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Abstract

Local dynamic activity within canonical micro-circuits in the brain can be
described mathematically by neural mass models with parameters that intro-
duce a variety of oscillatory behavior in local neuron populations. Advances
in medical imaging have enabled quantification of the white matter connec-
tions that constitute whole brain networks or the ”connectome”. Recently,
connectome-derived coupling terms have been introduced within an array
of neural mass models to capture the long-range interactions between local
neuronal populations. Although such network-coupled oscillator models are
capable of producing steady-state power spectra similar to the brains em-
pirical activity, it’s unclear if the connectome’s anatomical information is
enough to recapitulate the spatial distribution of power spectra across brain
regions. Furthermore, these models inherently comprise of hundreds of pa-
rameters whose choices have impact on model derived predictions of brain
activity. Here we employ a Wilson-Cowan oscillator neural mass model cou-
pled by a structural connectome network to observe the effect of introducing
a connectivity and transmission delay to the frequency profile of the brain.
We observe that inference of the many parameters of the high dimensional
network model produces non-unique results. Parameter optimization of sim-
ulated power spectra to better match source localized EEG spectra showed
that introducing structural information to neural mass models does not im-
prove model performance. A combinatorial approach to optimizing local and

*Corresponding author
Email address: xix2007@med.cornell.edu (X. Xie)

Preprint submitted to NeuroImage November 26, 2018


https://doi.org/10.1101/480012
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/480012; this version posted November 29, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

global parameters outperforms other model variations. We demonstrate the
inherent identifiability problem in network models that pose challenges for
the use of such high dimensional models as diagnostic tools for neurological
diseases.

Keywords: Identifiability, Neural Mass Model, Connectome, Power
Spectrum

1 1. Introduction

2 With the advancement of neuronal dynamics modeling, single-neuron
s models of spiking activity have given way to more granular neural field and
+ neural mass models. One such established approach is modeling neuronal
s dynamics with the mean-field approach, i.e., modeling the average activity
s with a small number of state variables to summarize the behavior of a neural
7 ensemble [1, 2, 3, 4]. A neural ensemble is a set of locally interacting neurons
s [5], and the properties of these neurons can be described in terms of their
o mean firing rate and mean postsynaptic potential, therefore a neural mass
10 model can represent the lumped activity of a specific neuronal cell type or a
u  particular functional area in the cortex [6, 7].

12 Several of these neural masses, located at different brain regions, may
13 then be connected to yield whole-brain macroscopic models of brain activ-
1 ity. Recent connectome studies have reproduced networks in both healthy
15 [8, 9, 10] and diseased [11, 12, 13] human brains. Analysis using such con-
16 nectomic [14] approaches focuses on generative simulation models to relate
17 structural connectomes to their functional correlates [15, 16, 17]. Recent
18 extensions of neural mass models have introduced realistic neuroanatomical
1 information from diffusion tensor imaging paired with coupling parameters
2 regulating the connectivity strength to explore and simulate the spatiotempo-
2 ral dynamics of the brain [18]. In such models, various parameters reflecting
2 differences in axonal and dendritic properties between neuronal populations
23 are defined based on general assumptions made about the microscopic prop-
2 erties of neurons. However, the addition of a global coupling parameter and
s a transmission delay based on anatomical axonal distances are an estimated
» abstraction of the brain’s anatomical connections, it is unclear whether the
27 addition of these parameters to a network is actually beneficial to the pa-
s rameter inference problem.

29 While it is encouraging that connectome-coupled oscillator models are
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% capable of displaying expected frequency behavior [4, 6, 7, 19] and can repro-
a duce functional connectivity to a limited extent [17, 20, 21], the current state
22 of research leave open several important questions. It is still unclear if the
13 network models of brain dynamics can recapitulate the spatial distribution
s of a brains frequency spectra with the help of a connectome. The observable
55 alpha, beta, gamma, theta, and delta rhythms follow a spatially distributed
3 pattern [22, 23, 24, 25, 26]. For example, the alpha range is distinctively
» shown in the occipital lobe and posterior temporal cortex [27, 28, 29, 30],
;s while beta activity is present in the anterior brain regions and around the
1 postcentral gyri [27]. Neural mass models are able to produce oscillations at
w0 each of these rhythms via variations of its local parameters at each neural
s ensemble, however, it is unclear if neural masses oscillating at the nodes of
2 a structural connectivity network can recapitulate the spatial distribution of
s neuronal activity. In particular, brain regions display heterogenous patterns
s of connectivity, as well as widely varying local oscillatory behavior. Most
s likely, the combination of these factors affect the observable power spectra
s at each region due to the interconnected nature of the brain. Unfortunately,
s connectome-coupled neural mass models can have a very large number of
s local parameters in addition to the global parameters. This presents a po-
s tential challenge of over-fitting model parameters to empirical activity data.
so 'Thus, the key question of whether global coupling or local parameter diver-
51 sity is responsible for observed activity patterns is not straight forward to
s evaluate. These are important issues, as much of the emerging computa-
53 tional paradigm requires that connectivity-coupled NMMs be inferred from
sa observed recordings, and assumes that the inferred model parameters are
s diagnostic of neurological disease, e.g. the Virtual Brain [30, 31, 32, 33].

56 The first challenge to addressing these questions is obtaining neuronal
57 activity on the whole brain. While encephalography techniques can record
ss at a high sampling rate, the detected signals are limited to whats observable
so via electrodes placed on the scalp. Fortunately, source localization tech-
s niques have been developed to estimate the dipole source activity inside the
s1 brain that generate the encephalography data to produce datasets with high
2 spatiotemporal resolution. These source localized time series can provide av-
63 erage activity for individual brain regions of interest (ROIs), which can be
s viewed as nodes on a network, to allow further investigation of functional
ss and structural connectivity in a three-dimensional space.

66 In this article, we use an oscillating neural mass model (Wilson-Cowan|[3])
&7 to recapitulate resting-state human electroencephalography data and repro-


https://doi.org/10.1101/480012
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/480012; this version posted November 29, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

¢ duce the spatially distributed patterns of neuronal activity. The chosen
so model has a set of local parameters to simulate activity of a single node,
70 but when a global coupling parameter and transmission delay is introduced,
7 as governed by the subjects structural connectivity matrix, the model is able
22 to simulate activity at all interconnected regions that are ndoes of the con-
73 nectome. We propose a careful simulated annealing algorithm for parameter
72 fitting, using information theoretic measures of model performance. Our goal
75 is to assess whether it is possible to distinguish between the three scenarios:
76 1) individual oscillators at each brain region without structural connectivity,
7 2) individual oscillators at each brain region with structural connectivity, and
7 3) identical oscillators at each brain region with structural connectivity. We
79 believe the addition of a connectome will improve the models ability to repro-
g0 duce empirical power spectra and the spatial patterns. Accurate inference
s1 of the model parameters in a complex network of interacting brain regions
&2 is incredibly difficult for any optimization method, the over-specification of
&3 the model results in identical solutions with various sets of inferred parame-
s ters. We will specifically test the hypothesis that the addition of long-range
s connectivity to the coupled NMM will improve model performance, in com-
s parison to an alternate model that has no inter-regional interactions via net-
&7 work connectivity. Consequently, we also want to determine if the higher
ss dimensional model with connectivity provide uniquely identifiable solutions
8o to the parameter inference problem. These issues are very important for the
o potential utility of network-coupled neural mass models as diagnostic tools
o for neurological diseases, as previously proposed [30, 31, 32, 33].

e 2. Methods
s 2.1. Subjects and Data Collection

o All experiments were conducted after obtaining written informed consent
s from the subjects and approval by The Institutional Review Board of Weill
o Cornell Medical College. T1-weighted anatomical MRI and diffusion-MRI
o scans were collected from 11 out of the 13 healthy individuals (8 male, 35.2
e +/- 12.25 years) on a 3.0 Tesla General Electric Signa Excite HDx (GE
o Healthcare, Waukesha, WI) clinical MRI system with an eight-channel head
wo receive-only coil. DMRI scans were obtained using a spin-echo diffusion
w1 tensor pulse sequence with one T2-weighted image, 33 diffusion-weighted
102 images (one subject is an exception with 55 directions) evenly distributed on a
103 sphere with b = 1000 s/mm2, TE = 76.7 ms, TR = 9000 ms, field of view = 22
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s cm, 28 slices of 5.0 mm thickness, matrix size = 128 x 128, reconstructed with
s zero filling to 256 x 256. An axial 3D IR-prepped, fast SPGR with parameters
s tuned to optimize brain tissue contrast sequence (BRAVO sequence) was used
07 for anatomical imaging with inversion time = 400 ms, TR = 8.9 ms, TE = 3.5
ws  ms, flip angle = 13 degrees, axial field of view = 24 cm, 136 slices of 1.2 mm
o thickness, matrix size = 256 x 256, parallel imaging acceleration factor = 2.
o Additionally, eyes-open (EO) and eyes-closed (EC) Resting-state EEG data
m was collected for 9 out of the 13 healthy subjects. Recordings for a minimum
2 of 110 seconds were performed with a 129-channel HydroCel Geodesic EEG
s Sensor Net (Electrical Geodesics, Eugene, Oregon). The impedance of all
us  electrodes was < 7Hk{) at the beginning of the recording, the EEG signals
us  were sampled at 250 Hz sampling frequency and filtered from DC to 100Hz.
us Datasets were chosen for analysis only if all data modalities were present
w7 without unacceptable levels of noise or artifacts.

us  2.2. Structural Connectivity Networks

119 Structural and diffusion MR volumes were co-registered and pre-processed
120 in the manner previously described [34]. Segmentation of gray matter, white
21 matter, and cerebrospinal fluid was performed after slice-timing correction,
122 realignment, co-registration and/or normalization, and spatial smoothing
13 was performed using SPMS8 (Statistical Parametric Mapping tool). The gray
e matter was further parcellated into 86 anatomical regions of interest (ROIs)
125 based on the Desikan-Killany atlas using the established FreeSurfer package
s [35]. The parcellated regions were used to seed tractography nodes in co-
17 registered diffusion MRI volumes. The connectivity between any two regions
s was given by a weighted sum of tracts going between them as described by
120 [36]. The algorithm traces likely white matter fiber tracts by taking into
1o account tissue probability maps as well as diffusion orientation in a Bayesian
11 manner, the tracing stopped when the track angle between steps exceeded
12 pi/3 or when encountering a voxel that is outside of the white matter mask.

133 2.3. Source Localization

134 Source localization of the EEG signals was performed with Brainstorm
135 [37], which is documented and freely available for download online under the
135 GNU general public license (http://neuroimage.usc.edu/brainstorm). Prior
17 to source localization, the raw EEG data were band-pass filtered between 2
s and 45 Hz, transience time segments and unusable channels were manually
1o removed after inspecting the time series and its power spectrum. We then
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1o applied an average reference followed by independent component analysis to
w1 remove artifacts such as eye blinks and heart beats that are picked up by the
12 EEG electrodes, removal of additional noisy time segments was performed
13 manually after inspection.

144 Source localization was performed with a "warped” Colin27 template
us head model to remove variations due to noise level, head position, and
s starting/ending slices for MRI acquisition runs. The Colin27 template is a
7 stereotaxic average of 27 T1-weighted MRI scans of a single individuals head
us [38]. To incorporate individual subject’s anatomical information, we created
s pseudo-individual anatomies using Brainstorm’s warp anatomy functions to
1o deform and scale the high resolution Colin27 head shapes to match each sub-
151 ject’s individual head shapes. Surface meshes of the brain, skull, and scalp
12 were extracted from the template MRIs using 1922 vertices per layer. To
153 obtain an analytical approximation of the lead field for the conductive brain
152 volume, we chose to use the three-shell spherical harmonics expansion meth-
155 ods as discussed by [39]. Specifically, an initial grid of 4000 source points
155 was generated from the cortex surface and samples the brain volume in an
157 adaptive manner towards the center of the brain, each grid layer is down-
155, sampled by a factor of 3 for a maximum of 17 layers, resulting in a total
159 of 11151 to 16442 dipole sources depending on individual head anatomy. A
1o representative visualization of the dipole sources is shown in Fig. S1.

161 To obtain the inverse solution, a noise covariance matrix was calculated
12 over the EEG recordings to model the noise contaminating our data; only
13 the diagonal elements were kept for the inverse solution to estimate the vari-
s ance of each sensor. For all subjects, the activity at each dipole source
165 was estimated using a linearly constrained minimum variance (LCMV) spa-
s tial filter [40]. Three-dimensional dipole sources yielded a 4D time series
w7 (z Xy X z x time) for each set of EEG recordings. The norm of the 3 spatial
16s  coordinates (y/22 + y? + 22) at each time point was taken to produce a 1D
160 time series of estimated activation over the entire dipole. An average time
o series was obtained for all sources belonging to each of the same 86 ROIs
i as defined previously (See Fig. S1 for visualization of the dipoles), and the
12 source localized time series were used as empirical data for modeling training.

w3 2.4. Wilson € Cowan Neural Mass Model

174 To model neurophysiological activity from anatomical architecture for
s each ROI, we adopt the Wilson-Cowan coupled oscillators [3]. This model
e assumes that a local circuit consists of two lumped masses of excitatory
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w7 and inhibitory neural populations interacting with each other, whole brain
s regional dynamics are achieved by coupling local masses via structural con-
7o nectivity Aj, global coupling parameter cs, and a transmission delay Tf 7
1w The simulated average activity at the j* brain region is:

dE;

T = —Ej(t) + (Sepan — Ej(1))Se(c1 Ej(t) — calj(t)

tes ) ApE(t —77) + Pi(0) +ow(t) (1)

€mazx

Ti% == —Ij(t) + (Simaz - Ij(t))S@(CgE]<t) - C4Ij(t>> + O'Uj(t) (2)

181 Where E(t) and I(t) represent the firing rate of the excitatory and in-
122 hibitory neuronal populations respectively, 7 is a time constant and w;(¢) and
13 v;j(t) are random normally distributed noise with standard deviation o. P(t)
184 1S an external input parameter to the excitatory neural ensemble that controls
15 oscillatory activity, local parameters ¢y, ¢, c3, and ¢4 represent the average
185 number of excitatory and inhibitory synapses within a neuronal ensemble.
w7 S, and S; are transfer functions characterized by the sigmoidal function cap-
188 turing the non-linear response of a cell generating an action potential based
189 on summed synaptic input:

1 1
Se(z) = — (3)
i 1+6—a%(m—0%) 1_'_60,%0%
190 Different variations of this model (Fig. 1) can simulate average neuronal

w1 activity at each region in the brain. Here, we will compare three models
102 (1) the varying oscillator (VO) model that consists of varying local neuronal
103 ensemble with only locally defined parameters and no inter-connectivity be-
e tween nodes, (2) the varying oscillator plus connectome (VOC) model that
105 consists of local neuronal ensembles with varying local parameters, plus a
s global coupling parameter, structural connectivity, and transmission delay,
w7 and (3) the identical oscillators plus connectome (IOC) model that consists
108 of local neuronal ensembles with uniform local parameters, plus a global
199 coupling parameter, structural connectivity, and transmission delay.
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Varying oscillatory nodes only

etwork with varying nodes

e

Network with identical nodes

Figure 1: Variations of the Wilson-Cowan model. Varying oscillators (VO) at each node
without connectivity, varying oscillators at each node plus connectome (VOC), or identical
oscillators at each node plus connectome (I0C)

200 2.5, Fvaluating Oscillatory Abilities of the Neural Mass Model

201 To assess if the neural mass models are able to produce a frequency pro-
22 file that covers all signature physiological frequency bands, we performed 2-
203 seconds simulations with varying parameters. Firstly, simulations at a single
24 node with no connectivity were performed with varying excitatory and in-
205 hibitory time constant parameters (7., 7;) operating in the range 1ms—40ms
205 with a step size of 1ms and an external driving parameter of P(t) = 2.5.
207 When the structural connectivity matrix is introduced, the global coupling
208 parameter c; and transmission velocity also dictate oscillatory activity. For
200 the 86-region network model, we varied the global coupling parameter from 0
20 to 3 with a step size of 0.2. Upon identifying the value of ¢5 for which the net-
au - work model transitioned to oscillatory behavior (as done previously in [18]),
212 additional 1-second simulations were performed with varying transmission
23 velocity from 5m/s to 50m/s with a step size of bm/s. The power spectra
2 of each simulation were computed to select the peak oscillatory frequency.
a5 All power spectra calculations were performed with MATLAB’s multi-taper
216 power spectral density destimate function PMTM. Simulations were per-
27 formed with default local parameters as illustrated in [18]: ¢; = 16,5 =
a8 12,3 = 15, ¢4 = 3, and sigmoidal function parameters: a, = 1.3,a;, = 2,0, =
a0 4,0, = 3.7.
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20 2.6. Model Optimization

21 The model was implemented using simulation runs of 3 seconds, using a
22 numerical integration time step of A t = 0.004 sec or 250H z with MATLAB’s
23 ode4d function. The noise term in the model was removed to maintain an
224 unchanging parameter space during optimization. To improve the odds that
25 we capture the global minimum of a suitably defined goodness of fit (GOF)
26 criterion in our parameter space, we chose to implement the probabilistic
27 approach of simulated annealing [41]. The algorithm samples a very large
28 set of parameters within a set of boundaries by generating an initial trial
29 point and choosing the next trial point from the current point by a probability
230 distribution with a scale depending on the current ”temperature” parameter.
2 While the algorithm alwats accepts new trial points that map to cost-function
22 values lower than the previous cost-function values, it will also accept trial
233 points that have cost-functions with greater values than the previous point
24 to move out of local minima. The acceptance probability function is 1/(1 +

235 eﬁm), where T is the current temperature and A is the difference of the
26 new minus old cost-function values.

237 Our cost-function was defined as the two-sample Kolmogorov-Smirnov
2 (KS) statistic between the empirical source localized spectra and simulated
230 spectra from each model variation. The initial parameter value and boundary
a0 constraints for each parameter are given in Table 1; these had the same values
2 regardless of model variation.

Initial Value Lower/Upper Boundary
Time constants {7, 7; } 20ms [5ms, 30ms]
Local Parameters {C’l, Cs, C5, 6’4} 16,12, 15, 3 respectively [1,20]
Global Coupling Cj 1.5 0, 10]
Transmission Velocity 10m/s [bm/s,30m/s]
External Input P(t) 2.5 2.0, 3.0]

Table 1: Initial values and boundary constraints for all model parameters in the simulated
annealing optimization

242 All simulated annealing runs were allowed to iterate over the parameter
23 space for a maximum of N, x 500, where NN, is the number of parameters
24 in the model. To ensure the optimization algorithm thoroughly scanned
us  the parameter space and arrived at a global minimum within the bound-
26 ary constraints, the initial temperature was raised to 200 (default = 100)

9
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27 for all parameters, and the cooling schedule was set to the average of the
us quotient between initial temperature and the iteration number for each pa-
a9 rameter. Such a cooling schedule ensures that the temperature is low at
0 high iteration counts, so that the optimization algorithm only travels along
1 the downward slope of the current minimum. The VO model was optimized
2 first to obtain parameters for time constants, local parameters, and the ex-
3 ternal drive parameter. Then these local parameters were fixed in the VOC
2+ model optimization that focused on the global parameters of global coupling
s and transmission velocity. The IOC model’s optimization was performed to
6 identify global parmaeters and one set of local parameters for all 86 brain
7 regions. To ensure that we reached the optimal parameters for the VOC
s model, we performed an additional optimization where the local parameters
0 were allowed to vary. A conditional minimization algorithm was employed
w0 where simulated annealing was performed alternatively for local parameters
20 and global parameters over 10 iterations (VOC-CM). Upon the 10th itera-
x%2  tion, four subjects showed slight decreases in cost-function evaluation from
%3 the 9th iteration. Upon further inspection, their changes in cost-function
24 was smaller than 0.5% from the previous iteration. To ensure convergence,
25 we continued their optimization to 15 iterations to avoid local minima.

w6 2.7. Model Performance and Analysis of Simulated Power Distribution

267 Simulated power spectra were obtained after reintroducing the Gaussian
28 noise term (o0 = 0.00001) back into the model and allowing it to run for
w0 the duration of the simulations. We calculated the average spectra over
o0 10 different model simulations to account for noise for each set of optimized
on parameters. Each brain region’s source localized and simulated power spectra
22 were split into alpha (8 — 12Hz) and beta (12 — 25Hz) bands, the total
213 power in each band were computed by summing the normalized power after
o subtracting the mean at each frequency bin. Visualization of regional alpha
o5 and beta band power are displayed on glassbrains generated with an open-
26 source tool ”Brainography” developed by our group [42].

217 We also computed the Kolmogorov-Smirnov statistic between the source
s localized spectra and each model variations simulated spectra for each brain
29 region. Due to the non-Gaussian distribution in the Kolmogorov-Smirnov
20 statistic at the end of all simulations, a Wilcoxon rank-sum test was used
21 to compare the distribution of Kolmogoriv-Smirnov statistics between the
22 three model versions. All parameters that fell within +1% of the median op-
283 timized Kolmogorov-Smirnov statistics in VO and VOC-CM were extracted

10
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24 for visualization of their distribution.

25 3. Results

286 Only 7 subjects had complete sets of usable EEG, MRI, and DTI data,
257 80 we proceeded with analyses using only those subjects.

28 3.1. Model parameters produce oscillations in all frequency ranges

289 To ensure that our proposed model variations can produce oscillations in
20 most physiological frequencies, we repeatedly simulated single node dynam-
201 ics without any connectivity for 2-seconds while systematically varying the
202 excitatory and inhibitory time constants. For each combination of the time
203 constants, we examined whether the model produced an oscillatory wave
2 form, and the peak frequency of the oscillations was extracted and assigned
25 to a defined frequency band. Figure 2 clearly shows that the model is able to
206  produce all frequencies up to 45Hz. More importantly, the entire frequency
207 Tange is covered by time constants ranging from 0 —40ms, which is consistent
208 with most models [4, 6, 19, 43, 44]. For each frequency band, a characteris-
209 tic waveform is shown with its corresponding power spectra. External input
w0 P(t) was set to P(t) = 2.5 to ensure the uncoupled model is in a limited cycle
s regime within the normal biological range for neuronal activity. The effect
w2 of the external drive parameter is shown in Figure S3, where the simulations
303 show oscillatory behavior near P(t) = 2.5.

304 Using the same set of local parameters, we simulated the network dynam-
s0s ics of 86 interconnected regions using one structural connectivity matrix,
36 & transmission velocity of ten meters per second, and varying global cou-
s7 - pling parameter ¢; ranging from 0 to 3. A representative subject’s structural
s connectome i.e. weighted connectivity matrix whose elements represent the
s0  amount of fiber tracts connecting different regions, is given in Fig. S2. The
s0  external input parameter was lowered to P(t) = 1.5 for these simulations
su to make sure that global coupling and connectivity was the main driver of
a2 oscillations (see Fig S3). The specific external input parameter value was cho-
a3 sen because [18] showed default model parameters injected with P(t) = 1.5
s shifted the model from a low oscillatory state to a high oscillatory state.

a5 3.2, Optimized neural mass models

316 Most optimizations terminated upon reaching the maximum number of it-
sz erations allowed, which is Npgrameters X 500 iterations. However, the minimum

11
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Peak Frequency As Function of Time Constants
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Figure 2: Peak frequency depends on time contants. Top: Heat map of models peak
frequency (Hz) as a function of the excitatory and inhibitory time constants. Middle: os-
cillatory time course showing different peak frequencies, their corresponding power spectra
is shown to the bottom.

12


https://doi.org/10.1101/480012
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/480012; this version posted November 29, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

s L Hippocampus Glob Coupling -08 o Lippocampus Giob Coupiing -0 “ Average Spectra of Al Brain Regions Giob Coupling =0.8
02 5
s
o @
g & g o
o
%0
s
01 -
02 100 10
0 o1 0z 03 o4 05 o6 07 08 o9 1 b s w0 ® w  m  w % w0 & 0 O W s w
ime () Froquency () Froquency ()
s L Hippocampus Giob Coupling <28 w L Hippocampus Giob Coupling -2 . Average Spoctra of All Brain Regions Giob Couping =2
02 7
- " ) /\d\__/_,\w
8 w0 3
o
100 s
ot 110
02 ™ 10
o o1 oz o 0s o6 07 08 09 1 B s 0 s m  » W % w4 0 5w s W » W » w0 &
me () Froquency 4] Froquency (12
s L Hippocampus Giab Coupling =5:2 . L ippocampus Giob Couping =52 . Average Spocira of All Brain Regions Giob Couping =52
02 0
s
01 ©
o 100 0
0.1 110
02 120 o
o a1 oz 03 04 05 o6 07 08 05 1 b e e m s % % w0 s w0 s w Wm0 &
me (5 Framney ey Froquency (12

Figure 3: Global coupling controls oscillations. As the global coupling parameter increases,
the simulated time series of a particular region is oscillating at higher frequencies as shown
on the left column, each time series’ corresponding power spectra is shown in the middle.
The right column shows the average spectra of all 86 brain regions after removing the
mean. Transmission velocity between brain regions was held to a constant (10m/s) for all
simulations.
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Figure 4: Transmission velocity and oscillatory behavior. In the network model, increasing
the transmission velocity causes a time shift of the incoming signal; the left column shows
the effect of the delay on 1 second simulated time course. The middle column shows
the effect of transmission velocity on the corresponding power spectra. The right column
shows the average spectra of all 86 brain regions after removing the mean. Global coupling
was held to ¢5 = 1.5 for all simulations.
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s1is - within the boundary constraints was acquired before reaching the maximum
319 iteration, the simulated annealing algorithm accepts additional function eval-
»0 uations after acquiring a minimum to scan the rest of the parameter space,
;21 none of the optimization runs terminated while the cost-function evaluations
12 were decreasing. None of the optimized parameters were reported to be equal
13 to the upper or lower boundary, thus the specified range was not overly nar-
s24  row, and a minimum was found within the bounds in all cases. The mean and
w5 standard deviation of all parameters are reported in Table 2. Recall that the
26 three models we evaluated were: regionally varying oscillators (VO), region-
27 ally identical oscillators coupled by structural connectivity (IOC) and, region-
»s ally varying oscillators coupled by connectivity (VOC). We also evaluated the
20 VOC model with iterative optimization of local and global parameters (de-
30 noted (VOC-CM). We observe that there is a difference between excitatory
sn and inhibitory local parameters (c1, c3 and ¢, ¢4 respectively), with the ex-
s citatory constants being consistently larger than inhibitory constants across
;3 all model variations. This slight variation between excitatory and inhibitory
s parameters in network models reflect physiological conditions and is crucial
15 in producing functional neuronal activity. In terms of time constants, we see
16 the excitatory term being slightly lower than the inhibitory term. Similarly,
ss7 global coupling parameters are relatively low in VOC models compared to
s 1OC, however, we see that IOC model parameters have high optimal values as
;39 well as high variation across all subjects, suggesting that higher connectome
u0 coupling is required to optimize the IOC model.

301 Figure 5 shows the cost-function values for the conditional minimization
sz iterations over the global and local parameters in the VOC-CM optimization
a3 task. We see that the local parameter optimization iterations always result
sa  in a lower cost-function value than when optimizing over global parameters.
us  However if we compare all of the global cost-function values and all the local
s cost-function values we see a downward trend in both that begins to flatten
sz around iteration 7. Further iterations do not materially improve the fits, as
us it appears that the CM optimization has converged. The jaggedness of the
a9 curve also shows the importance of allowing an increase in the cost-function
0 between the local- and global-steps, since otherwise no global step would
51 improve upon the initial solution involving only local optimization. The CM
2 performance for all all subjects is shown in Fig. S4.

353 Figure 6 shows the boxplots of the Kolmogorov-Smirnov (KS) statistic
4 between the source localized power spectra and its corresponding simulated
15 power spectra from each model variation over each of the 86 brain regions
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VO VOC VOC-CM I0C
Time constants (ms) 7. = 15.2(3.0) 7. = 15.7(2.6) 7. = 18.1(9.0)
7, = 19.4(2.9) 7, = 18.2(2.7) 7, = 24.8(8.8)
Local Parameters c1 = 14.38(1.502) ¢ =16.23 cp = 17.09(3.465)
¢y = 9.989(2.166) = TAIT(1.541) ¢ = 5.032(3.743)
¢y = 15.19(1.534) c5 = 16.63(0.955) ¢z = 19.13(1.000)
¢y = 6.117(1.794) i = 4.633(1.153) o4 = 4.082(2.711)
External Input P() = 2.664(0.094) _ P(f) = 2.660(0.013) P() = 2.607(0.409)
Global Coupling cs = 0.018(0.043) ¢5 = 0.003(0.0075)  ¢5 = 5.093(3.697)
Transmission Velocity (m/s) v =8.714(4.455) v = 11.24(3.56) v = 11.75(5.506)

Table 2: Mean (standard deviation) of model parameters for all model variations. VO =
Varying Oscillators, VOC = Varying Oscillators with Connectome, VOC-CM = Varying
Oscillators with Connectome and optimized by CM, IOC = Identical Oscillators with
Connectome.

6 in each of the 7 subjects. The best performing model was the individual
37 oscillators fitted to the source localized spectra at each node (VO). VO and
s VOC-CM was able to minimize the KS-statistic by optimizing for each in-
30 dividual ROI, whereas IOC and VOC required minimizing for the average
0 KS-statistic of all 86 ROIs, therefore a high variance around the median is
ss0 - shown in their box-plots. Contrary to our belief that connectivity improves
w2 fitting, introducing a connectome and global coupling to optimized oscil-
s lators resulted in higher cost-function evaluations (VOC). Using one set of
34 local parameters for all brain regions in IOC produced similar results to VOC
35 (P =0.1899). On the other hand, optimizing the VOC model variation with
w6 the CM algorithm resulted in a much better model performance; the model
37 fit of VOC-CM was significantly better than IOC and VOC (P < 0.0001).

368 To determine the effect of global coupling on model performance, we
w0 gradually increased the global coupling parameter in the VOC model while
s holding transmission velocity constant. We had hypothesized that introduc-
sn  ing global coupling, structural connectivity, and transmission delay would
;2 improve the parameter space and yield a lower cost-function, but our results
sz show the exact opposite. Figure 7 shows that introducing global coupling is
s+ an uphill move in terms of cost-function evaluations and the corresponding
ss  changes in parameter space does not improve model performance. Alongside
s Fig 5 and 6, we see that re-optimizing for the global coupling and transmis-
sr7 - sion velocity parameters in VOC cannot return the cost-function evaluations
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Figure 5: Conditional minimization performance. The CM algorithm alternatively opti-
mized local parameters and global parameters of the VCN model for 15 iterations. The
optimized local parameters consistently resulted in lower cost-function evaluations than
global parameters over all iterations. The final iteration was used as the set of optimized
parameter for further analysis.

ws  to the minimum achieved by local parameters only (VO).

379 The source localized power spectra of all regions and their corresponding
;0 simulated power spectra for each model variation are visualized in Fig. 8.
ss1 ' The source localized spectra show a clear alpha peak at 8 — 12H z and a beta
;2 peak with lower power at near 20H z, which is characteristic of normal neu-
3 rophysiological frequency profiles. Consistent with our KS-statistic results in
;s Fig. 6, we see that the average IOC spectra does not show these characteris-
s tic peaks while other model variations do to a limited degree. The optimized
;s parameters in Table 2 show relatively high variances in IOC compared to
;7 other models, and the parameter means between excitatory and inhibitory
s time constants differ by a small amount, suggesting the optimization algo-
;9 rithm had trouble converging onto a parameter range that is suitable for this
s0 mode lvariation. The consequence of having identical parameters for each
s node and small differences between excitatory and inhibitory parameters for
sz [OC is shown in Fig. 8, where each region’s spectra are less likely to have
303 various peaks and troughs. Despite the VO and VOC-CM spectra having a
s lower KS-statistic than other spectra in Fig. 6, their beta activity is not as
s distinct as what’s shown in the source localized spectra in Fig. 8. Finally,
36 with the exception of IOC, the remaining model variations recapitulates the
;7 observed alpha peaks in the source localized spectra to a limited degree.
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VO vs. VOC | VO vs. I0C |  VOCvs.IOC | VOvs.VOC+CM | VOCvs.VOC+CM | 10C vs. VOC+CM
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Figure 6: Comparison of model performance. Summary of Kolmogorov-Smirnov statistics
between different model variations (VO = varying oscillators, VOC = varying oscillators
with connectome, VOC+CM = varying oscillators with connectome, optimized via CM,
IOC = identical oscillators with connectome) over all 86 ROIs and all 7 subjects. A
Wilcoxon rank-sum test was used to compare the different model values (shown in the top
table). All p-values reported were adjusted for multiple comparisons (Bonferoni).

8 3.3. Spatially distributed patterns of power spectra

390 Figure 9 illustrates via surface-plots the alpha band power (8 — 12Hz2)
wo over the entire brain for the observed and simulated spectra averaged from
w1 all subjects. Each of the cortical regions are colored by the intensity of that
w2 region’s alpha power scaled by the mean alpha power over the entire brain.
w3 As expected, the source localized spectra (top row) shows relatively larger
ss spheres in the posterior regions of the brain. The VO, VOC, and VOC-CM
w5 models show the same trend, although they are distributed more laterally
w6 than the observed alpha distribution. The IOC model did not match the
w7 alpha spectra spatial pattern at all, with only a small number of regions that
ws contain alpha powers significantly above the mean. The Pearson’s correlation
wo coefficients are displayed on top of each glass-brain plot, and as expected,
a0 VO and VOC-CM had the highest correlation when comparing the 86 brain
an region’s alpha powers.
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Figure 7: Global coupling parameter drastically changes the parameter space. Introducing
a structural connectivity matrix with increasing global coupling parameter increases the
cost-function evaluation, but does not continuously increase the evaluations as global
coupling increases.

a12 From the optimization results in Figure 5, we already see a change of less
a3 than 1% in cost function evaluations as the conditional minimization algo-
as  rithm approached the 10" iteration, suggesting any of the solutions along the
a5 end of the conditional minimization algorithm could be a plausible solution.
a6 We selected parameter sets that computed cost-function evaluations within
a7 £1% range of the final cost-function evaluation. The probability distribution
sis  of these optimized parameters are shown in Figure 10. The majority of the
so  parameters from varying oscillators (VO) model shows a bimodal distribu-
w0 tion, with many peaks in the histogram suggesting different viable solutions
a1 that satisfies our goodness-of-fit criteria. On the other hand, the parameters
222 chosen from the final iteration of the VOC-CM model shows a less obvious
23 bimodal distribution with the exception of 7;. Additionally, the histogram
w24 peaks suggest that there are at least two highly probable parameter values
w5 for each parameter in both cases. Despite conditional minization converging
w6 to a low cost-function evaluation that drop less than 1% after the 10th iter-
227 ation, the parameters were still unable to converge to a single value, further
w2s emphasizing the difficulty of finding unique solutions to an over-specified
a0 model.
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Figure 8: Optimized power spectra. (1) Source localized power spectrum for all 86 regions
averaged over all subjects is shown at the top. Below the source localized spectra, going
clockwise: (2) simulated varying oscillators (VO) model, (3) simulated network model with
varying local parameters at each node (VOC), (4) simulated network model with identical
local parameters at each node (IOC), and (5) simulated network model with varying local
parameters optimized with conditional minimization (VOC-CM).

50 4. Discussion

431 A challenge for emerging models of brain activity is that in a complex
.2 dynamical system such as the brain, it is difficult to predict function even if
a3 the underlying architecture, local cortical dynamics, and cortical-cortical in-
« teractions are known. In the present article, we studied the role of local and
a5 global parameters in a system of coupled oscillating neural mass (Wilson-
s Cowan) models, either unconnected or connected via white matter fibers as
a7 measured from diffusion-MRI. As described in previous network modeling
as  efforts, coupled dynamical systems have a collective behavior that depends
130 on the network structure, the local dynamics of each node, and the coupling
so function for the transfer of information [20, 45, 46]. Using different imple-
s mentations of the Wilson-Cowan oscillator model, we reproduced to varying
a2 degrees of success spatially varying spectral features of human source local-
w3 ized EEG at rest. Our results show that 1) introduction of the connectome
aas to the oscillator model does not improve model fitting to source localized
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Figure 9: Spatial distribution of alpha band. Glass-brain showing the power in the alpha
band averaged across all subjects. From top to bottom: (1) empirical data, (2) vary-
ing oscillators (VO) model, (3) varying oscillators with connectivity (VOC), (4) identical
oscillators with connectivity (IOC), and (5) varying oscillators with connectivity, opti-
mized using conditional minimization (VOC-CM). The radius of each spheres indicates
the amount of power within the 8 — 12H 2 range in the frequency domain, scaled by the
mean of the alpha power over each region. Regions close or below the mean are shown by
smaller spheres or not shown at all. Different lobes of the brain are color-coded for clarity.
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Figure 10: Best Fitting Model Parameters. Histograms showing the probability distribu-
tion of parameters chosen from +1% of the best fitting solution for the varying oscillators
(VO, top) model and varying oscillators with connectivity, optimized using conditional
minimization (VOC-CM, bottom).

us  EEG, 2) the identifiability problem manifests itself in the model’s parameter
us  space as well as the spatial distribution of the modeled frequency profile.

aa7 First, we aimed to determine which configuration of our chosen neural
ws  mass model best reproduces source localized EEG data. From our simula-
uo tioms, it is clear that a model of individual oscillators at each brain region
0 (VO) is capable of reproducing the spatial and spectral patterns of EEG data.
ss1 While the absence of network topology in the VO model does not correctly
»s2  depict the interconnected brain regions, the one pair of oscillator model per
53 brain region fitting criteria is a much easier parameter inference problem than
sss  inferring network model parameters. VOs simulations produced a mean KS-
sss  stat of around 0.15, which is lowest out of all model variations. On the other
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s6  hand, network models (VOC, VOC-CM) were also able to produce the al-
7 pha and beta spatial patterns that closely matched our source localized EEG
ss data. The Jansen and Rit model [43] utilized realistic ratios of excitatory
w0 and inhibitory connections in a neuronal ensemble to arrive at their param-
w0 eter values, David and Friston [4] expanded on this idea and established a
w1 neural mass model with similar differences between excitatory and inhibitory
w2 parameters. Interestingly, [OC parameters exhibiting this difference between
w3 excitatory and inhibitory parameter values were not able to produce a sat-
s isfactory spectra or a posteriorly distributed alpha pattern, indicating the
ws importance of allowing spatially varying local parameters in order to pro-
w6 duce characteristic neuronal patterns. In the IOC model, the only terms
w7 driving regional differences in the brain were the connectivity matrix, global
s coupling, and tramission velocity, which is an indirect way of determining
wo the effect of introducing a connectome to an optimized network. Surpris-
a0 ingly, despite it’s anatomical relevance, the structural connectivity does not
an improve the model performance, but drastically alters the parameter space
a2 Instead.

a73 Our results show a simple addition of network connectivity to individual
s oscillators optimized independently at all brain regions does not improve the
a5 performance of the model. As shown in Figure 6 and 7, no amount of con-
a6 nectome coupling, while keeping the VO local parameters, improves model
a7 performance; in fact, it makes is substantially worse, with the KS-statistic
as cost function plateauing around 0.5-0.55 as global coupling increased gradu-
a0 ally, compared to the KS cost of the VO model of less than 0.2. We conjecture
w0 that the one-to-one fitting without any connectivity and transmission veloc-
w1 ity influences may have provided a simpler optimization problem than the
s> network models. Because we used optimized local parameters from the VO
i3 model in VOC model, we expected similar or better model performance with
s the addition of a more physiological, interconnected brain network. However,
a5 despite optimized local dynamics at each node, the interconnected regions
a6 introduced an uphill move for the optimization algorithm instead of a down-
w7 hill move, suggesting the feedback from adjacent regions may be changing
w8 local dynamics that are not explainable by just a global coupling parameter
0 and transmission velocity. Our conditional minimization algorithm was able
w0 to optimize our local and global parameters iteratively until we obtained a
w1 set of parameters that outperformed VOC. As described above, despite IOC
w2 having identical nodes, meaning only one set of local parameters for the en-
w03 tire network, the inferred parameters are high in variance and do not reflect
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w4 neurophysiological conditions. This is consistent with the findings by [47],
w05 suggesting that network dynamics do not only depend on anatomical connec-
w6 tivity, but also on ”state-dependent dynamical regimes of the brain regions”
w7 and on the heterogeneity of node degrees.

498 The surface-plots displaying the spatial distribution of each model vari-
w0 ation’s alpha pattern highlight the identifiability problem of network neural
so0 mass models. Despite the differences in parameterization, all models show
so0 spatial alpha patterns that are identical to each other with the exception
s2 of IOC. In the frequency domain, there are recognizable differences in the
so3 power spectra produced by each model, however, the minor differences do
sa ot necessarily capture the neurophysiological oscillations that translates to
sos function. Additionally, the histograms in 10 shows there are many probable
so6 solutions that provide satisfactory spectra according to our goodness-of-fit
so7  criterion.

508 To capture function deteriorations in a diseased brain by mathematical
so0 models, there has been many recent attemps to correlate neural mass model
s.0 parameters with stroke recovery [31, 48, 49|, Alzheimer’s disease [50], and
su epilepsy [51]. However, all these efforts neglect the over-parameterization of
sz the models by expanding neural masses to networks in order to maximize a
si3 fit to functional connectivity. Correlating a set of parameters with a change
siu in functional connectivity does not mean such parameter shifts are meaning-
si5 ful enough to diagnose disease, as another set of parameters may capture the
s16  same functional connectivity just as well. Our results show the manifestation
si7 - of identifiability problems in neural mass models as a challenge to diagnosing
sis  disease via mathematical models, as network models need to capture both
s functional and spatial information in order to fully capture disease spread.
s20 During parameter inference, careful inspection of the parameter distribution
s and model behavior is needed to obtain parameters that converged to a uni-
s22 form distribution. We believe low dimensional models with parameter con-
s23  straints may avoid the identifiability problem and provide more meaningful
s« model parameters.
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79 6. Supplementary Material

Figure S1: Dots representing volumetric source locations mapped to their respective re-
gions of interest (ROI) viewed from the back, right, and top. Different colors represent
the 86 segmented regions in the FreeSurfer Desikan-Killany atlas, each ROI is viewed as
a node on the connectome.
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Figure S3: Neural mass model’s oscillatory activity changes as external drive parameter
P(t) is gradually increased at one node.
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Figure S4: Conditional minimization performance for all subjects.
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