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ABSTRACT 13 

Innovative gene targeting strategies are often limited in application across 14 

arthropod species due to problems with successful delivery. In hemipterans, 15 

embryonic injections often used to deliver CRISPR components fail due to nearly 16 

complete embryo mortality.  The Asian citrus psyllid, Diaphorina citri, 17 

Kuwayama, (Hemiptera: Liviidae), is the vector for a pathogenic bacterium, 18 

Candidatus Liberibacter asiaticus, CLas, which is devastating the U.S. citrus 19 

industries.  The disease called, Huanglongbing, HLB, (aka. Citrus greening 20 

disease), is transmitted during psyllid feeding. Infection causes severe tree 21 

decline, loss of fruits, and eventually tree death.  The citrus tree pathogen, CLas, 22 

is a fastidious alpha-proteobacterium, which has spread into all citrus growing 23 
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regions worldwide. The economic losses are estimated in the billions of dollars, 24 

in U.S.A., Brazil, and China.  Innovative technologies aimed at reducing psyllid 25 

populations using targeting RNA suppression, like RNAi, or gene-editing tools, 26 

like CRISPR/Cas9 have potential to reduce psyllid vectors and the pathogen in a 27 

highly specific manner. Breakthroughs that improve gene editing in psyllids, such 28 

as the BAPC-assisted-CRISPR/Cas9 System, enabled delivery by injection of 29 

CRISPR/Cas9 components directly into nymphs and adult females. Injection near 30 

ovaries produced heritable germline gene editing in subsequent generations.  31 

This method opens the world of gene editing across arthropods and bypasses 32 

the need for microinjection of eggs. Effective development of therapeutic 33 

treatments to reduce insect vectors, and stop pathogen transmission would 34 

provide  sustainable citrus and grapevine industries. 35 

 36 

Keywords:  Asian citrus psyllid, Citrus, Gene edit, RNAi Leafhoppers, 37 

Huanglongbing, management, pest control 38 
 39 
 40 

INTRODUCTION 41 

Biotechnologies provide techniques that greatly improve the level of safety and 42 

target specificity in the management of pests and pathogens (Bhaya et al, 2011; 43 

Garneau et al, 2010; Fire et al, 1998; Doudna & Charpentier 2014). These 44 

techniques include targeted RNA suppression, gene regulation, and gene editing 45 

in all organisms: bacteria, plants, animals, and humans. As traditional chemical 46 

insecticides fail to provide adequate pest management,  due to development of 47 

chemical resistance, dependence upon biotech strategies for management have 48 
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become the best options for development of therapeutic treatments to reduce  49 

arthropod vectors, the pathogens, or to cause disruption of vector pathogen 50 

acquisition and transmission (Andrade & Hunter 2016; Baum & Roberts 2014; 51 

Gantz & Akbari 2018; Hunter & Sinisterra-Hunter 2018; Kolliopoulou et al, 2017; 52 

Roberts et al, 2015; Petrick et al, 2013;2016; Scott et al, 2013; Sinisterra-Hunter 53 

& Hunter 2018; Taning et al, 2017; Zotti et al, 2018). The rapid emergence of 54 

gene editing techniques, like CRISPR/Cas9, Clustered regularly interspaced short 55 

palindromic repeats (CRISPR) and the CRISPR-associated protein, Cas9, provide 56 

precise editing of genes across all species (Doudna & Charpentier 2014; Peng et 57 

al., 2014; Wang et al. 2016).  As a natural mechanism in bacteria, numerous 58 

studies have described the mode of function of the CRISPR defense system that 59 

is an adaptive mechanism, which enables bacteria to suppress invading viruses 60 

(Garneau et al, 2010; Doudna & Charpentier 2014). The technology has now been 61 

co-adapted to target genes within insect pests (Taning et al, 2017).  The relative 62 

ease of use, normally by injection into eggs/embryos, combined with improved 63 

methods for increase efficacy in CRISPR/Cas9 systems has led CRISPR/Cas to 64 

become the primary gene editing tool in the life sciences. For reviews on 65 

CRISPR/Cas9 systems see: (Boettcher & McManus 2015; Dominguez et al. 2016; 66 

Gupta & Shukla 2016; La Russa & Qi 2015; Liang et al. 2015; Taning et al, 2017; 67 

Wang et al. 2016; Wilson & Doudna 2013).  Reviews on other gene editing 68 

systems with Zinc finger nucleases and TAL effector nucleases, TALENS, see: (Gaj 69 

et al, 2013; Bortesi & Fischer 2015; Markert et al, 2016).   70 
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CRISPR/Cas systems have demonstrated important applications in 71 

agriculture, increasing the options for the management of arthropod pests, insect 72 

vectors, and treatments against pathogens of plants, animals and humans (Chen 73 

et al, 2016; Chen et al, 2017; Cui et al, 2017; Taning et al, 2017; Sun et al, 2017; 74 

Gantz & Akbari 2018; Gundersen-Rindal et al, 2017; Sinisterra-Hunter & Hunter 75 

2018).  However, one of the hurdles for rapid adoption in arthropods has been 76 

the reliance on embryo injections (Li et al, 2017), which is often unsuccessful in 77 

many arthropod species (Bortesi & Fischer 2015; Boettcher & McManus, 2015; 78 

Chaverra-Rodriguez et al, 2018; Gregory et al, 2016).   Thus, an improved delivery 79 

method is needed if gene editing is to be realized for many arthropod species. 80 

This is especially true within the Hemiptera, which have few successful 81 

demonstrations of embryonic transformation through microinjection of eggs.   82 

In 2018, Hunter described a direct method that delivered and produced 83 

gene editing using injections into the abdomens of nymphs, pupae, and adults 84 

of hemipterans. Specific examples were the Asian citrus psyllid (Diaphorina citri, 85 

Kuwayama, Hemiptera: Liviidae) and glassy-winged sharpshooter leafhopper 86 

(Homalodisca vitripennis, (Germar): Hemiptera: Cicadellidae) (Hunter et al, 87 

2018ab).  Previous attempts injecting thousands of eggs failed.  Switching to 88 

injection of 5th instar nymphs and adult females, produced the first successful 89 

trials of gene knockouts in psyllids used the Cas9 protein, co-injected with two 90 

sgRNA, producing about 30% surviving G0 and G1 mutants.   To improve the 91 

system, experiments evaluated the incorporation of BAPC-assisted delivery 92 

(Hunter, Gonzalez, Tomich 2018).  93 
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 94 

 95 

BAPC-assisted Delivered RNA interference In Arthropods 96 

The Branched Amphiphilic Peptide Capsules (BAPC), are a new class of 97 

inert, self-assembling peptide nano-capsular spheres (Phoreus Biotechnology, 98 

Inc., Olathe, KS, USA). The peptide-based nano-assemblies show promise as nano-99 

delivery vehicles for the safe, targeted transport of drugs, plasmids, dsRNA, and 100 

siRNA, to specific tissues and organs with minimal off target accumulation 101 

(Gudlur et al, 2012; Sukthankar et al, 2013; 2014; Avila et al, 2015). 102 

Studies on RNAi report that incorporation of BAPC with dsRNA to specific beetle 103 

genes, caused significant increase in mortality compared to controls upon 104 

ingestion (Avila et al, 2018). In those studies, BAPC-dsRNA was fed to Tribolium 105 

castaneum (Coleoptera), and the pea aphid, Acyrthosiphon pisum (Hemiptera).  106 

The authors report an improved delivery of dsRNA into cells most likely due to 107 

presence of the BAPC, which prevents degradation by nucleases, producing 108 

slower controlled release of the dsRNA upon entering cells, resulting in increased 109 

RNAi efficacy and subsequent increased mortality of the insects.   110 

Based on the physical properties of BAPC with nucleic acids we 111 

hypothesized that BAPC mixed with guide RNA’s and CRISPR/Cas9 components 112 

would result in improved delivery and produce a new method for heritable 113 

germline gene editing suitable for injection into adult ovaries of psyllids and 114 
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other arthropods (Hunter & Sinisterra-Hunter 2018; Hunter, Gonzalez, Tomich 115 

2018; Hunter et al, 2019).   116 

Similar proofs-of-concepts in flies are reported by Chaverra-Rodriguez et 117 

al, (2018) in mosquitoes using the P2C peptide mediated transduction of the 118 

Cas9 plasmid from the female hemolymph into the developing mosquito oocytes. 119 

Their technology, termed “Receptor-Mediated Ovary Transduction of Cargo 120 

(ReMOT Control), was shown to work well within the Order: Diptera (Mosquitoes). 121 

Another delivery system reported by Wang et al, (2018), in mammals, used 122 

microvesicles. Extracellular vesicles, known as arrestin domain containing 123 

protein 1 [ARRDC1]-mediated microvesicles (ARMMs). These ARMMs, could 124 

package and deliver intracellularly of a myriad of macromolecules, including the 125 

tumor suppressor p53 protein, RNAs, and the genome-editing CRISPR-126 

Cas9/guide RNA complex into mammalian cells.     127 

BAPC-assisted-CRISPR/Cas9 Delivery System: Adult injection near ovaries for 128 

heritable germline gene editing [Hemiptera: Diaphorina citri).   129 

Attempts to deliver CRISPR/Cas9 into psyllid eggs proved to be difficult 130 

and unsuccessful.  Injection directly into the 4th and 5th nymphs, pupae, or adults 131 

proved to be easier, and more effective (Hunter, Gonzalez, Tomich 2018).   132 

Because previous research with BAPC-assisted delivery of dsRNA and plasmids 133 

resulted in efficient delivery into insects and animal cells in cultures (Avila et al, 134 

2018; Sukthankar et al, 2014), an experiment was designed to evaluate the 135 

incorporation of BAPC to improve delivery of CRISPR/Cas9 components into 136 
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arthropod ovaries of adult hemipterans (Psyllids and Leafhoppers) for heritable 137 

embryonic gene editing.  138 

Gene Selection.  Diaphorina citri, have at least two Thioredoxins, TRX-1, TRX-2, 139 

with variants in the mitochondria and cytoplasm.  Thioredoxin participates in 140 

various redox reactions and catalyzes dithiol-disulfide exchange reactions. 141 

Thioredoxin 2, TRX-2, is preferred over thioredoxin 1, as a reducing substrate of 142 

peroxiredoxin-1. Thioredoxin is required for female meiosis and early embryonic 143 

development. The functions of at least 30 proteins, including enzymes and 144 

transcription factors, the regulation of cellular proliferation and the aging 145 

process are regulated by TRX (Yoshida et al, 2005). The guide RNA’s and 146 

protospacer adjacent motif (PAM) were identified and confirmed using software 147 

(Dharmacon, Inc., (Lafayette, CO, 80026).  The CRISPR-associated protein 9 (Cas9) 148 

was purchased, and protocols were gleaned from publications on CRISPR (Bassett 149 

et al, 2013; Kistler, et al, 2015; Larson, et al, 2013; Zhang & Reed 2017; 150 

Garczynski et al, 2017).  The ACP gene sequence ID: XM_008487100.1, gene, 151 

thioredoxin-2-like (LOC103521994) was from the DIACI_2.0 Genome assembly: 152 

https://citrusgreening.org/organism/Diaphorina_citri/genome (Saha et al, 153 

2017). 154 

CRISPR/Cas9 Injections 155 

Injections with CRISPR components, sgRNA’s, and a Cas9 protein, 156 

successfully produced knock-out G0 and G1 mutants (Hunter, Gonzalez, Tomich 157 

2018).  Subsequent trials incorporated the aid of the BAPC-assisted-CRISPR 158 
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components, successfully produced heritable knockout G2 mutants.  Both these 159 

methods successfully demonstrated the first psyllid gene knockouts, KO, with 160 

CRISPR/Cas9.  Designs to Diaphorina citri, Asian citrus psyllid, ACP, (Hemiptera: 161 

Liviidae) for the knockout used two gRNAs to direct the Cas9 endonuclease to 162 

two sites 556 bp apart (Dharmacon, Inc.). The ACP-TRX-2 KO trials injected 30 163 

nymphs (4th and 5th instar), and 20 adult females per treatment (co-injection of 164 

two sgRNAs (100 ng/ µL of each, with 200 ng/µL of Cas9 protein, plus BAPC (0.1 165 

ng/ µL) (Drummond Nanoject III, 3-000-207) (Hunter, Gonzalez, Tomich 2018; 166 

Hunter et al, 2018; Hunter & Sinisterra 2018). Insects were injected ventrally, off 167 

center of midline in the abdomen (FIG. 1). Post injections psyllids were 168 

transferred to a citrus seedling to oviposit (~25 cm tall, sweet orange seedlings). 169 

A cohort of 6 psyllid adult females were individually analyzed 7 d post treatments 170 

using PCR analyses and sequencing. Primers were designed to bracket the gDNA 171 

KO sequence of the TRX ORF at 200 to 250 nt beyond the ends in each direction. 172 

The remaining cohort of ACP nymphs, which were TRX-KO mutants took 6 to 8 d 173 

longer to eclose to adults. The adult psyllids with TRX-KO had significantly 174 

shorter lifespans post eclosion living an average 8.5 d, compared to controls 175 

injected with buffer, or GFP-plasmid (FIG. 2), which lived an average of 16 d post 176 

eclosion (Hunter Gonzalez, Tomich 2018; Hunter & Sinisterra-Hunter 2018; 177 

Hunter et al, 2019). (Plasmid resource, Addgene™: pAc5.1B-EGFP was a gift from 178 

Elisa Izaurralde, Addgene plasmid #21181)(Karlikow et al, 2016; Legaz et al, 179 

2015).  Adult female insects producing eggs (FIG. 3), when treated also produced 180 
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G2 mutants.  Delivery of a GFP-plasmid, when mixed with BAPC, was successfully 181 

ingested and expressed in adult psyllids (FIG. 4). 182 

Conclusions: 183 

Advances in biotechnologies, like CRISPR and RNAi provides new sustainable 184 

and environmentally friendly strategies to reduce insect vectors, like psyllids 185 

(Andrade & Hunter 2016; 2017; Hunter & Sinisterra-Hunter 2018; Taning et al, 186 

2016; Ghosh et al, 2018).  These advances will also aid in the management of 187 

many other insect vectors and pests (Chaverra-Rodriguez et al, 2018; 188 

Darrington et al, 2017; Dong, et al, 2015; 2018; Gantz & Akbari 2018; Ghosh et 189 

al, 2018; Kolliopoulou et al, 2017; Sinisterra-Hunter & Hunter 2018; Taning et 190 

al, 2017; Zotti et al, 2018).  191 

CRISPR/Cas9 gene editing in hemipterans was shown to be feasible using 192 

nymphs and adult psyllids, as the recipient for gene editing CRISPR components. 193 

The method was a significant improvement over efforts using injection of eggs.  194 

Furthermore, incorporation of BAPC-assisted delivery of CRISPR/Cas9 195 

components into nymph and adults provides an innovative breakthrough in 196 

hemipteran gene editing.  Production of G2 mutants, from BAPC-assisted-197 

CRISPR/Cas9 injected, adult female psyllids further supports the viability of this 198 

method.  Improvements in efficacy, by adjusting component concentration ratios 199 

still need to be evaluated across several hemipteran species. 200 

 201 

Acknowledgements: 202 

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted November 27, 2018. ; https://doi.org/10.1101/478743doi: bioRxiv preprint 

https://doi.org/10.1101/478743


We thank Dr. Steve Garczynski for consultations on CRISPR/Cas9; Ken Sims, 203 

Biological Science Technician, sample fixation, paraffin embedding, and Jennifer 204 

Wildonger, Technician, sample sectioning, confocal, USDA, ARS, Ft. Pierce, FL.,  205 

Dr. Michael Boyle, confocal training, Smithsonian Marine Station, Ft. Pierce, FL, 206 

and Chris S. Holland, confocal imaging, bioassay trials, ORISE program 207 

DOE/USDA. This research was supported in part by an appointment to the 208 

Agricultural Research Service (ARS) Research Participation Program 209 

administered by the Oak Ridge Institute for Science and Education (ORISE) 210 

through an interagency agreement between the U.S. Department of Energy (DOE) 211 

and the U.S. Department of Agriculture (USDA). ORISE is managed by ORAU under 212 

DOE contract number DE-SC0014664. All opinions expressed in this paper are 213 

the author's and do not necessarily reflect the policies and views of USDA, ARS, 214 

DOE, or ORAU/ORISE.  USDA, ARS 2015-2018. Funding in part from: National 215 

Institute of Food and Agriculture, USDA, Specialty Crops Research 216 

Initiative/Citrus Disease Research & Extension. Award #2015-70016-23028, 217 

Developing an Infrastructure and Product Test Pipeline to Deliver Novel Therapies 218 

for Citrus Greening Disease, Lead Dr. Susan Brown. Kansas State Univ., 219 

Manhattan, KS, & USDA, ARS, Fort Pierce, FL. 220 

Disclaimer: 221 

This article is a US Government work and is in the public domain in the USA. 222 

Mention of a trademark or proprietary product is for identification only and does 223 

not imply a guarantee or warranty of the product by the US Department of 224 

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted November 27, 2018. ; https://doi.org/10.1101/478743doi: bioRxiv preprint 

https://doi.org/10.1101/478743


Agriculture. The US Department of Agriculture prohibits discrimination in all its 225 

programs and activities on the basis of race, color, national origin, gender, 226 

religion, age, disability, political beliefs, sexual orientation and marital or family 227 

status. 228 

  229 

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted November 27, 2018. ; https://doi.org/10.1101/478743doi: bioRxiv preprint 

https://doi.org/10.1101/478743


Figure_1.  Method of micro-injection of CRISPR/Cas9 components into 230 

abdomens of 4th, 5th instars and adult female, Asian citrus psyllid, Diaphorina 231 

citri, (Hemiptera: Liviidae)(Drummond Nanoject III).  Nymph on citrus leaf (Left).  232 

Nymphs and adults were placed onto solidified, chilled, 1% agar for injections. 233 

Shown is artificial dyed solution for easier visualization of method. Abdomen is 234 

most proximal, with the head and two dark antennae more distal.   235 

 236 

 237 

 238 
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Figure_2. Female adult Asian Citrus Psyllid, Diaphorina citri Kuwayama.  A) 240 

Female anatomy showing ovaries, and spermatheca in diagram. Fresh dissection 241 

(stained dark blue, Tryptophan).  Injection of plasmid-GFP expression, psyllid 242 

dissected 8 d post injection. Illumination of Green fluorescent protein, GFP with 243 

UV light (Blue Arrows). B) The GFP-plasmid (MTG-Dc-1, actin) was injected, C) 244 

Expression under Dc-Actin promoter identified from DIACI_2.0 genome, 245 

OGS_0.2v (Saha, et al, 2017). (Plasmid, Addgene, Karlikow et al, 2016). 246 

 247 

 248 

 249 

 250 
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 252 

Figure_3. Micro-CT imaging of adult female Asian citrus psyllid, Diaphorina 253 

citri, Kuwayama (Hemiptera: Liviidae). (Alba-Tercedor, J. and Hunter, W.B. 2016).  254 

www.citrusgreening.org [Alba-Tercedor et al, 2018]. 255 

 256 

 257 

 258 
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Figure_4. BAPC-assisted delivery of GFP-plasmid post ingestion.  Trial using 261 

BAPC-labeled with fluorescent Probe Atto488. Oral delivery to adult psyllid, 5 d 262 

post feeding, from sucrose solution (25%) plus BAPC in feeding satchet.  Thick-263 

section of single psyllid abdomen tissues fixed and parafilm embedded, thick 264 

section, (GFP insert, green).  Demonstrated delivery and location post ingestion 265 

of BAPC in psyllid tissues.  Psyllid actin promoter designed as previously 266 

mentioned in methods (MTG-Dc-1). 267 

 268 

 269 
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