, genes were found to show transcriptional burst-
ing where their expression varies drastically in individual cells
[4, 5]. Furthermore, a large number of genes from scRNA-seq
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data exhibit bimodality or multimodality of non-zero expres-
sion values [6], suggesting that many of these genes may be
expressed at di�erent levels in the same and/or di�erent cells.
These phenomena illustrate that expression stochasticity is an
intrinsic property of many genes on the single-cell level [7].
On the cell population level, however, a subset of genes tra-

ditionally referred to as housekeeping genes (HKGs) [8, 9] are
found to be stably expressed in di�erent cell types, tissue types
and developmental stages [10]. The concept of HKGs is often
related to the gene set required to maintain basic cellular func-
tions and therefore is crucial to the understanding of the core
transcriptome that is required to sustain life [11, 12, 13]. Early
studies such as those by [14], [15], [8], and [16] were conducted
to de�ne HKGs using serial analysis of gene expression (SAGE)
or microarrays. With the advent of biotechnologies, follow-up
studies using more comprehensive data sources such as those
by [17] and [18], and high-throughput RNA sequencing (RNA-
seq) by [10] and [19], have re�ned the list of HKGs from popu-
lations of cells.
Taken together, the �ndings from bulk transcriptome data

of cell populations and the stochasticity in gene expression ob-
served in individual cells from scRNA-seq data, several funda-
mental questions arise including (i) Can patterns of stably ex-
pressed genes be identi�ed from single cell data? And if so, (ii)
how stable are they across individual cells from di�erent tis-
sue types and biological systems? (iii) What properties do such
genes have? And (iv) how do they compare to HKGs de�ned
from bulk transcriptome data?
Leveraging the advances of scRNA-seq techniques [20, 21],

we have developed a computational framework to rank genes
based on various properties extracted from scRNA-seq data
to characterize their expression stability in individual cells
[22]. These genes were subsequently utilized for scRNA-seq
data normalization and integration. To address the questions
posed above, here, we evaluated the reproducibility of the pro-
posed framework on two large-scale high-resolution scRNA-
seq datasets in which a wide range of cell types and develop-
mental stages were pro�led in human [23] and mouse [24]. We
referred to the list of stably expressed genes derived from these
two datasets as “hSEG” and “mSEG” for human and mouse re-
spectively, and collectively as “SEGs”. We subsequently evalu-
ated the stability of SEGs on the two scRNA-seq datasets from
which they were identi�ed and eight independent scRNA-seq
datasets generated from diverse tissues and biological systems,
and di�erent sequencing protocols. Compared to HKGs previ-
ously de�ned using bulk microarray [16] or RNA-seq datasets
[10], SEGs identi�ed on the single-cell level are considerably
more stable in all 10 biological systems, demonstrating the
higher resolution enabled by scRNA-seq data for identifying
genes that are truly stably expressed across individual cells,
and suggesting their potential roles in maintaining essential
functions in individual cells.
Our analyses highlight the previously unappreciated gene

stability at the single-cell level. Our computational frame-
work also allows further identi�cation and re�ning of SEGs in
other scRNA-seq datasets. This may have broad application
in normalization [25, 26] and removal of unwanted variation
[27, 28, 22] in scRNA-seq as well as bulk sequencing datasets
generated from various experiments.

Data Description

scRNA-seq data processing

A collection of 10 publicly available scRNA-seq datasets (Table
1) were utilized in this study. These datasets were downloaded
from either NCBI GEO repository or the EMBL-EBI ArrayEx-

press repository. Fragments per kilobase of transcript per mil-
lion (FPKM) values or counts per million (CPM) from their re-
spective original publications were used to quantify full length
gene expression for datasets generated by SMARTer or SMART-
Seq2 protocols. UMI-�ltered counts were used to quantify gene
expression for the InDrop dataset. All datasets have under-
gone cell-type identi�cation using biological knowledge as-
sisted by various clustering algorithms from their respective
original publications which we retain for evaluation purposes.
For each dataset, genes with more than 80% missing values
(zeros) were removed, with the remaining genes considered as
expressed in that dataset. These �ltered datasets were used for
all subsequent analyses.

Analyses

A computational framework for measuring gene ex-
pression stability in single cells

Brie�y, the framework (Figure 1A) extracts a set of stability
features including λ, σ2, ω∗, and the F-statistics (introduced
below), and derives a stability index for each gene on the single-
cell level.
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Figure 1. Schematic illustration of the computational framework for deriving
gene stability index on the single-cell level. (A) Stability features extracted
directly from the mixture model are colored in blue. Those extracted from
additional scRNA-seq data characteristics are in red. The overall stability index
is derived from the combination of all stability features. (B) Evaluation metrics
used for evaluating gene expression stability in scRNA-seq datasets.

The µ and σ2 denote the mean and variance of the Gaussian
component from �tting a Gamma-Gaussian mixture model
[37] to the non-zero expression values of a gene x across in-
dividual cells. The joint density function f(.) of the mixture
model is de�ned as follows:

f(.) = λ βα
Γ(α) xα–1e–βx + (1 – λ)

1
σ
√2π e

– (x–µ)22σ2

where 0≤ λ ≤1 is the mixing proportion indicating the pro-
portion of cells in the Gamma component in the �tted model.
Genes whose expression pro�les are with low mixing propor-
tion (λ) and small variance (σ2) are unimodal and relatively
invariant across cells and therefore more likely to be stably ex-
pressed.
Theω denotes the percentage of zeros of a gene across cells.

The measured expression level for a given gene and cell may
be zero due to technical dropout, stochastic expression, or no
transcription occurring at all for that gene [38]. Thus, SEG
would have relatively small ω (i.e. low proportion of zeros),
since they are expected to be expressed in all cells. However,
lowly expressed genes tend to have a higher proportion of zeros
than highly expressed genes simply due to technical dropouts
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Table 1. Summary of scRNA-seq datasets utilized for stably expressed gene identi�cation and/or evaluation in this study.
ID Publication Description Organism # cell # class Protocol Purpose
E-MTAB-3929 [23] Early human development Human 1529 5 SMART-Seq2 identify & evaluate
GSE45719 [24] Early mouse development Mouse 269 8 SMART-Seq2 identify & evaluate
GSE94820 [29] Peripheral blood mononuclear cells Human 1140 5 SMART-Seq2 evaluate
GSE75748 [30] PSCs and endoderm progenitors Human 1018 7 SMARTer evaluate
GSE72056 [31] Multicellular metastatic melanoma Human 4645 7 SMART-Seq2 evaluate
GSE67835 [32] Adult and fetal brain Human 466 8 SMARTer evaluate
GSE60361 [33] Cortex and hippocampus Mouse 3005 7 SMARTer evaluate
GSE52583 [34] Developmental lung epithelial cells Mouse 198 4 SMARTer evaluate
E-MTAB-4079 [35] Mesoderm diversi�cation Mouse 1205 4 SMART-Seq2 evaluate
GSE84133 [36] Pancreas inter- and intra-cells Mouse 822 13 InDrop evaluate

[39]. We therefore regularize ω by average expression level µ
in Gaussian component of each gene as ω∗ = ω ·minmax(µ)
such that we anticipate more dropout events for SEGs with low
expression compared to highly expressed genes. When pre-
de�ned cell type annotation is available for a given dataset, the
F-statistics can be utilized as another stability feature to select
for genes in which we observe the same average gene expres-
sion across di�erent pre-de�ned cell types. Together, genes
with small λ, σ2, ω∗ and F-statistic are unimodal, expressed
with low variance, with relatively low percentage of zeros, and
expressed similarly across all cell types, respectively, and are
more likely to be stably expressed.
The expression stability index is de�ned for each gene by

combining these four stability features. Speci�cally, genes
are ranked �rst in increasing order with respect to λ, σ2, ω∗

and F-statistics; and the ranks from each stability features are
rescaled to range from 0 to 1. The stability index for each gene
is de�ned as the average of its scaled rankings across all four
stability features. Thus, genes are ranked in terms of their de-
gree of evidence towards expression stability in individual cells
and can be selected by adjusting the stability index threshold.
The subsequent evaluation can be conducted to assess the sta-
bility and generalization property of selected SEGs in other bi-
ological systems using various evaluation metrics (Figure 1B;
Section 2.3).

Genes are reproducibly ranked by their expression sta-
bility in single cells

To investigate if some genes are inherently more stable in ex-
pression on the single-cell level, we utilized two large-scale
high-resolution scRNA-seq datasets to quantify genes that are
expressed at steady level across di�erent cell types and de-
velopmental stages in early human and mouse development,
respectively. Brie�y, the two scRNA-seq datasets contain (i)
transcriptome pro�les of 1,529 individual cells derived from
88 human preimplantation embryos ranging from 3rd to 7th
embryonic day [23] and (ii) transcriptome pro�les of 269 indi-
vidual cells derived from oocyte to blastocyst stages of mouse
preimplantation development [24] (Table 1). The wide range
of cell types and developmental stages [40] captured by early
mammalian development such as in these two datasets provide
a suitable starting point for identifying SEGs that may allow
generalization to various cell/tissue types and biological sys-
tems.
We �rst looked at the proportion of zeros per gene across

all pro�led cells in the early human and mouse development
scRNA-seq datasets respectively. We found that a large per-
centage of genes have more than 50% zero quanti�cation
across cells in both datasets (Figure 2A), suggesting most of
the genes are transiently expressed during di�erent develop-
mental stages in both human and mouse. We observed that
the mixing proportion of each gene, the variance and mean ex-
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Figure 2. Characterizing gene stability features in single cells from early hu-
man and mouse development, respectively. (A) Percentage of zeros per gene
across individual cells. (B) Fitted values of mixing proportion (λ), and vari-
ance (σ2) and mean (µ) in the Gaussian component (top panels) of the mixture
model for each gene. Regularised percentage of zeros, F-statistics computed
from pre-de�ned cell class and developmental stages (bottom left panel) and
stability index derived for each gene for early human and mouse development
(bottom right panel), respectively. (C) Scatter plot of stability index calculated
from two random sub-sampling of cells from each dataset. Mean Pearson’s
correlation coe�cient (r̄) were calculated from pairwise comparison of 10 re-
peated random sub-sampling on each dataset. (D) Scatter plot of stability index
calculated from using the full set of homologous human and mouse genes.

pression level from the Gaussian component from the mixture
model, and the F-statistics calculated using pre-de�ned cell la-
bels were di�erent in the two scRNA-seq datasets (Figure 2B).
This suggests the need to calculate gene expression stability
in early human and mouse development separately. Neverthe-
less, by combining the scaled ranks of genes with respect to
each stability feature, the stability index distributions derived
for human and mouse genes appeared to be highly comparable
(Figure 2B, bottom right panel).
We next investigated the reproducibility of the stability in-

dex by randomly sampling 80% of all cells and re-calculating
the stability index for each sub-sample. We found the stabil-
ity index to be highly reproducible in both the human and the
mouse data (Figure 2C) with average Pearson correlation co-
e�cients of 0.98 and 0.97. The stability indices also showed
relatively high correlation between human and mouse (Figure
2D), suggesting gene expression stability is conserved across
species.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 22, 2018. ; https://doi.org/10.1101/229815doi: bioRxiv preprint 

https://doi.org/10.1101/229815
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 | Journal of XYZ, 2017, Vol. 00, No. 0

Comparative analysis of SEGs identi�ed in single cells
and HKGs de�ned from bulk transcriptome

To understand the relationships of genes with stable expres-
sion in single cells with HKGs de�ned previously with bulk
microarray [16] and RNA-seq [10], we derived a list of SEGs
for human and mouse respectively by computing the rank per-
centiles of stability index as well as the four stability features.
Genes with a stability index rank percentile above 80 as well
as a reversed rank percentile above 60 for each of the four sta-
bility features were included in the SEG list. Using this ap-
proach, we derived lists of 1076 human (hSEG) and 830 mouse
(mSEG) genes, respectively (Figure 3A and B). In comparison
to the HKGs de�ned previously using bulk transcriptomes, we
found that SEGs identi�ed on the single-cell level have sig-
ni�cantly smaller expression variances across individual cells
(Figure 3A).
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Figure 3. Comparison of SEGs identi�ed on individual cell level using scRNA-
seq with HKGs de�ned on cell population level using bulk transcriptome data.
(A) Scatter plot showingmean expression (x-axis) and variance (y-axis) of each
gene (gray circles) across pro�led single cells. Open red circles represent SEGs
identi�ed from early human development data (hSEG) in this study whereas
dark and light blue solid circles represent HKGs de�ned previously using bulk
microarray [16] and RNA-seq data [10]. (B) Same as (A) but for SEGs identi-
�ed from early mouse development data (mSEG; green circles). (C-E) Venn
diagrams showing overlaps of SEGs identi�ed from early human and mouse
development (C), HKGs de�ned using bulk microarray and RNA-seq (D), and
the overlap of all lists (E). (F) Expression patterns of example genes that are
de�ned as SEGs using scRNA-seq data but not as HKGs using bulk microarray
or RNA-seq data (RPL26 and RPL36) and vice versa (HINT and AGPAT1) across
individual cells. (G) Expression patterns for GAPDH and ACTB in human and
mouse (Gapdh and Actb) across individual cells.

For the human and mouse SEG lists derived from above,
there were 256 common genes, accounting for 24% of the hSEG
or 31% of the mSEG (Figure 3C). Comparing with previously de-
�ned HKGs (Figure 3D), there were 97 common genes between
our hSEG list and those de�ned by microarray (9% and 18%),
and 650 between hSEG list and those de�ned by bulk RNA-seq
(60% and 17%). Together, these re�ected a relatively low to

moderate overlap among SEGs andHKGs (Figure 3E), highlight-
ing both their commonality and the uniqueness, which may be
attributed to the biological systems, data resolutions (popula-
tion vs. individual cells), and analytic approaches from which
they are de�ned.
To investigate the di�erence between SEGs and HKGs de-

�ned by bulk transcriptomes, we inspected a few individual
genes that were de�ned as SEGs using scRNA-seq data but
not HKGs by bulk microarray or RNA-seq, and vice versa. We
discovered that many ribosomal proteins (such as RPL26 and
RPL36) that were included in the SEG list but not in the HKG
lists (Figure 3F) showed strong unimodal expression patterns
across all cells. In contrast, genes such as HINT1 (Histidine
triad nucleotide-binding protein 1) and AGPAT1 (1-Acylglycerol-
3-Phosphate O-Acyltransferase), both of which have been re-
ported to be di�erentially expressed in brain tissue [41] or ma-
lignant oesophageal tissues [42] compared to normal samples,
were included in both microarray and RNA-seq de�ned HKG
lists, but not in SEG list due to their bimodal expression pat-
terns across individual cells.
Finally, we examined the expression patterns of GAPDH and

ACTB (Figure 3G), genes which are commonly treated as canoni-
cal HKGs for data normalization, and observed clear bimodality
in both the human and mouse data. In agreement with previ-
ous studies [10, 17, 25, 43], these data argue against their usage
as “housekeeping genes” for sample normalization.

SEGs exhibit strong expression stability in single cells
across early human and mouse development stages

We hypothesized that if the expression levels of the SEGs are
relatively stable, they should show relatively small expression
di�erences across the di�erent cell types from various biolog-
ical systems. We �rst investigated principal component analy-
sis (PCA) plots generated from early human and mouse devel-
opment data using all genes (all expressed mRNA), or subsets
of genes de�ned for human (i.e. HKG microarray, HKG RNA-
seq, and hSEG) (Figure 4A) and mouse (i.e. mSEG) (Figure 4B).
We found that for human data there is clear separation of de-
velopmental stages in the �rst two principal components when
PCA plots were created by using either all genes, and HKGs
de�ned from microarray or RNA-seq, suggesting genes that
were expressed di�erentially in di�erent developmental stages
were driving the separation. In contrast, the PCA plot gener-
ated from using hSEG show much less separation with respect
to the developmental stages, suggesting they are generally ex-
pressed at a similar level across individual cells irrespective to
cell di�erentiation and change of developmental stages. Sim-
ilar results were observed from mouse development data (Fig-
ure 4B) where PCA plot generated from mSEG show less cell
type and development stage separation compared to PCA plot
generated from using all genes.
To quantify the above visual observations in human and

mouse developmental datasets, we utilized k-means clustering
to partition cells into �ve and eight clusters respectively, using
all genes (all expressed mRNA) or subsets of genes de�ned in
each list (i.e. hSEG, mSEG, HKG microarray and HKG RNA-
seq) with the hypothesis that clusters arising from using SEGs
and HKGs will exhibit lower concordance with pre-de�ned cell
type- and tissue-speci�c labels (Figure 4C), thereby demon-
strating consistent levels of expression across di�erent cell and
tissue types. Random subsets that contained the same number
of genes as in SEGs were included by sampling from either all
genes or in HKG RNA-seq list to account for the size of the
gene-sets used in clustering (see Methods).
Indeed, we found that k-means clustering outputs using

SEGs derived from scRNA-seq data showed the lowest con-
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Figure 4. Evaluation of SEGs and HKGs using early human and mouse development scRNA-seq datasets. (A) PCA plots generated from human development
data using all expressed genes, HKGs, or hSEGs. Cells are colored by their pre-de�ned developmental stages. (B) PCA plots generated from mouse development
data using all expressed genes or mSEGs. Cells are colored by their pre-de�ned types and developmental stages. (C) Schematic showing the quanti�cation of
concordance of k-means clustering with pre-de�ned cell classes using a panel of metrics. (D) Violin plot of concordance (ARI) between k-means clustering and
pre-de�ned cell class labels, using all expressed genes, HKGs, random subsets of genes sampled from all expressed genes, or those from bulk RNA-seq but matched
to the size of hSEG and mSEG (HKG RNA-seq subset), respectively. (E) Barplots of concordance between k-means clustering and pre-de�ned cell class labels,
using all expressed genes, genes included in each subset list, and random subsets as in (D) for human and mouse data, respectively.

cordance to their pre-de�ned cell class labels (i.e. embryonic
day of development or cell types) as quanti�ed by the adjusted
rand index (ARI) (Figure 4D) and the three other concordance
metrics, namely Purity, Fowlkes-Mallows index (FM), and Jac-
card index (Figure 4E). Together, these results demonstrate
that SEGs are stably expressed across cells and developmental
stages in the two scRNA-seq datasets.

SEGsmaintain expression stability acrossmany di�er-
ent tissues and biological systems

To test whether SEGs derived from the above two early mam-
malian development datasets are stably expressed in other cell
and tissue types, we evaluated these SEGs on eight additional
datasets (Table 1) which are independent of the two scRNA-seq
datasets used for identifying SEGs. These additional datasets
represent drastically di�erent tissues and biological systems in
both human and mouse, as well as di�erent sequencing proto-
cols and a wide range in the number of cells sequenced.
Similar to the above section (3.3), we quanti�ed the cluster-

ing concordance with respect to each of their pre-de�ned cell
class labels using each of the four concordance metrics (ARI,
Purity, FM, and Jaccard) (Table 2). We found that on average,
clustering using SEGs gave the lowest concordance to the pre-
de�ned cell type- and tissue-speci�c class labels in all tested
datasets compared to clustering using all expressed genes or
HKGs de�ned using bulk microarray and RNA-seq datasets.
These results suggest that SEGs de�ned in early human and
mouse development also display strong expression stability in
various cell/tissue types and biological systems, and they are
considerably more stable than HKGs de�ned using bulk tran-
scriptome data on the single-cell level.

Gene stability index derived from single cells corre-
lates with gene sequence and structural characteristics

To further characterize gene expression stability in single cells,
we correlated the stability index and each stability feature ex-
tracted from scRNA-seq data with various gene structural and
conservation features calculated from various data sources. We
found that the stability index correlated positively with the
number of exons in a gene, gene expression, and gene con-
servation, and negatively with GC-content in the gene body in
both human and mouse (Figure 5A), many of which are char-
acteristics of HKGs reported in previous studies. Consistent
with this, we found SEGs are more evolutionarily conserved
[44] with higher phyloP scores. SEGs also possess more ex-
ons, in agreement with previous �nding on HKGs [45], despite
mouse genes on average having fewer exons than human genes.
Both human and mouse SEGs appeared to have a slightly lower
GC-content but, similar to previous observation on HKGs, the
relation was relatively weak [46] (Figure 5B).
Perhaps unsurprisingly, SEGs identi�ed in this study pos-

sess similar characteristics to those observed in HKGs, indicat-
ing that they are serving essential cellular functions akin to
HKGs. Supporting this, we found that multiple top-enriched
Gene Ontology terms that describe essential cellular functions
are shared by common SEGs (genes overlap between hESG and
mSEG) and common HKGs (genes overlap between HKG mi-
croarray and HKG RNA-seq) (see Methods for details). Nev-
ertheless, common SEGs are far more enriched for most On-
tology terms than common HKGs de�ned from bulk transcrip-
tome, indicating the higher resolution enabled by scRNA-seq
data for identifying genes that are truly stably expressed across
individual cells.
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Table 2. Stability evaluation results on independent scRNA-seq datasets that pro�le various cell types and biological systems. All indicesare within the range of [0, 1] and are multiplied by 100. The lowest results from each metric in each dataset are bolded.
Peripheral blood mononuclear cells (human); [29] PSCs and endoderm progenitors (human); [30]

All genes HKG microarray HKG RNA-seq hSEG All genes HKG microarray HKG RNA-seq hSEG
ARI 55±8 42±3 38±4 29±6 69±5 58±5 55±6 41±3
Purity 69±7 62±2 59±1 52±5 80±4 74±3 71±5 59±3
FM 67±5 56±1 52±3 45±4 75±4 66±4 63±5 51±2
Jaccard 49±6 39±1 35±2 29±4 60±5 48±4 46±6 34±2

Multicellular metastatic melanoma (human); [31] Adult and fetal brain (human); [32]
All genes HKG microarray HKG RNA-seq hSEG All genes HKG microarray HKG RNA-seq hSEG

ARI 31±5 18±2 18±1 15±1 53±7 50±3 39±4 36±3
Purity 80±5 73±1 74±1 71±1 82±3 76±4 74±3 68±2
FM 51±3 39±2 40±1 37±1 62±6 59±2 50±3 47±3
Jaccard 32±2 22±2 24±1 21±1 44±6 41±2 33±3 30±3

Cortex and hippocampus (mouse); [33] Developmental lung epithelial cells (mouse); [34]
All genes HKG microarray HKG RNA-seq mSEG All genes HKG microarray HKG RNA-seq mSEG

ARI 45±8 36±5 31±3 27±2 61±6 55±4 48±2 45±0
Purity 72±3 66±1 63±1 58±1 83±4 80±2 76±1 74±0
FM 55±6 49±4 44±3 41±2 72±4 68±3 62±2 60±0
Jaccard 38±6 32±4 28±2 25±1 56±5 51±3 45±2 43±0

Mesoderm diversi�cation (mouse); [35] Pancreas inter- and intra-cells (mouse); [36]
All genes HKG microarray HKG RNA-seq mSEG All genes HKG microarray HKG RNA-seq mSEG

ARI 54±2 43±8 49±3 32±6 37±4 22±3 23±3 18±2
Purity 66±1 62±6 65±1 59±6 89±3 78±3 76±2 72±1
FM 68±1 63±8 67±1 58±7 52±4 38±3 39±3 34±2
Jaccard 52±1 46±7 50±1 40±8 30±3 20±3 21±3 17±2
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Figure 5. Characterization of stability index with sequence and gene charac-
teristics. (A) Pearson correlation analyses of human and mouse gene stabil-
ity features with respect to genomic structural and evolutional gene features.
(B) Boxplots of various gene characteristics for SEGs, HKGs and all expressed
genes. (C) Gene ontology analysis (by over-representation) of SEGs that are
common between hESG and mSEG; and HKGs that are common between HKG
microarray and HKG RNA-seq.

Discussion

Since the emergence of high-throughput transcriptome pro�l-
ing, the search for stably expressed genes (SEGs) has been a
central quest in modern biology. Such genes are often thought
to be essential for basic cellular functions given their relatively
constant expression and activity despite changes in cell status
and types. The hypothesis that such genes may serve the same
housekeeping functions across various cell and tissue types has
also led to their de�nition as “housekeeping genes” (HKGs).
While the existence of true HKGs whose expression are univer-
sally constant across all cells and systems is a subject of debate
[42, 47], their practical usage as control genes for experimental
data normalization is well appreciated.
Recent advances in single-cell transcriptome pro�ling us-

ing scRNA-seq have highlighted the phenomenal amount of
gene expression stochasticity and heterogeneity in single cells.
Compared to bulk transcriptome data that aggregate millions
of cells to obtain a single gene expression measure, scRNA-seq
data allows the expression dynamics of each gene within indi-
vidual cells to be monitored, and therefore enables the identi-
�cation of genes that are truly expressed at a steady level in
individual cells across tissues and developmental stages. By
modeling from large-scale scRNA-seq datasets, we quanti�ed
the relative expression stability of genes on the single-cell lev-
els. We showed that the SEGs derived based on their stability
indices are considerably more stable in not only the scRNA-seq
datasets from which they are identi�ed but also independent
scRNA-seq datasets that pro�les various cell types and biolog-
ical systems.
Our analysis demonstrated that despite the high variabil-

ity in single-cell gene expression, a subset of genes is inher-
ently more stable in expression than other genes within indi-
vidual cells. Their sequence and gene structural properties are
strongly reminiscent of HKGs de�ned from bulk transcriptome,
suggesting their essential roles in maintaining basic cellular
functions on the individual cell level.
The proposed framework can be applied in a data dependent

manner to rank genes based on their expression stability in a
given scRNA-seq dataset. This relaxes the rigid binary de�ni-
tion of HKGs and enable a more practical de�nition of stable
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expression in di�erent experimental contexts. Hence, the pro-
posed method is particularly useful for de�ning stable or “con-
trol" genes in various scRNA-seq experiment, which is often a
key step in normalizing such data [48, 49].
The generalizability of SEGs is dependent on the diversity

of cell types pro�led in a scRNA-seq experiment. Various
cell atlas pro�ling initiatives such as the Human Cell Atlas
(https://www.humancellatlas.org) is currently under way to
comprehensively characterize the transcriptome of every hu-
man cell. Information from such resources in conjunction with
our computational framework will provide an even more pre-
cise assessment of gene expression stability in single cells that
will enrich subsequent avenues of research including character-
izing heterogeneity and stability of single-cell transcriptomes
and their use for technical data normalization and standardiza-
tion.
Taken together, this comprehensive evaluation study

demonstrates the utility of measuring gene expression stability
at the single-cell level and marks a shift in paradigm for select-
ing genes that are stably expressed in single cells for practical
applications.

Methods

Evaluating the stability of gene lists

To assess the expression stability of each gene list in various
cell types and biological systems, the k-means algorithm was
utilized to cluster each scRNA-seq data to its pre-de�ned num-
ber of clusters and an array of evaluation metrics were applied
to compute the concordance with respect to the pre-de�ned
(“gold standard”) class labels. Evaluation metrics include the
adjusted Rand index (ARI), Purity, the Fowlkes-Mallows index
(FM) and the Jaccard index.
Let U = {u1, u2, . . . , uP} denote the true partition across Pclasses and V = {v1, v2, . . . , vK} denote the partition producedfrom k-means clustering (K = P). Let a be the number of pairs

of cells correctly partitioned into the same class by the clus-
tering method; b be the number of pairs of cells partitioned
into the same cluster but in fact belong to di�erent classes; c
be the number of pairs of cells partitioned into di�erent clus-
ters but belongs to the same class; and d be the number of
pairs of cells correctly partitioned into di�erent clusters. Then
the Adjusted Rand Index [50], the Jaccard index [51], and the
Fowlkes-Mallows index [52] can be de�ned as

ARI = 2(ad – bc)
(a + b)(b + d) + (a + c)(c + d) ;

Jaccard = a/(a + b + c);

FM =
√(

a/(a + b))(a/(a + c));
and the Purity [53] can be calculated as

Purity = 1N
∑
i
max
j
|ui ∩ vi|

where N is the total number of cells, i and j are the indices of
clusters from clustering output ui and pre-de�ned class label
vj. For each dataset, we calculated and compared the above four
metrics using (i) all expressed genes, (ii) HKGs de�ned using
microarray data [16], (iii) HKGs de�ned using bulk RNA-seq

data [10], and (iv) SEGs identi�ed in this study. In order to
account for potential e�ects of gene list length, we also gen-
erated random subsets with the same number of genes in our
SEG lists �rst by randomly sampling from all expressed genes
in the dataset, and second by randomly sampling from the HKG
list de�ned by bulk RNA-seq. Since the k-means clustering
algorithm is not deterministic and the random sampling pro-
cess introduces variability, the above procedure was repeated
10 times to account for such variability.

Gene properties

To characterize SEGs identi�ed in early human and mouse de-
velopment datasets, we extracted gene sequence and structural
features including the number of exons and percentage GC con-
tent in the gene body for human and mouse, respectively, us-
ing the biomaRt [54]. Additionally, to characterize gene evolu-
tionary conservation, phyloP scores were downloaded from the
UCSC Genome Browser for mouse (mm10) and human (hg38)
genomes. Exonic bases of each gene were determined based on
GENCODE Genes for human (release 26) andmouse (release 14).
The set of conservation scores for each gene was averaged for
each gene. We assessed the concordance of gene expression
stability index and each stability feature derived from single
cells with structural features, conservation scores, and their ex-
pression across all genes for human and mouse using Pearson
correlation coe�cients. We also compared these features for
SEGs and previously de�ned HKGs against all expressed genes
in human and mouse, respectively.

Gene ontology enrichment analysis

To perform gene ontology enrichment analysis, we �rst de�ned
SEGs that are shared between hSEG and mSEG as “common
SEGs" and HKGs that are shared between HKG microarray and
HKG RNA-seq as “common HKGs". The similar numbers of
common SEGs (256) and common HKGs (277) allowed us to
avoid the gene-set size bias in the enrichment analysis.
Over-representation of common SEGs or common HKGs

was evaluated by comparing each set of genes against ontolo-
gies de�ned in Gene Ontology database [55]. Fisher’s exact
test was used to assess statistical signi�cance. Top-enriched
ontologies from either common SEGs or common HKGs were
combined for interpretation.

Availability of supporting data and materials

The datasets generated and/or analyzed during the
current study are available in either the NCBI GEO
repository or the EMBL-EBI ArrayExpress repository
(Table 1). An interactive web resource is available at
http://shiny.maths.usyd.edu.au/SEGs. The computa-
tional framework implemented in R is available from
https://github.com/PengyiYang/SEGs.
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