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Abstract

Decision making is an essential part of daily life, in which balancing reasons and
calculating risks to reach a certain confidence are important to make reasonable choices.
To investigate the EEG correlates of confidence during decision making a study
involving a forced choice recognition memory task was implemented. Subjects were
asked to distinguish old from new pictures and rate their decision with either high or
low confidence. Event-related potential (ERP) analysis was performed in four different
phases covering all stages of decision making, including the information encoding,
retrieval, decision formation, and feedback processing during the recognition task.
Additionally, a single trial support-vector machine (SVM) classification was performed
on the ERPs of each phase to get a measure of differentiability of the two levels of
confidence on a single subject level. It could be shown that the level of decision
confidence is significantly reflected in all stages of decision making but most
prominently during feedback presentation. The main differences between high and low
confidence can be found in the ERPs during feedback presentation after a correct
answer, whereas almost no differences can be found in ERPs from feedback to wrong
answers. In the feedback phase the two levels of confidence can be separated with a
classification accuracy of up to 70 % on average over all subjects, therefore showing
potential as a control state in a brain-computer Interface (BCI) application.

Introduction 1

Certainty in decision making is an important prerequisite in everyday life, helping to 2

make informed and reasonable decisions in complicated circumstances. Decision 3

confidence plays a role in facilitating adaptive regulation of behavior and supports 4

decision making in complex situations. It affects how subsequent actions are planned or 5

how something can be learned from mistakes that have been made. Decision confidence 6

is also crucial for planning actions in a complex environment especially when subsequent 7

decisions depend on each other or the final outcome of a situation [1, 2]. Unfortunately, 8

it is not straightforward to extract decision confidence from behavioral or 9

neurophysiological data as the concept is deeply intertwined with other concepts. One 10

example is evidence or situation evaluation, which is essential to judge a current state 11

correctly. An accumulation of evidence and constant reevaluation of the available facts 12

requires a broad chain of thoughts which interacts with decision confidence [3]. Another 13

example is the strong correlate of reaction time with decision confidence as well as the 14

error rate which also varies greatly with the confidence of the current and previous 15
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decisions. It was found that certainty is inversely correlated with reaction time and 16

directly correlated with accuracy and motion strength [4]. Therefore, the level of 17

confidence can easily be confounded with sensory evidence or the planning and 18

execution of motoric actions. In addition, it could be shown that previous choices and 19

the respective feedback influence future decisions [5]. 20

Perceptual decision making 21

In the following, we want to steer the focus to perceptual decision making, in which we 22

aim to investigate neural correlates of decision confidence. According to Sternberg and 23

colleagues [6], perceptual decision making can be broken down to three stages: sensory 24

encoding, decision formation, and motor execution. Sensory encoding and decision 25

formation are described in different theoretical frameworks. In a detailed review, Gold 26

and Shadlen made efforts to identify and dissociate the two processes [7]. Two main 27

theoretical groundworks are the basis of this: signal detection theory [8] and sequential 28

sampling framework [9]. Signal detection theory deals with the inability to discriminate 29

between the real sensitivity of subjects and their (potential) response biases caused by 30

conditions of uncertainty. The concept of sensitivity describes the objective difficulty of 31

the task whereas the bias describes the effect of the consequences a decision could have. 32

Missing or detecting a stimulus according to its sensitivity level can be quantified by 33

reaction time and in terms of EEG correlates by P300 latency [10]. The sequential 34

sampling theory, on the other hand, states that the performance of a subject in an 35

experimental task depends on two main factors: the quality of the stimulus information 36

and the quantity of information required before a response is made. More general, 37

Gherman and colleagues [11] state that establishing a certain confidence for a decision 38

relies on the same mechanism as the choice formation itself. Kiani and colleagues [12] 39

found that neurons in the lateral intraparietal cortex (LIP) represent evidence 40

accumulation in monkeys. 41

Outcome evaluation 42

Since it has been established that the outcome of previous choices influences the current 43

ones, we would like to suggest to add a fourth stage to Sternberg and colleagues concept 44

of perceptual decision making, namely outcome and feedback evaluation. As feedback 45

can be very diverse, we want to specify the case we are particularly interested in: 46

Categorical feedback with no further instruction on how to process or use the feedback 47

later in time. Therefore, this goes down to simple performance evaluation and the 48

perception of the latter. General effects concerning the neural correlates following 49

positive or negative feedback that can be found in almost all settings are error-related 50

potentials and feedback-related negativity (FRN). Both belong to the class of 51

event-related potentials (ERPs). Error-related negativity (ERN) for example, was 52

observed in 1990 by Falkenstein et al. [15], time-locked to the presentation of an 53

erroneous event peaking at 80-150 ms. The potential appears strongest at frontal and 54

central electrode sites, has its origin in the anterior cingulate cortex (ACC) [16] and it 55

seems to be linked to error processing [17] and reward prediction [18]. The error-related 56

negativity is often followed by error-related positivity peaking 250-500 ms after stimulus 57

onset which is generated in the posterior cingulate cortex (PCC). This positive 58

component is associated with conscious error perception [19]. Apart from that, there are 59

also event related potentials that are specifically associated with feedback perception. 60

Especially the feedback related negativity (FRN) is a phenomenon often reported, as a 61

negative deflection 145-300 ms after unexpected feedback [20]. It is located 62

frontocentrally and seems to be equal to the N200 component. Interestingly the FN only 63

appears when the feedback is presented immediately after a decision or reaction. The 64
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time frame which can still be seen as immediate is at least one second long, according to 65

Weinberg and colleagues [21]. When too much time passes the FN is no longer visible, 66

the P3 component remains unaltered though even if the delay is up to six seconds long. 67

With respect to decision confidence, it was reported that error-related EEG signals vary 68

in a graded way with the level of confidence [13] and adding to that it was found that 69

error positivity (Pe) varies in amplitude with subjective confidence. Both facts show 70

that decision confidence and error detection are closely related processes [14]. 71

Aim of this study 72

The aim of this study was to investigate in which stages of perceptual decision making, 73

correlates of decision confidence or certainty can be found in EEG signals. Our interest 74

was to uncover the basic processes of confidence. Therefore, a task design was chosen 75

that allows investigating all four stages of decision making including the process of 76

stimulus encoding followed by decision formation as well as the actual decision making 77

and lastly, the feedback evaluation. The analysis includes classical ERP analysis, as well 78

as machine learning based classification approaches to reveal differences in the EEG 79

correlates between two levels of decision confidence (high and low). In this context, we 80

also evaluated the potential usage of decision confidence as a control state in a 81

Brain-Computer Interface (BCI) application. Having a reliable measure of how 82

confident a subject is during or after a made decision can be a useful information in, for 83

example, educationally oriented applications. 84

Materials and methods 85

A study with two experimental parts was conducted, from here on referred to as part I 86

and part II, to evaluate the impact of decision confidence or other processes that are 87

closely intertwined with the concept of decision confidence. In the following sections the 88

general experimental setup, differences between part I and II as well as the purpose of 89

the differences will be demonstrated. Also, an overview of the used analysis techniques 90

and methods will be given. 91

Participants 92

Part I of the study was conducted on 10 healthy subjects (5 female), with normal or 93

corrected to normal vision. Seven subjects were right-handed and on average the 94

subjects were 22.7 (±3.91) years old. Part II of the study was conducted on 11 healthy 95

subjects (9 female), all right-handed and with normal or corrected to normal vision (age 96

on average 20.45 ±1.13 years). Due to technical issues, one subject of part I and two 97

subjects from part II were excluded from the analysis, leading to a set of 9 subjects each 98

for both experimental parts. The participation was voluntary and could be ended at any 99

time if required. The subjects received a monetary reward of 8 euro per hour or credits 100

relevant for their study. The study was approved by the local ethics committee of the 101

Eberhardt Karls University of Tübingen and written informed consent was obtained 102

from all participants. 103

Apparatus and procedure 104

Technical setup 105

The subjects were seated in front of a computer screen (19 inches) on which the 106

experiment was presented. The experiment was programmed and presented in Matlab 107

using the cogent graphics extension. A standard keyboard was used for entering the 108
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answers by the subject. For the recording of the electroencephalogram (EEG) data, the 109

software BCI2000 [22] was used sampling the data with a frequency of 512 Hz. A 110

Brainproducts Acticap system and two 16 channel g.tec g.USBamp amplifiers were set 111

up for the EEG recording. The integrated high pass filter was set to 0.1 Hz and the 112

integrated low pass filter to 100 Hz. Additionally, a notch filter between 48-52 Hz was 113

applied to eliminate power line noise. 29 electrodes were used for the recording and 114

placed according to the extended 10-20 system (FPz, AFz, F7, F3, FZ, F4, F8, FC3, 115

FCz, FC4, T7, C3, Cz, C4, T8, CP3, CPz, CP4, P7, P3, PZ, P4, P8, O1, Oz, O2, PO7, 116

POz, PO8) and three additional electrodes were used for electrooculogram (EOG) 117

recordings at the outer canthi of the eyes and one on the forehead between the eyes. 118

The ground and reference electrodes were placed on the right and left mastoid 119

respectively and impedances were kept below 10 kΩ. To ensure that stimulus timing is 120

accurately saved in the data, we used the parallel port connected to the EEG amplifier. 121

Task and study design 122

Part I: The study at hand is based on a study originally performed by Woodman and 123

Fukuda [23] which we slightly modified. In general, the experiment was divided into a 124

study phase and in a test phase. In the study phase, the subjects were asked to 125

memorize as many pictures as possible from 500 that were presented. In the test phase, 126

the subjects were presented a mixture of old and new pictures and asked to decide for 127

each picture, if it is already familiar or not. A schematic sketch of the course of the 128

experiment can be seen in Fig 1. All pictures were presented in a block design, where 129

one block consisted of 50 pictures after which a break could be made if needed. The 130

continuation of the experiment was controlled manually by button press by the subject. 131

Each picture presentation can be seen as a separate trial. As stimuli, the same picture 132

dataset as in the Fukuda and Woodmans study was used [24]. The dataset contains 133

pictures displaying daily life objects on a white background. In the test phase, a series 134

of 750 pictures were presented to the subject, again in a block design with a break after 135

50 pictures each. The 750 pictures consisted of the 500 already presented pictures and 136

250 new ones in a completely randomized order. The subject was asked to decide after 137

each picture presentation if the picture is new or already familiar. To answer the 138

question one out of four options had to be chosen: 100 % new, 75 % new, 100 % 139

familiar, 75 % familiar. The percentage represents the decision confidence of the given 140

answer. To choose one of the four possible answers the keys A, S,Ö or Ä on a standard 141

German keyboard were used. Both hands were positioned on the keyboard, to handle 142

the key on the right and left side equally fast. The different sides on the keyboard 143

represented the categories familiar or new. To avoid confounds due to handedness of the 144

subject, the sides switched after each block. The switch was indicated before the new 145

block starts and within a block, no changes were made to avoid confusion. Which side 146

represents familiar (right or left) was indicated by circles that appeared next to the 147

picture as soon as an answer was required (1000 ms after stimulus presentation). The 148

circles were blue and yellow, representing the categories familiar and new respectively. 149

A represented high confidence (100 %) and S low confidence (75 %) on the left side, Ö 150

(75%) and Ä (100%) the same on the right side. After the choice was made by the 151

subject, feedback was presented for 1 s indicating if the choice, independent of the 152

certainty, was right or wrong. After feedback presentation, the next picture was 153

presented, and the subject had to decide again about the familiarity of the picture. 154

The recording time accounted for 1.15 h on average, from which about 25 mins were 155

needed in the study phase (2.5 s per trial) and about 50 mins in the testing phase 156

(3.23 s per trial plus individual reaction time). The same set of 750 pictures was chosen 157

for each subject, whereas the order of presentation and group affiliation (new or 158

studied) was randomized. 159
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Part II: Part II of the experiment differed only in the test phase. 500 instead of 750 160

pictures were presented. From those 500 pictures, 250 were new and 250 already 161

familiar, therefore the test set of pictures was balanced. Again, the same set of pictures 162

was chosen for each subject, only the order of presentation and the group affiliation 163

(new or old) was randomized. Another difference compared to part I was the timing of 164

the feedback presentation. After making a decision by a button press, a delay of 2 s was 165

introduced before the feedback was presented to the subject. Within the 2 s delay, the 166

stimulus remained on the screen. Despite the reduced number of presented pictures, the 167

duration of the experiment remained almost equal since the individual trials in the test 168

phase were two seconds longer than in part I. Changes were made, on the one hand, to 169

be able to disentangle the decision-making process from feedback processing. A time 170

locked representation of the decision making can only be realized by using the button 171

press as a reference. Since in part I the button press is immediately followed by 172

feedback presentation any correlates related to the decision making might get lost due 173

to new input processing. On the other hand, we wanted to ensure, that no effects due to 174

unbalanced stimuli were introduced in the data, therefore the number of presented 175

stimuli was adapted in the test phase. 176

Fig 1. Experimental design A: Sequence and timing of stimulus presentation
during the study phase B: Sequence and timing of stimulus presentation during the
recognition test in part I. All phases - depicted by the arrows - are the time frames
under investigation. Each time frame accounted for 1250 ms from stimulus onset, except
or the feedback phase which was only 1000 ms long. The blue rectangle represents
decision via button press C: Sequence and timing of stimulus presentation during the
recognition test in part II.
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Preprocessing and ERP analysis of the data 177

The data preprocessing and analysis was performed in Matlab 2015b [25]. Firstly, a 178

bandpass filter between 1 and 40 Hz was applied on the recorded EEG signal and the 179

signal was corrected for EOG artifacts using a regression method proposed by 180

Schoegl [26]. The data was baseline corrected (-100 ms to 0 ms prestimulus or relative 181

to the corresponding event) and cut into trials of one or 1.25 s length depending on the 182

respective categories: 183

� study presentation phase /Encoding (onset train stimulus presentation 0 - 1250 184

ms) 185

� test presentation phase (onset test stimulus presentation 0 - 1250 ms) 186

� decision phase (onset button press for decision -250 - 1000 ms) 187

� feedback phase (onset feedback presentation 0 - 1000 ms) 188

The categorization was chosen to cover all relevant time slots related to the different 189

stages of decision making including the evaluation of the made decision. For each of the 190

categories a further division was made into correct (100 % sure, 75 % sure) and wrong 191

answers (100 % sure and 75 % sure). The four chosen phases will be investigated in 192

terms of behavioral data and ERPs. For the ERP analysis, an additional filtering was 193

performed to exclude trials exceeding 80 or -80 µV from the analysis. The remaining 194

trials of all subjects were averaged for each category individually to reveal differences in 195

the time domain, for high and low confidence answers. After choosing Cz and Pz as 196

representative channels for the evaluation, the statistical significance of the differences 197

in ERPs was established by using a Wilcoxon Ranksum Test [27] on the accumulated 198

signal of all subjects of the respective categories. The resulting p-values were 199

Bonferroni-Holm corrected according to the number of used observations [28]. The 200

significance level was determined to be at p < 0.05. The main interest of the analysis 201

was to extract differences between two levels of confidence (100 % and 75 %) in all four 202

categories. To test for statistically significant differences between the RTs a two-sample 203

t-test was performed. 204

Classification 205

As a second step of EEG analysis, besides the conventional group-based statistics, we 206

used a machine learning based classification approach. This approach is single subject 207

and single trial based, which stands in contrast to grand averages that are calculated 208

over all available trials and subjects. On the one hand, it complements standard 209

analysis, since the single subject information might reveal properties of the data, that 210

the group average can possibly not provide. On the other hand, it is a standard 211

approach that is commonly used in Brain-Computer Interface (BCI) research. In this 212

approach, the data of each subject individually is used to evaluate if the EEG data of 213

the two conditions differs significantly. The machine learning algorithm tries to learn 214

the properties in the data that makes the two experimental conditions distinguishable, 215

which can then be used to decide for each trial to which experimental condition it 216

belongs. This is done by taking all electrodes and therefore, the full spatial pattern of 217

the signal into account. In our approach, a support vector machine (SVM) with a linear 218

kernel (C = 1) was used, as the ML algorithm of choice. The LibSVM 219

implementation [29] for Matlab was utilized in our analysis. The data of 21 channels 220

was used (*3, *z, *4 positions) and the ERP of the phase of interest (1 or 1.25 s time 221

frame) was considered. To prevent over-fitting, a 10-fold cross-validation was performed 222

for each subject and classification. In the cross-validation, the data was divided into ten 223
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parts of equal size. In each step of the cross-validation, 90 % of the data are used for 224

training and the remaining 10% are used for testing and evaluating the accuracy of the 225

SVM. In total 10 repetitions are performed in a way that all parts of the data have been 226

used for testing once. The average of all 10 runs is reported as the accuracy for the 227

subject. In all cases, the classes were balanced in size, for training and testing the 228

classifier, to avoid artificial biasing. Additionally, canonical correlation analysis (CCA) 229

was used to generate spatial filters which improve the signal-to-noise ratio of the EEG 230

signal [30]. The filter is calculated on the train data and applied on the test data within 231

each step of the cross-validation. To evaluate the performance of the classification 232

approach, the accuracy was reported, averaged over all subjects. To evaluate the 233

potential influence of the reaction time (RT), the classification was performed on the 234

RT as well. Since a certain level of accuracy can already be reached by chance, 235

depending on the number of classes and used trials per class, the statistical significance 236

of the classification results needs to be established. In order to achieve that we used an 237

approach that estimates the chance level of classification performance by calculating the 238

binomial cumulative distribution [31]. This approach gives rather generalized and 239

conservative bounds, based on sample size and the number of classes. Classification 240

results exceeding the estimated chance level can, therefore, be seen as statistically 241

significant. 242

P (z) =
n∑

i=z

(
n
i

)
·
(

1

c

)i

·
(
c− 1

c

)n−1

(1)

Equation 1 describes the binomial cumulative distribution, in which P(z) represents the 243

probability to predict the correct class at least z times by chance. An appropriate z can 244

be chosen by multiplying the number of samples n with the desired significance level 245

(chosen to be at 0.05). C represents the number of classes and n the number of samples 246

within a class. The approach should only be applied when the classes are balanced. 247

Since they are in our classification approach this is a suitable measure. 248

Results 249

Behavioral data 250

Accuracy 251

Table 1 shows the behavioral data that was collected throughout the experiment, 252

representing the number of correct and wrong answers, split according to decision 253

confidence and known and unknown pictures. Presented is the averaged percentage over 254

all subjects for both experimental parts. It can be seen that the proportion of correct 255

and wrong answers is very similar in part I and II. More than 60 % of all pictures have 256

been categorized correctly as new or already familiar and less than 40 % of the trials 257

have been answered wrong. Overall, slightly more known pictures have been identified 258

correctly than new pictures, but there is no major difference between those two 259

categories. In both experimental parts, more wrong answers were given with 75 % 260

confidence than with 100 % across all categories. When comparing the proportions of 261

the correct answers between the levels of confidence it can be seen that there is a major 262

difference between part I and II. In part II the proportion of correct answers is almost 263

equal between the two levels of confidence, whereas in part I more than twice as much 264

correct answers have been given with 100 % confidence compared to 75 %. Despite this 265

seemingly big difference, none of the comparisons showed statistical significance. 266
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Table 1. Numbers of correct and wrongly answered trials averaged over all subjects and presented in percent. The results
are split according to the familiarity of the pictures (known/unknown) and decision confidence (100/75%).

# Pictures [%] All Known Unknown
Part I All 100 % 75 % All 100 % 75 % All 100 % 75 %

Correct 63.6 44.27 19.33 74.40 56.40 18.00 58.00 40.00 18.00
Wrong 36.4 16.00 20.4 25.60 10.60 15.00 42.00 20.00 22.00
Part II
Correct 66.60 33.80 32.80 72.80 38.00 34.80 64.40 31.40 33.00
Wrong 34.40 15.20 19.20 27.20 12.40 14.80 35.60 14.00 21.60

Table 2. Reaction times of correctly and wrongly answered trials sorted according to the familiarity of the pictures (known
and unknown) and decision confidence (100/75%) in ms averaged over all subjects.

ReactionTime [s] All Known Unknown
Part I All 100 % 75 % All 100 % 75 % All 100 % 75 %

Correct 1.142 1.161 1.107 1.213 1.226 1.182 0.968 0.938 0.998
Wrong 1.132 1.123 1.137 1.119 1.051 1.158 1.150 1.203 1.103
Part II
Correct 0.934 0.840 1.126 0.953 0.822 1.166 0.959 0.860 1.091
Wrong 1.151 1.006 1.264 1.148 0.985 1.261 1.185 1.032 1.267

Reaction time 267

Table 2 shows the reaction times averaged over all subjects again split according to 268

decision confidence, known or unknown pictures and correctness of the given answers for 269

both parts of the experiment. It can be seen that in part II the subjects were 270

consistently slower for wrong than for correct answers (p < 0.01, two-sided t-test and 271

Cohen’s d = 0.36), as well as significantly slower for 75 % answers then for answers 272

given with 100 % confidence (p < 0.0001, two-sided t-test and Cohen’s d = 0.84). In 273

part I this does not seem to be the case, as neither of the two comparisons revealed 274

statistical significance. 275

Neurophysiological data 276

Encoding phase 277

In the encoding phase, the first encounter with the stimuli that need to be memorized 278

takes place. In Fig 2 and 3 the ERPs of the channels Cz and Pz respectively, are 279

displayed for all phases in chronological order of the experiment. It can be seen that the 280

encoding phase looks very similar between the two experimental parts at position Cz, 281

with the exception that in part II some points in time differ significantly between the 282

ERPs of the two levels of confidence, whereas they do not in part I. In general, the 283

ERPs are characterized by a positive peak at 200 ms and another large positive 284

component at around 600 ms. In part I there are two small negative components 285

directly preceding the positive components, which are less distinct but still visible in 286

part II. In both parts, statistically significant differences can be found in the ERPs with 287

respect to the two levels of confidence. 288

Test-presentation phase 289

The test presentation phase is investigated as a second time frame of interest with 290

respect to the EEG correlates related to decision confidence. Again, the ERPs at 291

positions Cz and Pz can be seen in Fig 2 and 3. At Cz, the ERPs are characterized by 292
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Fig 2. ERPs of confidence levels at Cz Levels of confidence (100 % red and 75 %
blue) for all four phases at electrode position Cz. Significant differences in signal (p <
0.05, Bonferroni-Holm corrected) are indicated by the shaded gray areas. A: Part I (top
row), B: Part II (bottom row)

Fig 3. ERPs of confidence levels at Pz Levels of confidence (100 % red and 75 %
blue) for all four phases at electrode position PZ. Significant differences in signal (p <
0.05, Bonferroni-Holm corrected) are indicated by the shaded gray areas. A: Part I (top
row), B: Part II (bottom row)

two negative components at 150 ms and 300 ms, and three positive components at 200, 293

400 and 500 ms after stimulus onset. It can be seen that the P400 is much smaller in 294

part I than in part II, which is statistically significant (see Fig 4). The overall 295

differences between 100 and 75 % are rather small and only significant for very few 296

points in time in both parts of the experiment and for both electrode positions. 297
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Decision phase 298

As a third time frame of interest, the decision phase is investigated. Since this time 299

frame is locked to the button press, which represents the subject’s decision, this phase is 300

intertwined with the feedback phase in part I. In part II a delay was introduced between 301

the button press and feedback presentation to be able to disentangle the two phases. 302

Therefore, the results of the decision phase for part I will be shown in the feedback 303

phase subsection and only the results of part II will be presented here. In the decision 304

phase of part II major differences can be seen between trials answered with 100 % and 305

75 % confidence at position Cz. They are most distinguishable (statistically significant 306

difference) shortly before and after the button press. The amplitude of trials answered 307

with 100 % confidence is clearly higher during the decision phase as compared to trials 308

answered with 75 % confidence. The ERPs are characterized by two positive peaks at 309

around 150 and 400 ms of which the first peak is much higher than the second one (see 310

Fig 2). 311

Feedback phase 312

As a last time frame of interest, the feedback phase has been investigated, in which a 313

categorical feedback is presented stating ’correct’ or ’wrong’ as a response to the 314

decision made by the subject. In this phase, the reaction to and the evaluation of the 315

feedback can be found. Differences between the levels of confidence can be found in 316

both parts, but also differences between the two experimental parts can be found during 317

the feedback phase. Especially visible and well distinguishable is the level of decision 318

confidence in the feedback phase, defined by the reaction to feedback indicating the 319

given answer was correct. This holds true for both experimental parts. For wrong 320

answers, the difference between 100 % and 75 % is almost nonexistent. In general, the 321

level of decision confidence is well reflected in the feedback phase of part I, by a shift of 322

latency (about 100 ms) in the ERP visible at Cz and a stronger negativity at Pz around 323

800 ms for answers with 75 % confidence compared to answers given with 100 %. The 324

stronger negativity at Pz is also visible in part II, whereas at Cz no significant 325

difference can be found in part II. When looking at Fig 5 representing the ERPs of 326

correct and wrong answers individually it can be seen, that the potentials of the 327

different categories differ less, for the wrong answers than they do for the correct 328

answers. Especially distinct seems to be the difference between 100% and 75 % within 329

the correctly answered trials. The figure also shows that the neural response to correct 330

and wrong feedback differs significantly. In part II the only difference that remains 331

significant is the difference between 100 % and 75 % confidence of correctly answered 332

trials around 400 ms. When correct and wrong answers are combined no significant 333

difference between 100 and 75 % can be found (see Fig 2). It catches the eye that 334

compared to part I the N200 is not visible at position CZ. Fig 4 shows that at least for 335

the 75 % answers this difference between the two experimental parts is significant. As 336

stated in the previous section, decision and feedback phase are strongly overlapping in 337

part I which is why they are treated as one united phase. The part which refers to the 338

decision making only is restricted to -250 ms to 0 ms before button press. It can be seen 339

(Fig 2 Decision/Feedback phase) that there are no significant differences between the 340

two levels of confidence around the time of button press as it was the case in the 341

decision phase of part II. 342

Classification 343

The results of the classification approach, quantifying the success of a single trial 344

separation between the two levels of confidence can be seen in Table 3. It revealed that 345

there are statistically significant differences in all phases for part II and for most phases 346

November 26, 2018 10/19

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2018. ; https://doi.org/10.1101/479204doi: bioRxiv preprint 

https://doi.org/10.1101/479204
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 4. Differences in ERPs between part I and II Differences between Part I
(blue) and Part II (red) for the three comparable phases at electrode position CZ. The
shaded gray areas indicate significance (p < 0.05, Bonferroni-Holm corrected) A: 100 %,
B: 75 %

of part I of the experiment between the ERPs of the two levels of confidences. Fig 6 347

provides an overview of the accuracy achieved for each subject individually for all 348

phases of the experiment. In addition, it also provides information about the statistical 349

significance as well as the number of available trials in each classification. Despite the 350

statistical significance most of the results do not exceed 60 % accuracy, except for the 351

feedback phase of part I. In addition to using the ERPs of the different phases as 352

features, the reaction time of each trial was also used as a single feature to classify the 353

level of decision confidence. For part II this worked rather well and accuracies above 354

chance level could be reached. In part I the achieved accuracies were not above chance 355

level, indicating that there might be no significant difference. The results for the 356

classification accuracy of wrong trials only are not listed because for many subjects 357

there were not enough trials from this category available to compute the 10-fold 358

cross-validation.

Table 3. Classification on ERPs (CCA filtered) of the different phases and the
reaction time of the subjects to distinguish 100 % vs 75 % decision confidence. The
signal of 21 channels and a 1 s time window were used in a SVM with a linear kernel
during a 10-fold cross-validation. Accuracies marked with * are significantly above
chance level (0.05) according to binomial cumulative distribution. The results for all
answers, as well as for correct answers only have been

Encoding Presentation Decision Feedback Reactiontime
Part I All 51.10 % 57.97 % * 69.63 % * 53.16 %

corr. 46.08 % 58.48 % * 67.64 % * 54.94 %
Part II All 52.17 % * 56.24 % * 59.01 % * 55.74 % * 58.38 % *

corr. 54.92 % * 56.16 % * 58.87 % * 59.55 % * 59.52 % *

359
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Fig 5. Differences between Part I and II ERPs at electrode position Cz during
the feedback phase. The signal has been split into four categories according to
correctness of the answer and the level of confidence. A: Part I (left column) B: Part II
(right column). The shaded gray areas indicate statistical significant differences between
the categories (p< 0.05, Bonferroni-Holm corrected)

Discussion 360

In this study, it has been investigated to which degree decision confidence is reflected in 361

ERPs in different phases of a list item recognition task. Although all phases allow a 362

prediction about decision confidence by means of classification accuracy and statistical 363

analysis of the ERPs, the revealed differences might not necessarily represent neural 364

correlates of decision confidence. Nevertheless, we chose decision confidence as an 365

umbrella term, since the labels for all analyzed trials originate from the level of 366

confidence with which the decision was made. To evaluate possible explanations besides 367

decision confidence we will go through all phases step by step. First, we looked at the 368

phase in which the stimulus was encoded in memory. As stimulus encoding is the only 369

process happening at this time point and no decision is involved, there cannot be direct 370

correlates of confidence in this phase. However, attention to the stimulus or the 371

strength of encoding will influence the decision confidence at a later point, and thereby 372

correlates of these processes can be found in the EEG. As the second phase of interest, 373

the stimulus presentation in the test phase was investigated. The test phase started 374

with the instruction to decide about the familiarity of a picture and to state the 375

respective level of confidence. Therefore, in the test presentation phase mainly 376

information retrieval takes place. The decision phase was chosen as an intermediate step 377

to capture the actual process of decision making by choosing a window that starts 378

shortly before the button press (the execution of the decision). Therefore, in this case, it 379

is legit to speak of decision confidence. As a last time window of interest, the feedback 380

phase has been investigated to evaluate if the level of confidence of the decision is also 381

reflected in feedback perception and evaluation. It is possible to speak about 382

affirmation or disappointment which naturally varies with the level of confidence with 383

which the corresponding decision was made. Hence, it can be assumed that at least 384

indirect measures of decision confidence can be measured. 385
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Fig 6. Significance level in relation to the number of trials in all
classifications The shaded area represents all accuracy values that are due to chance
in dependency of the available number of trials in classification. As a threshold p < 0.05
was chosen. The colored circles show the achieved accuracy values for all subjects 9 for
each phase of the experiment. A: Part I B: Part II

Behavioral data 386

In the behavioral data mixed results can be found with respect to decision confidence. 387

The reaction times of part II reflect what can also be found in the literature. The 388

subjects reacted much faster when they were highly confident about their answer, 389

compared to when they were less confident, as well as slower when the answer was 390

wrong than in cases in which the answer was correct [4]. Part I of the experiment does 391

not reflect that. The main reason for that might be the delay of 2 s that was introduced 392

in part II between feedback and decision of the subject. Answering the trials without 393

mandatory breaks, only between blocks, could lead to a loss of focus. Therefore, the 394

subjects needed more time to refocus on a new stimulus and hence also take more time 395

to answer the trial in part I. Another reason could be the shifted proportion of 396

presented stimuli. In part II, the number of known and unknown pictures were equal 397

and in part I it was a ratio of 1 to 3. If the subjects were subconsciously aware of the 398

ratio of known and unknown stimuli remains unclear but it could have an influence on 399

the subjects’ behavior. This fact could also explain the shifted proportions with respect 400

to the level of decision confidence of the given answers. In part I, much more answers 401

have been given with 100 % than with 75 % confidence, whereas in part II the 402

distributions are almost equal between the two levels of confidence. A sort of 403

automatism might have kicked in due to the realization that more known than unknown 404

pictures are presented, resulting in much more high confidence answers. 405

Encoding phase 406

In the encoding phase, some statistically significant differences between trials later 407

categorized with either high or low confidence can be found. Since in the encoding 408

phase no evaluation about the familiarity of the stimulus takes place and therefore no 409

decision needs to be made, the distinguishable levels of confidence do most likely 410

represent other processes. The level of attention paid during the stimulus presentation 411

could be one of them. The more attention has been paid in the encoding phase the 412

easier it is to later categorize the respective stimulus and the more confident will be the 413

answer. Another process that is reflected in the encoding phase could be the actual 414

stimulus encoding. The better a stimulus can be encoded in memory, the easier will be 415

the information retrieval leading to a high confidence answer in the test phase. In the 416

original study of Fukuda and Woodman [23] exactly this process, the quality of memory 417
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encoding, was under investigation. The authors showed that the performance of the 418

subjects and the likelihood of high confidence responses were significantly correlated 419

with signal strength (occipital alpha power, frontal positivity) of the encoding period 420

during the individual trials. As Fukuda and Woodman did not evaluate the accuracy of 421

a single-trial prediction, the results presented in this study can be used as a partial 422

estimate. While Fukuda and Woodman grouped their trials into high confidence, low 423

confidence and miss, we only compared high confidence (correct answer with 100 %) 424

and low confidence (correct answer with 75 %) and found that these can be separated 425

with 54.92 % in part II, which is significantly above chance level accuracy. However, for 426

part I classification accuracy was not significantly above chance. Regarding the ERPs in 427

detail, the following can be mentioned. The positive component at 200 ms that is 428

clearly visible in the encoding and test presentation phases of both parts can be 429

associated with stimulus presentation, as the stimulus appeared at that exact point in 430

time and the component appears equally in the encoding as well as in the presentation 431

phase. The encoding phase was perceptually identical in both parts, regarding timing 432

and the presentation of the stimuli. Since the number of known and unknown samples 433

was balanced for the test phase in part II to shorten the experimental time and to avoid 434

effects due to over-representation of one group, fewer trials from the encoding phase can 435

be evaluated because of lacking labels (lacking decision of the subject). In part I all 436

pictures from the encoding phase were represented in the test phase, therefore all were 437

judged with respect to their familiarity and labeled with a level of decision confidence. 438

The pictures not represented in the test phase in part II were not judged, hence they 439

cannot be categorized. This might be a reason for differences in the ERPs of part I and 440

II, since part I includes twice as many samples as part II in the encoding. 441

Test Presentation phase 442

In the test presentation phase the statistically significant differences that can be found 443

are most likely due to information retrieval but also decision formation and therefore, 444

they are at least related to decision confidence. The classification performance has 445

improved in comparison to the encoding phase and remains significantly above chance 446

level, but it is still below 60 %. When comparing the ERPs of both parts, a stronger 447

negativity at around 600 ms at Pz and a little later at Cz for answers given with 75 % 448

confidence compared to answers given with 100 % confidence can be found. 449

Additionally, it can be noticed that the P400 is much higher in part II than it is in part 450

I. This difference could be shown to be statistically significant for both levels of 451

confidence. It could be related to the changed ratio of known and unknown stimuli in 452

the test phase, but another reason could also be the delay of 2 s. Due to using the 453

mandatory break to refocus on the upcoming trials, a higher level of attention and 454

concentration could be present. 455

Decision phase 456

In the decision phase, the process of decision making is captured which is highly 457

influenced by the confidence with which the decision is made. The preparation and the 458

actual motor execution will very likely be reflected in this phase but correlates directly 459

related to the confidence level might be as well. Since decision and feedback processing 460

are in parallel in part I the effects for each process individually cannot be disentangled. 461

To be able to capture ERPs related to the decision making that are not confounded 462

with the processing of new visual input or performance evaluation, a delay of 2 s 463

between the button press and feedback presentation was implemented in part II. To 464

capture correlates that lead to the decision, the phase for the analysis was chosen to 465

start 250 ms before the button press and to end 1 s after it. As the decision phase 466
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overlapped with the feedback phase in part I those two effects cannot be separated and 467

therefore, it is difficult to compare those results to part II. Only the time frame -250 ms 468

to 0 ms before the button press are equally present in both parts without the 469

interference of other events. In part I there are no statistically significant differences 470

between the two levels of confidence in this time frame, whereas in part II differences 471

can be found shortly before the button press and also after. Since the effect of feedback 472

presentation starts with button press in part I, there are only 250 ms in which only the 473

decision making is reflected. Visual processing, as well as the evaluation of the 474

presented feedback, might be interfering or interlacing with the neural activity related 475

to decision making, leading to the non-significance in part I. In part II the visual 476

presentation did not change after button press while the subject was in expectancy of 477

feedback. Finding indicators for decision confidence shortly before the actual decision 478

making is in line with the literature [11], which also states that decision confidence and 479

evidence accumulation have the same underlying neural generators in the LIP. 480

Feedback phase 481

During feedback presentation processes like outcome and performance evaluation are 482

taking place. It is easy to imagine that the level of confidence with which a decision was 483

made influences the evaluation to a certain degree. In our experiment, we found the 484

most pronounced differences between the EEG signals of the two levels of decision 485

confidence in the feedback phase of part I. The differences lead to a classification 486

accuracy of up to 70 %. In part II classification accuracy is inferior but still significantly 487

above chance level. When looking at the ERPs it needs to be asked why the difference 488

between the levels of confidence at position Cz is reflected in a shift of latency. The 489

suspicion that the shift could be due to the RT since feedback was always given right 490

after the button press, which in turns is specified by the RT, could be disproven. 491

Classification with the RT as features was shown to be not significantly above chance 492

level. Maybe again the ratio of known and unknown pictures is responsible since the 493

shift in latency could not be observed in part II. Another reason why neither the shift 494

nor other statistically significant differences can be found at Cz during part II of the 495

experiment could be the introduced delay of 2 s. Due to disentanglement, no 496

accumulation of correlates related to decision making and feedback processing can take 497

place. It is possible that especially the accumulation of the two processes in neural 498

correlates leads to the pronounced difference in part I thereby, explaining the absence of 499

this pronounced difference in part II. Another aspect that could explain this 500

phenomenon could be a weakened link between own action and the corresponding 501

feedback, altering the processing and the reaction to the feedback. Interestingly clear 502

indicators for the different levels of confidence can only be found in reactions to correct 503

feedback for both parts of the experiment. This result is in line with 504

literature [32], [33], [34] and therefore, not surprising. Lack of significance between 505

confidence levels in the wrong answers could also be due to the available number of 506

trials, which were a lot less than for correct answers, consistently for all subjects. In 507

general, it remains unclear if the neural responses are that well distinguishable because 508

the subjects were forced to assess their level of confidence with every answer, or if the 509

level of confidence would be reflected as well if there was no need to quantify it after 510

each trial. This fact is hard to revise because the subjective level of confidence needs to 511

be collected somehow to be able to label and categorize the data. Still, since the 512

self-assessment of the current progress in learning is an important marker for deciding 513

when a specific content has been learned sufficiently well, it is an interesting finding. 514
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Usage for BCI applications 515

Using machine learning approaches to classify and to distinguish two or more classes of 516

EEG signals is a common approach in brain-computer interface (BCI) research. In BCI 517

research, an accuracy of 70 % is commonly seen as a threshold above which the 518

application of BCI is viable [35]. This value is almost reached for the distinction between 519

levels of decision confidence in the feedback phase in part I. In all other phases the 520

reached accuracy values were statistically significant above chance level but still below 521

60 %. Having knowledge about the level of decision confidence in a BCI application 522

scenario might be interesting for educational purposes. So far it has been shown that it 523

is possible to assess the amount of load a subject is under and to adapt the difficulty of 524

arithmetic tasks to keep the subject within a comfortable range of load [36], [37]. 525

According to cognitive load theory (CLT) [38], the key to successful learning is to avoid 526

cognitive over- or underload and to keep the learner appropriately challenged. Being 527

able to extract and identify content that is not entirely secured in memory could also be 528

beneficial for the process of learning. This specific content could be recapitulated until 529

the subject reaches a higher confidence during answering the question related to the 530

content. This would be a useful extension to error adaptive learning systems, that 531

would only represent the content that has not been learned at all. Therefore, it can be 532

suggested that using the level of decision confidence during a given feedback might be 533

feasible to use in a BCI based learning application. The fact that accuracy values were 534

lower for part II of the experiment does not interfere with this suggestion, as the main 535

reason for the drop in performance was most likely the introduced delay between given 536

answer and feedback. Since in any kind of application scenario a delayed feedback is 537

usually not desired, because the ability to maintain associations between actions and the 538

resulting rewards is required to measure success or performance, this is not a problem. 539

Conclusion 540

It could successfully be shown that trials labeled according to subjective decision 541

confidence, can be separated with statistical significance in all investigated phases of a 542

simple recognition task. The differentiability of high and low confidence levels could be 543

shown by classical ERP analysis, as well as with a machine learning classification 544

approach. It is possible to distinguish two levels of decision confidence, with up to 70 % 545

classification accuracy, based on the ERPs of the subjects elicited by categorical 546

feedback to the given answer. The main effect resulting in this difference is based on the 547

reaction to positive feedback and not on negative feedback. Since the accuracies are 548

sufficiently high, a usage of this knowledge in BCI applications and research seems 549

feasible. While trying to disentangle feedback processing from decision formation, we 550

found that after introducing a delay of 2 seconds between entering the decision and 551

receiving the corresponding feedback the performance drops immensely. This could 552

either be due to not being able to link the made decision to the corresponding feedback 553

anymore or to the disentanglement of the two phases, revealing that the effect is based 554

on an accumulation of the processes of both phases. Using machine learning as a 555

complementing technique to standard analysis approaches has proven to be helpful to 556

create a profound picture of how different certain mental states are based on their EEG 557

signal. 558
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