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Key findings  
● A novel approach for integrating DNA-seq and single-cell RNA-seq data to reconstruct            

clonal substructure for single-cell transcriptomes. 

● Evidence for non-neutral evolution of clonal populations in human fibroblasts.  

● Proliferation and cell cycle pathways are commonly distorted in mutated clonal           

populations. 

 
 

Abstract 
Decoding the clonal substructures of somatic tissues sheds light on cell growth, development and              

differentiation in health, ageing and disease. DNA-sequencing, either using bulk or using single-cell             

assays, has enabled the reconstruction of clonal trees from frequency and co-occurrence patterns of  

somatic variants. However, approaches to systematically characterize phenotypic and functional          

variations between individual clones are not established. Here we present cardelino           

(https://github.com/PMBio/cardelino), a computational method for inferring the clone of origin of           

individual cells that have been assayed using single-cell RNA-seq (scRNA-seq). After validating our             

model using simulations, we apply cardelino to matched scRNA-seq and exome sequencing data from              

32 human dermal fibroblast lines, identifying hundreds of differentially expressed genes between cells             

from different somatic clones. These genes are frequently enriched for cell cycle and proliferation              

pathways, indicating a key role for cell division genes in non-neutral somatic evolution.  
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Introduction 
 

Ageing, environment and genetic factors can impact mutational processes, thereby shaping the            

acquisition of somatic mutations across the life span (Burnet, 1974; Martincorena and Campbell, 2015;              

Stransky et al., 2011; Hodis et al., 2012; Huang et al., 2018). The maintenance and evolution of                 

somatic mutations in different sub-populations of cells can result in clonal structure, both within healthy               

and disease tissues. Targeted, whole-genome and whole-exome DNA sequencing of bulk cell            

populations has been utilized to reconstruct the mutational processes that underlie somatic            

mutagenesis (Nik-Zainal et al., 2012; Alexandrov et al., 2013; Forbes et al., 2017; Bailey et al., 2018;                 

Ding et al., 2018) as well as clonal trees (Roth et al., 2014; Deshwar et al., 2015; Jiang et al., 2016).  

 

Availability of single-cell DNA sequencing methods (scDNA-seq; Navin et al., 2011; Wang et al., 2014;               

Navin, 2015) combined with new computational approaches have helped to improve the reconstruction             

of clonal populations (Kim and Simon, 2014; Navin and Chen, 2016; Jahn et al., 2016; Kuipers et al.,                  

2017; Roth et al., 2016; Salehi et al., 2017; Malikic et al., 2017). However, the functional differences                 

between clones and their molecular phenotypes remain largely unknown. Systematic characterisation           

of the phenotypic properties of clones could reveal mechanisms underpinning healthy tissue growth             

and the transition from normal to malignant behaviour.  

 

An important step towards such functional insights would be access to genome-wide expression             

profiles of individual clones, yielding genotype-phenotype connections for clonal architectures in           

tissues. Recent studies have explored mapping scRNA-seq profiles to clones with distinct copy             

number states in cancer, thus providing a first glimpse at clone-to-clone gene expression differences              

in disease (Müller et al., 2016; Tirosh et al., 2016; Fan et al., 2018). However, generally-applicable                

methods for inferring the clone of origin of single cells to study genotype-transcriptome relationships              

are not yet established. 

 

To address this, we have developed cardelino: a computational method that exploits variant             

information in scRNA-seq reads to map cells to their clone of origin. After validating our model using                 

simulations, we demonstrate that cardelino allows for accurate assignment of full-length single-cell            

transcriptomes to the clonal substructure in 32 normal dermal fibroblast lines. With linked somatic              

variants, clone and gene expression information, we investigate gene expression differences between            

clones at the level of individual genes and in pathways, which provides new insights into the dynamics                 

of clones. These findings also extend recent studies using bulk DNA-seq data, predominantly in              

epithelial cells, that have revealed oncogenic mutations and evidence of selective clonal dynamics in              

normal tissue samples (Behjati et al., 2014; Martincorena et al., 2015; Simons, 2016b; Martincorena et               

al., 2016; Simons, 2016a). Our approach can be applied to a broad range of somatic substructure                

analyses in population or disease settings to reveal previously inaccessible differences in molecular             

phenotypes between cells from the same individual. 
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Results 

Mapping single-cell transcriptomes to somatic clones with cardelino 

We present a two-step strategy for integrating somatic clonal substructure and transcriptional            

heterogeneity within a population of cells. First, a clonal tree is inferred using variant allele frequencies                

from bulk or single-cell DNA sequencing data (Roth et al., 2014; Deshwar et al., 2015; Jiang et al.,                  

2016; Kim and Simon, 2014; Navin and Chen, 2016; Jahn et al., 2016; Kuipers et al., 2017; Roth et al.,                    

2016; Salehi et al., 2017; Malikic et al., 2017). Subsequently, cardelino performs probabilistic             

assignment of individual single-cell transcriptomes to inferred clones, using variant information           

extracted from single-cell RNA-seq reads (Fig. 1a).  

 

Briefly, cardelino is based on a Bayesian mixture model, where individual mixture components             

correspond to somatic clones in a given population of cells. To enable accurate cell assignment, we                

employ a beta-binomial error model that accounts for dropout and allelic imbalance, parameters that              

affect the sensitivity for detecting true somatic variants from sparse scRNA-seq data. Initially, we              

assess the accuracy of our approach using simulated data that mimic typical clonal structures and               

properties of scRNA-seq as observed in real data (4 clones, 10 variants per branch, 20% of variants                 

with read coverage, 200 cells, 20 repeat experiments; Methods ). Cardelino achieves high overall             

performance (Precision-Recall AUC=0.947; Fig. 1b ); for example, at a threshold of P=0.5 for the cell               

assignment confidence (posterior probability of cell assignment), the model assigns 79% of all cells              

with 89.0% accuracy. 

 

We explore the effect of key dataset characteristics on cell assignment, including the number of               

mutations per clonal branch (Fig. 1c), the expected number of variants with non-zero scRNA-seq              

coverage per cell (Fig. 1d), the number of clones and the overall extent and variability of allelic                 

imbalance across genes (Methods; Supp. Fig. S1). We also assess individual modelling assumptions             

in cardelino, confirming the expected benefits from a full Bayesian treatment and the explicit error               

model for allelic dropout as used in  cardelino (Fig. S1).  

 

Taken together, these results indicate that cardelino is broadly applicable to robustly assign individual              

single-cell transcriptomes to clones, thereby reconstructing clone-specific transcriptome profiles. 
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Figure 1 | Overview and validation of the cardelino model. (a) Overview and approach. A clonal tree is reconstructed based                    

on DNA-sequencing (e.g. deep exome sequencing) data, followed by probabilistic mapping of single-cell transcriptomes to               

reconstructed clones based on variants detected in scRNA-seq reads. (b-d) Benchmark of the cell assignment step using                 

simulations. (b) Overall assignment performance for 200 cells, when simulating from 4-clone structures with 10 variants per                 

branch and non-zero read coverage for 20% of variants (Methods). Shown is the fraction of true positive cell assignments                   

(precision) as a function of the fraction of assigned cells (recall) when varying the threshold of the cell assignment probability.                    

Shaded areas denote upper and lower quartiles from 20 repeat experiments. The black circle corresponds to the posterior P                   

threshold of 0.5. (c,d) Area Under (AU) precision-recall curve (i.e. area under curves such as shown in b), when varying the                     

numbers of variants per clonal branch (c) and the average fraction of detectable clone-specific variants (non-zero scRNA-seq                 

read coverage) (d). For details and default parameter settings see Methods.  

 

Cardelino assigns single cell transcriptomes to clones in human dermal fibroblasts 

Next, we apply cardelino to 32 human dermal fibroblast lines derived from healthy donors that are part                 

of the UK human induced pluripotent stem cell initiative (HipSci; Kilpinen et al., 2017). For each line,                 

we generated deep whole exome sequencing data (WES; median read coverage: 254), and matched              

Smart-seq2 scRNA-seq profiles using pools of three lines in each processing batch (Methods). We              

assayed between 30 and 107 cells per line (median 61 cells after QC; median coverage: 484k reads;                 

median genes observed: 11,108; Supp. Table S2).  

 

Initially, we consider high-confidence somatic single nucleotide variants (SNVs) identified based on            

WES data (Methods ) to explore the mutational landscape across lines. This reveals considerable             
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variation in the total number of somatic SNVs, with 41–612 variants per line (Fig. 2a). The majority of                  

SNVs can be attributed to the well-documented UV signature, COSMIC Signature 7 (primarily C to T                

mutations; Forbes et al., 2017), agreeing with expected mutational patterns from UV exposure of skin               

tissues (Fig. 2a; Supp. Fig. S2; Methods ).  

 

To understand whether the somatic SNVs confer any selective advantage in skin fibroblasts, we used               

SubConalSelection to identify neutral and selective dynamics at a per-donor level (Williams et al.,              

2018). Other established methods such as dN/dS (Martincorena et al., 2018) and alternative methods              

using the SNV frequency distribution (Simons, 2016a; Williams et al., 2016) are not conclusive in the                

context of this dataset due to lack of statistical power resulting from the low number of mutations                 

detected in each sample. The SubClonalSelection analysis identifies at least 10 lines with a clear fit to                 

their selection model, suggesting positive selection of clonal sub-populations (Fig. 2a; Supp. Fig. 3 ;              

Methods ). In other words, a third of the samples from this cohort of healthy donors contain clones                 

evolving adaptively, which we can investigate in more detail in terms of transcriptome phenotype.  

 

Next, we reconstruct the clonal trees in each line using WES-derived estimates of the variant allele                

frequency of somatic variants that are also covered by scRNA-seq reads (Methods). Canopy (Jiang et               

al., 2016) identifies two to four clones per line (Fig. 2a). Following this, we use cardelino to map                  

scRNA-seq profiles from a total of 1,728 cells to clones from the corresponding lines (Methods), with                

an assignment rate of 33–100% (at posterior probability P>0.5; corresponding to 4 to 107 cells;               

median 49.5 cells).  

 

To assess the confidence of these cell assignments, we consider simulated cells drawn from a clonal                

structure that matches the corresponding line, observing high concordance (R2 = 0.92) between the              

expected and empirical cell-assignment rates (Fig. 2b). Lines with clones that harbour fewer             

distinguishing variants are associated with lower assignment rates (Supp. Fig. S4), at consistently             

high cell assignment accuracy (median 0.976, mean 0.950; Supp. Fig. S5 ), indicating that the              

posterior probability of assignment is calibrated across different settings. We also consider the impact              

of technical features of scRNA-seq data on cell assignment, finding no evidence of biased cell               

assignments (Supp. Fig. 6-10 ). Finally, clone prevalences estimated from Canopy and the fractions of              

cells assigned to the corresponding clones are markedly concordant (overall R2 = 0.61), providing              

additional confidence in the cardelino cell assignments (Fig. 2c).  
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Figure 2 | Parallel deep exome sequencing and scRNA-seq profiling of 32 human dermal fibroblast lines. (a) Overview                  

and somatic mutation profiles across lines (donors), from left to right: donor age; number of somatic SNVs; estimated exposure                   

of COSMIC mutational signature 7; probability of selection estimated by SubClonalSelection (Williams et al., 2018), colour                

denotes the selection status based on probability cut-offs (grey lines), the grey background indicates results with high                 

uncertainty due to the low number of mutations detected; number of clones inferred using Canopy (Jiang et al., 2016), with                    

colour indicating the number of informative somatic SNVs for cell assignment to each clone (non-zero read coverage in                  

scRNA-seq data). (b) Assignment rate (fraction of cells assigned) using simulated single-cell transcriptomes (x-axis; Methods )               

versus the empirical assignment rate (y-axis) for each line (at assignment threshold posterior P>0.5). Colour denotes the                 

average number of informative variants across clonal branches per line. The line-of-best fit from a linear model is shown in red,                     

with 95% confidence interval shown in grey. (c) Estimated clone prevalence from WES data (x-axis; using Canopy) versus the                   

fraction of single-cell transcriptomes assigned to the corresponding clone (y-axis; using cardelino). Shown are the fractions of                 

cells assigned to clones one to three as in a, considering the most likely assignment for assignable cells (posterior probability                    

P>0.5) with each point representing a cell line; see Supp. Fig. S11 for results from four donors with >3 clones). Colour denotes                      

the total fraction of assignable cells per line (P>0.5). A line-of-best fit from a weighted regression model is shown in red with                      

95% confidence interval shown in grey. 
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Differences in gene expression between clones suggest phenotypic impact of somatic mutations 

Initially, we focus on the fibroblast line with the largest number of somatic SNVs (joxm; white female                 

aged 45-49; Fig. 2a ), with 612 somatic SNVs (112 detected both in WES and scRNA-seq) and 79                 

QC-passing cells, 97% of which could be assigned to one of three clones (Fig. 3a). Principal                

component analysis of the scRNA-seq profiles of these cells reveals global transcriptome substructure             

that is aligned with the somatic clonal structure in this population of cells (Fig. 3b). Additionally, we                 

observe differences in the fraction of cells in different cell cycle stages, where clone1 has the fewest                 

cells in G1, and the largest fraction in S and G2M (Fig. 3b, inset plot; PC1 in Supp. Fig. 12-13 ). This                     

suggests that clone1 is proliferating most rapidly. Next, we consider differential expression analysis of              

individual genes between the two largest clones (clone1: 45 cells versus clone2: 25 cells), which               

identifies 446 DE genes (edgeR QL F-test; FDR<0.1; Fig. 3c ). These genes are approximately evenly               

split into up/down-regulated sets. However, the downregulated genes are enriched for processes            

involved in the cell cycle and cell proliferation. Specifically, the three significantly enriched gene sets               

are all up-regulated in clone1 (camera; FDR<0.05; Fig. 3d ). All three gene sets (E2F targets, G2M                

checkpoint and mitiotic spindle) are associated with the cell cycle, so these results are consistent with                

the cell cycle stage assignments suggesting increased proliferation of clone1.  

 

Taken together, the results suggest that somatic substructure in this cell population results in clones               

that exhibit measurably different expression phenotypes across the transcriptome, with significant           

differential expression in cell cycle and growth pathways. 
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Figure 3 | Clone-specific transcriptome profiles reveal gene expression differences for joxm, one example line. (a) Top:                 

Clonal tree inferred using Canopy (Jiang et al., 2016). The number of variants tagging each branch and the expected prevalence                    

(fraction) of each clone is shown. Bottom: cardelino cell assignment matrix, showing the assignment probability of individual                 

cells to three clones. Shown below each clone is the fraction of cells assigned to each clone. (b) Principal component analysis of                      

scRNA-seq profiles with colour indicating the most likely clone assignment. Inset plot: Cell-cycle phase fractions for cells                 

assigned to each clone (using cyclone; Scialdone et al., 2015). (c) Volcano plot showing negative log10 P values versus log fold                     

changes (FC) for differential expression between cells assigned to clone2 and clone1. Significant differentially expressed genes                

(FDR<0.1) are highlighted in red. (d) Enrichment of MSigDB Hallmark gene sets using camera (Wu and Smyth, 2012) based on                    

log2 FC values between clone2 and clone1 as in c. Shown are negative log10 P values of gene set enrichments, considering                     

whether gene sets are up-regulated in clone1 or clone2, with significant (FDR < 0.05) gene sets highlighted and labelled. All                    

results are based on 77 out of 79 cells that could be confidently assigned to one clone (posterior P>0.5; Methods).  

 

Cell cycle and proliferation pathways frequently vary between clones  

To quantify the overall effect of somatic substructure on gene expression variation across the entire               

dataset, we fit a linear mixed model to individual genes (Methods), partitioning gene expression              

variation into a line (likely donor) component, a clone component, technical batch (i.e. processing              

plate), cellular detection rate (proportion of genes with non-zero expression per cell) and residual              

noise. As expected, the line component typically explains a substantially larger fraction of the              
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expression variance than clone (median 5.5% for line, 0.5% for clone), but there are 194 genes with a                  

substantial clone component (>5% variance explained by clone; Fig. 4a ). Even larger clone effects are               

observed when estimating the clone component in each line separately, which identifies between 331              

and 2,162 genes with a substantial clone component (>5% variance explained by clone; median 825               

genes; Fig. 4b) . This indicates that there are line-specific differences in the set of genes that vary with                  

clonal structure. 

 

Next, we carry out a systematic differential expression (DE) analysis to assess transcriptomics             

differences between any pair of clones for each line (considering 31 lines with at least 15 cells for DE                   

testing; Methods ). This identifies up to 2,401 DE genes per line (FDR<0.1, edgeR QL F test). A                 

majority, 52%, of the total set of 5,798 unique DE genes, are detected in two or more lines, and 31%                    

are detected in at least three of the 31 lines. Comparison to data with permuted gene labels                 

demonstrates an excess of recurrently differentially expressed genes compared to chance expectation            

(Fig 4c , P<0.001; 1,000 permutations; Methods ). We also identify a small number of genes that               

contain somatic variants in a subset of clones, resulting in differential expression between wild-type              

and mutated clones (Supp. Fig. S14 ).  

 

To investigate the transcriptomic changes between cells in more detail, we use gene set enrichment               

analysis of DE genes in each line. This reveals whether there is functional convergence at a pathway                 

level (using MSigDB Hallmark gene sets; Methods ; Liberzon et al., 2011 ). Of 31 lines tested, 21 have                 

at least one significant MSigDB Hallmark gene set (FDR<0.05, camera; Methods ), with key gene sets               

related to cell cycle and growth being significantly enriched in all of those 21 lines. Directional gene                 

expression changes of gene sets for the E2F targets, G2M checkpoint, mitotic spindle and MYC               

target pathways are highly coordinated (Fig. 4d), despite limited overlap of individual genes between              

the gene sets (Supp. Fig. S15 ).  

 

Similarly, directional expression changes for pathways of epithelial-mesenchymal transition (EMT)          

and apical junction are correlated with each other. Interestingly, these are anti-correlated with             

expression changes in cell cycle and proliferation pathways (Fig. 4d). Within individual lines, the              

enrichment of pathways often differs between pairs of clones, highlighting the variability in effects of               

somatic variants on the phenotypic behaviour of cells (Fig. 4e; all lines shown in Supp. Fig. S16 ). 

  

These consistent pathway enrichments across a larger set of donors point to somatic mutations              

commonly affecting the cell cycle and cell growth in fibroblast cell populations. These results indicate               

both deleterious and adaptive effects of somatic variants on proliferation, suggesting that a significant              

fraction of these variants are non-neutral in the majority of donors in our study. 
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Figure 4 | Signatures of transcriptomic clone-to-clone variation across 31 lines. (a) Violin and box plots show the                  

percentage of variance explained by clone, line, experimental plate and cellular detection rate for 4,998 highly variable genes,                  

estimated using a linear mixed model (Methods). (b) Percentage of gene expression variance explained by clone when fitting a                   

linear mixed model for each individual line for the 400 genes with the most variance explained by clone per line (Methods).                     

Individual lines correspond to cell lines (donors), with joxm highlighted in red and the median across all lines in black. (c) The                      

number of recurrently differentially expressed (DE) genes between any pair of clones (FDR<0.1; edgeR QL F test), detected in                   

at least one to 11 lines, with box plots showing results expected by chance (using 1,000 permutations). (d) Left panel: Heatmap                     

showing pairwise correlation coefficients (Spearman R, only nominal significant correlations shown (P<0.05)) between signed              

P-values of gene set enrichment across donors, based on differentially expressed genes between clones. Shown are the 16                  

most frequently enriched MSigDB Hallmark gene sets. Right panel: number of lines in which each gene set is found to be                     

significantly enriched (FDR<0.05). (e) Heatmap depicting signed P-values of gene set enrichments for six Hallmark gene sets in                  

12 lines. Dots denote significant enrichments (FDR<0.05). 
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Discussion 
 

Here, we develop and apply a computational approach for integrating somatic clonal structure with              

single-cell RNA-seq data This allows us to identify molecular signatures that differ between clonal cell               

populations. Our approach is based on first inferring clonal structure in a population of cells using                

WES data, followed by the assignment of individual single-cell transcriptomes using a computational             

approach called cardelino. Our method enables the efficient reconstruction of clone-specific           

transcriptome profiles from high-throughput assays. Our integrative analysis of bulk WES and            

scRNA-seq from 32 human fibroblast cell lines reveals substantial phenotypic effects of somatic             

variation, including in healthy tissue.  

 

Central to our approach is cardelino, a robust model for the probabilistic assignment of cells to clones                 

based on variants contained in scRNA-seq reads. Our approach is conceptually related to             

de-multiplexing approaches for single-cell transcriptomes from multiple genetically distinct individuals          

(Kang et al., 2018). However, cardelino addresses a substantially more challenging problem: to             

distinguish cells from the same individual based on the typically small number of somatic variants (e.g.                

dozens) that segregate between clones in a population of cells. 

 

Harnessing transcriptomic phenotypic information for cells assigned to clones in fibroblast lines, we             

identify substantial and convergent gene expression differences between clones across lines, which            

are notably enriched for pathways related to proliferation and the cell cycle. Analysis of clonal               

evolutionary dynamics using somatic variant allele frequency distributions from WES data reveals            

strong evidence for positive selection of clones in ten of 32 lines. These results support previous                

observations of clonal populations undergoing positive selection in normal human eyelid epidermis            

assayed by targeted DNA sequencing (Martincorena et al., 2015; Simons, 2016b; Martincorena et al.,              

2016; Simons, 2016a). We shed light on the phenotypic origin of this adaptive evolution, as we identify                 

expression of gene sets implicated in proliferation and cancer such as the E2F and MYC pathways.                

This surprising result in healthy tissue, suggests pervasive inter-clonal phenotypic variation with            

important functional consequences.  

 

While we apply cardelino to clonal trees from bulk WES data in this study, our method is general and                   

can be used to assign cells to clonal trees inferred from either bulk or single-cell DNA-seq data. The                  

methods presented here can be applied to any system in which somatic variants tag clonal               

populations of cells and can be accessed with scRNA-seq assays. Thus, cardelino will be applicable to                

high-resolution studies of clonal gene expression in both healthy and malignant cell populations as              

well as in vitro models.  

 

Assignment of cells to clones relies on coverage of somatic variants in scRNA-seq reads, so cell                

populations with relatively fewer somatic variants may require full-length transcriptome sequencing at            
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higher coverage per cell to enable confident assignments. Increasing both the number of genetically              

distinct individuals and the numbers of cells assayed per donor would improve the resolution at which                

differentially expressed genes and pathways can be identified. Larger sample sizes would also             

motivate further advances in the downstream analysis, for example to account for uncertainty in clonal               

tree inference and cell-clone assignment when assessing differentially expressed genes. Larger cell            

counts in particular would also enable joint modeling approaches combining DNA-seq and scRNA-seq             

data to infer clonal trees and simultaneously assign cells to clones. Our inference methods in cardelino                

are computationally efficient, so will comfortably scale to multi-site samples and many thousands of              

cells. 

 

Taken together, our results highlight the utility of cardelino to study gene expression variability in               

clonal cell populations and suggest that even in nominally healthy human fibroblast cell lines there are                

clonal populations with growth advantages, opening new avenues to study cell behaviour in clonal              

populations.  
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Methods 
 

The cardelino model 

The input to cardelino is a clonal tree inferred using methods such as Canopy, yielding clonal fractions                 

F= {f1, …, fK }, where fk is the relative prevalence of a given clone k ( ), as well as a clonal tree              f∑
K

k=1
 k = 1        

configuration matrix C (an N-by-K binary matrix) for N variants and K clones, where ci,k =1 if somatic                 

variant i is present in clone k and ci,k=0 otherwise. Given C and F, cardelino is aimed at assigning                   

individual cells to one of K clones based on their expressed alleles using a probabilistic clustering                

model (see graphical model in Supp. Fig. S17 ). Based on scRNA-seq, we extract for each cell and                 

variant that segregates between clones the number of sequencing reads that support the reference              

allele (reference read count) or the alternative allele (alternate read count) respectively. We denote the               

variant-by-cell matrix of alternate read counts by A and the variant-by-cell matrix of total read counts                

(sum of reference and alternate read counts) by D. Entries in A and D matrices are non-negative                 

integers, with missing entries in the matrix A indicating zero read coverage for a given cell and variant. 

 

Fundamentally, we model the alternate read count using a binomial model. For a given site in a given                  

cell, there are two possibilities: the variant is “absent” in the clone the cell is assigned to or the variant                    

is “present” , as encoded in the configuration matrix C. Thus, when considering the “success               

probability” 𝜽 for the binomial model, where success is defined as observing an alternate read in the                 

scRNA-seq reads, we consider two (sets of) parameters: 𝜃0 for homozygous reference alleles (variant              

absent), and 𝜽1  for heterozygous variants (variant present).  

 

The prior probability that cell j belongs to clone k could be assigned as the clonal fraction fk , but to                    

avoid biasing cell assignment towards highly prevalent clones for cells with little read information              

(where an informative prior is particularly influential) we use a uniform prior such that P(I j= k) = 1/K for                   

all k. Given this prior distribution, the posterior probability of cell j belonging to clone k can be                  

expressed as: 

 

where Ij is the identity of the specific clone cell j is assigned to, and aj and dj are the observed                     

alternate and total read count vectors, respectively, for variants 1 to N in cell j. The parameter vector 𝜽                   

is a set of the unknown binomial success parameters of binomial distributions for modelling the allelic                

read counts as described above. Specifically, 𝜃0 denotes the binomial success rate for the alternative               

allele when ci,k=0 (variant absent), thereby accounting for sequencing errors or errors in the clonal tree                

configuration, and 𝜽1 ={𝜃1 ,𝜃2 ...,𝜃N } denotes a vector of binomial parameters, one for each variant, for              

ci,k =1. The latter binomial rates model the effect of allelic imbalance, which means the probability of                

observing alternate reads at frequencies that differ from 0.5 for true heterozygous sites (see Supp.               
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Methods for details). The likelihood for cell j given an assignment to clone k follows then as a product                   

of binomial distributions as follows, 

. 

To capture the uncertainty in the binomial success probabilities, we introduce beta prior distributions              

on 𝜃0 and 𝜃𝜃1 . To ensure sensible prior distributions, we estimate the beta parameters from the                

scRNA-seq at known germline heterozygous variants for highly expressed genes (Supp. Fig. S18).             

For example, in the fibroblast dataset considered here, this approach yielded prior parameters of              

beta(0.3, 29.7) for 𝜃0 and beta(2.25, 2.65) for 𝜃i , i >0.  

 

The posterior probability of cell assignment and the full posterior distribution of these parameters are               

inferred by a Gibbs sampler, and the details of the algorithm can be found in Supp. Methods , where                  

we also present alternative simpler inference schemes using a constant Binomial success rates or an               

EM algorithm (see also Supp. Fig. S1 ). Despite the full Bayesian approach, cardelino is              

computationally efficient, enabling the assignment of hundreds of cells within minutes using a single              

compute node. These methods will comfortably scale to datasets with many thousands of cells. 

 

Cell culture 

Dermal fibroblasts, derived from skin-punch samples from the shoulder of 32 donors (White British,              

age range 30-75), were obtained from the HipSci project (http://hipsci.org). Following thawing,            

fibroblasts were cultured in supplemented DMEM (high glucose, pyruvate, GlutaMAX (Life           

Technologies / 10569-010), with 10% FBS (Lab Tech / FB-1001) and 1% penicillin-streptomycin (Life              

Technologies / 15140122) added. 18 hours prior to collection, cells were trypsinised (Life             

Technologies / 25300054), counted, and seeded at a density of 100,000 cells per well (6 well plate). 

 

Cell pooling, capture and full-length transcript single-cell RNA sequencing 

Cells were washed with PBS, trypsinised, and resuspended in PBS (Gibco / 14190-144) + 0.1% DAPI                

(AppliChem / A1001). Cells from three donors were pooled and consequently sorted on a Becton               

Dickinson INFLUX machine into plates containing 2uL/well lysis buffer. Single cells were sorted             

individually (using FSC-W vs FSC-H), and apoptotic cells were excluded using DAPI. Cells from each               

three-plex cell pool were sorted across four plates. Reverse transcription and cDNA amplification was              

performed according to the Smart-seq2 protocol (Picelli et al., 2014), and library preparation was              

performed using an Illumina Nextera kit. Samples were sequenced using paired-end 75bp reads on an               

Illumina HiSeq 2500 machine. 

 

Bulk whole-exome sequencing data and somatic variant calling 

We obtained bulk whole-exome sequencing data from HipSci fibroblast (median read coverage: 254)             

and derived iPS cell lines (median read coverage: 79) released by the HipSci project (Streeter et al.,                 
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2016; Kilpinen et al., 2017). Sequenced reads were aligned to the GRCh37 build of the human                

reference genome (Church et al., 2011) using bwa (Li, 2013). To identify single-variant somatic              

mutation sites in the fibroblast lines, for each exome sample, we searched for sites with a                

non-reference base in the read pileup using bcftools/mpileup (Li et al., 2009). In the initial pre-filtering                

we retained sites with a per-sample coverage of at least 20 reads, at least three alternate reads in                  

either fibroblast or iPS samples and an allele frequency less than 5% in the ExAC browser                

(Karczewski et al., 2017) and 1000 Genomes data (The 1000 Genomes Project Consortium, 2015). A               

Fisher exact test (Fisher, 1922) implemented in bcftools/ad-bias was then used to identify sites with               

significantly different variant allele frequency (VAF) in the exome data between fibroblast and iPS              

samples for a given line (Benjamini-Hochberg FDR < 10%). Sites were removed if any of the following                 

conditions held: VAF < 1% or VAF > 45% in high-coverage fibroblast exome data; fewer than two                 

reads supporting the alternative allele in the fibroblast sample; VAF > 80% in iPSC data (to filter out                  

potential homozygous alternative mutations); neither the iPS VAF or fibroblast VAF was below 45% (to               

filter out variants with a “significant” difference in VAF but are more likely to be germline than somatic                  

variants). We further filtered sites to require uniqueness of sites across donors as it is highly unlikely to                  

observe the same point mutation in more than one individual, so such sites almost certainly represent                

technical artefacts. 

 

Identification of mutational signatures 

Signature exposures were estimated using the sigfit package (Gori and Baez-Ortega, 2018), providing             

the COSMIC 30 signatures as reference (Forbes et al., 2017), and with a highest posterior density                

(HPD) threshold of 0.9. Signatures were determined to be significant when the HPD did not overlap                

zero. Two signatures (7 and 11) were significant in two or more donors.  

 

Identification of selection dynamics 

 

Several methods have been developed to detect deviations from neutral growth in cell populations              

(Simons, 2016a; Williams et al., 2016, 2018; Martincorena et al., 2018). Methods such as dN/dS or                

models assessing the fit of neutral models to the data need a high number of mutations to determine                  

selection/neutrality. Given the relatively low number of mutations found in the donors in this study,               

these models are not applicable. We used the package SubClonalSelection          

(https://github.com/marcjwilliams1/SubClonalSelection.jl) in Julia 0.6.2 which works with a low number          

of mutations (> 100 mutations; Williams et al., 2018). The package simulates the fit of a neutral and a                   

selection model to the allele frequency distribution, and returns a probability for the selection model to                

fit the data best. 

 

At small allele frequencies the resolution of the allele frequency distribution is limited by the               

sequencing depth. We chose a conservative lower resolution limit of (Shin et al., 2017). At          .05f min = 0      
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the upper end of the allele frequency distribution we chose a cut-off at to account for ploidy             .45f max = 0      

( ). For the classification of the donors, we introduced cut-offs on the resulting selection probability= 2                

of the algorithm. Donors with a selection probability below 0.3 are classified as ‘neutral’, above 0.7 as                 

‘selected’. Donors which are neither ‘selected’ nor ‘neutral’ remain ‘undetermined’. See figure 2A and              

S3 for the results of the classification and fit of the models to the data. 

 

Single-cell gene expression quantification and quality control 

Raw scRNA-seq data in CRAM format was converted to FASTQ format with samtools (v1.5), before               

reads were adapter- and quality-trimmed with TrimGalore! (github.com/FelixKrueger/TrimGalore)        

(Martin, 2011). We quantified transcript-level expression using Ensembl v75 transcripts (Flicek et al.,             

2014) by supplying trimmed reads to Salmon v0.8.2 and using the “--seqBias”, “--gcBias” and “VBOpt”               

options (Patro et al., 2017). Transcript-level expression values were summarised at gene level             

(estimated counts) and quality control of scRNA-seq data was done with the scater package              

(McCarthy et al., 2017) and normalisation with the scran package (Lun, Bach, et al., 2016; Lun,                

McCarthy, et al., 2016). Cells were retained for downstream analyses if they had at least 50,000                

counts from endogenous genes, at least 5,000 genes with non-zero expression, less than 90% of               

counts from the 100 most-expressed genes in the cell, less than 20% of counts from ERCC spike-in                 

sequences and a Salmon mapping rate of at least 40% (Supp. Table S2). This filtering approach                

retains 63.7% of assayed cells.  

 

Deconvolution of donors from pools 

To increase experimental throughput in processing cells from multiple distinct donor individuals (i.e.             

lines), and to ensure an experimental design robust to batch effects, we pooled cells from three donors                 

in each processing batch, as described above. As such, we do not know the donor identity of each cell                   

at the time of sequencing and cell-donor identity must be inferred computationally. Thus, for both               

donor and, later, clone identity inference it is necessary to obtain the count of reads supporting the                 

reference and alternative allele at informative germline and somatic variant sites. Trimmed FASTQ             

reads (described above) were aligned to the GRCh37 p13 genome with ERCC spike-in sequences              

with STAR in basic two-pass mode (Dobin et al., 2012) using the GENCODE v19 annotation with                

ERCC spike-in sequences (Searle et al., 2010). We further use picard (Broad Institute, 2015) and               

GATK version 3.8 (McKenna et al., 2010) to mark duplicate reads (MarkDuplicates), split cigar reads               

(SplitNCigarReads), realign indels (IndelRealigner), and recalibrate base scores (BaseRecalibrator).  

 

For cell-donor assignment we used the GATK HaplotypeCaller to call variants from the processed              

single-cell BAM files at 304,405 biallelic SNP sites from dbSNP (Sherry et al., 2001) build 138 that are                  

genotyped on the Illumina HumanCoreExome-12 chip, have MAF > 0.01, Hardy-Weinberg equilibrium            

P < 1e-03 and overlap protein-coding regions of the 1,000 most highly expressed genes in HipSci iPS                 

cells (as determined from HipSci bulk RNA-seq data). We merged the per-cell VCF output from GATK                
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HaplotypeCaller across all cells using bcftools version 1.7 (Danecek et al., 2011, 2016) and filtered               

variants to retain those with MAF > 0.01, quality score > 20 and read coverage in at least 3% of cells.                     

We further filtered the variants to retain only those that featured in the set of variants in the                  

high-quality, imputed, phased HipSci genotypes and filtered the HipSci donor genotype file to include              

the same set of variants.  

 

We used the donor_id function in the cardelino package to assign cells to donors. This function                

assigns cells to donors by modelling alternative allele read counts with given genotypes of input               

donors. For a single germline variant, the three base genotypes (as minor allele counts) can be 0, 1                  

and 2. For doublet genotype profiles generated by combining pairs of donor genotypes, two additional               

combinatory genotypes, 0.5 and 1.5 are allowed. We assume that each genotype has a unique               

binomial distribution whose parameters are estimated by an EM algorithm in a framework similar to               

clone assignment (described above). When we enable doublet detection, the posterior probabilities            

that a cell comes from any of the donors provided, including doublet donors, are calculated for donor                 

assignment. There are 490 available HipSci donors, so we run cardelino in two passes on each plate                 

of scRNA-seq data separately. In the first pass, the model outputs the posterior probability that each                

cell belongs to one of the 490 HipSci donors, ignoring the possibility of doublets. In the second pass,                  

only those donors with a posterior probability greater than 0.95 in at least one cell are considered by                  

the model as possible donors and doublet detection is enabled. After the second pass, if the highest                 

posterior probability is greater than 0.95, more than 25 variants have read coverage, and the doublet                

probability is less than 5% then we provisionally assign the cell to the donor with the highest posterior                  

probability. If the provisionally assigned donor is one of the three donors known to have been pooled                 

together for the specific plate, then we deem the cell to be confidently assigned to that donor,                 

otherwise we deem the cell to have “unassigned” donor. With this approach, 97.4% of cells passing                

QC (see above) are confidently assigned to a donor (Supp. Fig. S19). Of the cells that are not                  

confidently assigned to a donor, 2.1% are identified as doublets by cardelino and 0.5% remain               

“unassigned” due to low variant coverage or low posterior probability. Thus, we have 2,338              

QC-passing, donor-assigned cells for clonal analysis.  

 

Clonal inference 

We inferred the clonal structure of the fibroblast cell population for each of the 32 lines (donors) using                  

Canopy (Jiang et al., 2016). We used read counts for the variant allele and total read counts at filtered                   

somatic mutation sites from high-coverage whole-exome sequencing data from the fibroblast samples            

as input to Canopy. In addition to the variant filtering described above, input sites were further filtered                 

for tree inference to those that had non-zero read coverage in at least one cell assigned to the                  

corresponding line. We used the BIC model selection method in Canopy to choose the optimal number                

of clones per donor. Here, for each of the 32 lines, we considered the highest-likelihood clonal tree                 
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produced by Canopy, along with the estimated prevalence of each clone and the set of somatic                

variants tagging each clone as the given clonal tree for cell-clone assignment. 

 

Cell-clone assignment 

For cell-clone assignment we required read the read counts supporting reference and alternative             

alleles at somatic variant sites. We used the bcftools version 1.7 mpileup and call methods to call                 

variants at somatic variant sites derived from bulk whole-exome data, as described above, for all               

confidently assigned cells for each given line. Variant sites were filtered to retain variants with more                

than three reads observed across all cells for the line and quality greater than 20. We retained cells                  

with at least two somatic variants with non-zero read coverage (2,044 cells across 32 lines). From the                 

filtered VCF output of bcftools we obtained the number of reads supporting the alternative allele and                

the total read coverage for each somatic variant site with more than three reads covering the site, in                  

total, across all the donor’s cells. In general, read coverage of somatic mutation sites in scRNA-seq is                 

sparse, with over 80% of sites for a given cell have no overlapping reads. We used the scRNA-seq                  

read counts at the line’s somatic variant sites to assign QC-passing cells from the line to clones using                  

the clone_id function in the cardelino R package.  

 

Simulations to benchmark cell to clone assignment 

We simulated data to test the performance of cardelino as follows. First, given a clonal tree                

configuration C (N-by-K binary matrix), a given number of cells are generated (e.g. 500, see below),                

whose genotypes are sampled from K clones following a multinomial distribution parameterised by             

clonal fractions F. Second, given a matrix D (N-by-M matrix) of sequencing coverage for N sites in M                  

cells, we uniformly sample the coverage profiles from these M cells into a given number of cells for                  

simulation. Third, after having the genotype hij=c i,Ij and the sequencing depth dij for variant i in cell j                  

from the previous two steps, we can generate the read count aij for the alternative allele by sampling                  

from a binomial distribution with success parameter 𝜃0 if hij=0 or with an allele-specific expression               

parameter 𝜃i if hij =1. Note, both 𝜃0 and 𝜃i are randomly generated from beta prior distributions, whose                 

parameters are estimated from experimental data. 

 

Based on the above simulation workflow, two simulation experiments are performed to evaluate the              

accuracy and robustness of cardelino. One simulation was performed with synthesizing 500 cells on              

each of 32 donors, where input parameters are from the observed matrices C and D, clonal fraction F,                  

and cardelino-learned 𝜽 from each donor. This simulation tries to mimic all settings in each donor,                

which not only evaluates the accuracy of the model, but also reflects the quality of the data in each                   

donor for clonal assignment. Alternatively, we change one of these parameters each time to              

systematically assess cardelino. The clonal configuration is defined by the number of clones, K, a               

perfect phylogenetic matrix ((K-1)-by-K) including a base clone, and the number of unique variants per               

clonal branch n, which returns a configuration matrix C with a shape of n(K-1)-by-K. With setting K                 
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clones, one of all clonal tree structures are randomly selected to generate the clonal configuration               

matrix. Then the sequencing depth matrix D for these n(K-1) variants are sampled from a donor with                 

439 variants across 151 cells (see distribution in Supp. Fig. S20 ). In order to increase or decrease the                  

missingness rate of D, zero coverages are respectively added or removed linearly according to the               

expression level of the gene corresponding to the variant. The allelic expression balance can be               

adjusted by changing the parameters of its beta prior distribution. We set uniform clonal prevalence in                

the second simulation. With each parameter setting, 200 cells are randomly synthesized and this              

procedure is repeated 20 times to vary for the selection of variants and tree structure. When one                 

setting parameter varies, others are used at the default values: number of mutations per clonal branch                

= 10, variant coverage = 0.2, clone number = 4, mean fraction of alternative alleles (i.e. mean 𝜽1 ) =                   

0.44, variance of allelic imbalance (i.e. 1/(shape1+shape2) of beta prior) = 0.21.  

 

Differential expression, pathway and variance component analysis 

Expression analyses between clones required further filtering of cells for each line. Analyses were              

conducted using cells that passed the following filtering procedure for each line: (1) clones identified in                

the line were retained if at least three cells were confidently assigned to the clone; (2) cells were                  

retained if they were confidently assigned to a retained clone. Lines were retained for DE testing if                 

they had at least 15 cells assigned to retained clones, allowing us to conduct expression analyses for                 

31 out of the 32 lines (all except vils).  

 

Differential gene expression (DE) testing was conducted using the quasi-likelihood F-test method            

(Lund et al., 2012) in the edgeR package (Robinson et al., 2010; McCarthy et al., 2012) as                 

recommended by Soneson and Robinson (Soneson and Robinson, 2018). To test for differences in              

expression between cells assigned to different clones in a donor, we fit a linear model for single-cell                 

gene expression with cellular detection rate (proportion of QC-filtered genes expressed in a cell;              

numeric value), plate on which the cell was processed (a factor) and assigned clone (a factor) as                 

predictor variables. The quasi-likelihood F test was used to identify genes with: (1) any difference in                

average expression level between clones (analogous to analysis of variance), and (2) differences in              

average expression between all pairs of clones (“pairwise contrasts”). We considered 10,876 genes             

that were sufficiently expressed (an average count >1 across cells in all donors) to test for differential                 

expression.  

 

To test for significance of overlap of DE genes across donors, we sampled sets of genes without                 

replacement the same size as the number of DE genes (FDR < 10%) for each line. For each                  

permutation set, we then computed the number of sampled genes shared between between donors.              

We repeated this procedure 1,000 times to obtain distributions for the number of DE genes shared by                 

multiple donors if shared genes were obtained purely by chance.  

 

19 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 26, 2018. ; https://doi.org/10.1101/413047doi: bioRxiv preprint 

https://paperpile.com/c/zs2eEt/jscA
https://paperpile.com/c/zs2eEt/jscA
https://paperpile.com/c/zs2eEt/jscA
https://paperpile.com/c/zs2eEt/JoDU+MeIO
https://paperpile.com/c/zs2eEt/JoDU+MeIO
https://paperpile.com/c/zs2eEt/JoDU+MeIO
https://paperpile.com/c/zs2eEt/JoDU+MeIO
https://paperpile.com/c/zs2eEt/JoDU+MeIO
https://paperpile.com/c/zs2eEt/Rm7Q
https://doi.org/10.1101/413047
http://creativecommons.org/licenses/by-nc/4.0/


 

Gene set enrichment (pathway) analyses were conducted using the camera (Wu and Smyth, 2012)              

method in the limma package (Smyth, 2004; Ritchie et al., 2015). Using log 2 -fold-change test statistics               

for 10,876 genes for pairwise contrasts between clones from the edgeR models above as input, we                

applied camera to test for enrichment for the 50 Hallmark gene sets from MSigDB, the Molecular                

Signatures Database (Liberzon et al., 2011). For all differential expression and pathway analyses we              

adjusted for multiple testing by estimating the false discovery rate (FDR) using independent             

hypothesis weighting (Ignatiadis et al., 2016), as implemented in the IHW package, with average gene               

expression supplied as the independent covariate. 

 

Expression variance across cells is decomposed into multiple components in a linear mixed model,              

including cellular detection rate (proportion of genes with non-zero expression per cell) as a fixed               

effect and plate (i.e. experimental batch), donor (i.e. line; only when combining cells across all donors)                

and clone (nested within donor for combined-donor analysis) as random effects. We fit the linear               

mixed model on a per-gene basis using the variancePartition R package (Hoffman and Schadt, 2016). 

 

Code availability 

The cardelino methods are implemented in an open-source, publicly available R package            

(github.com/PMBio/cardelino ). The code used to process and analyse the data is available            

(github.com/davismcc/fibroblast-clonality), with a reproducible workflow implemented in Snakemake        

(Köster and Rahmann, 2012). Descriptions of how to reproduce the data processing and analysis              

workflows, with html output showing code and all figures presented in this paper, are available at                

davismcc.github.io/fibroblast-clonality. Docker images providing the computing environment and        

software used for data processing (hub.docker.com/r/davismcc/fibroblast-clonality/) and data analyses         

in R (hub.docker.com/r/davismcc/r-singlecell-img/) are publicly available. 

 

Data availability 

Single-cell RNA-seq data have been deposited in the ArrayExpress database at EMBL-EBI            

(www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-7167. Whole-exome sequencing data        

is available through the HipSci portal (www.hipsci.org ). Metadata, processed data and large results             

files are available under the DOI 10.5281/zenodo.1403510 (doi.org/10.5281/zenodo.1403510). 
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