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Abstract

Local dynamic activity within canonical micro-circuits in the brain can be
described mathematically by neural mass models with parameters that intro-
duce a variety of oscillatory behavior in local neuron populations. Advances
in medical imaging have enabled quantification of the white matter connec-
tions that constitute whole brain networks or the ”connectome”. Recently,
connectome-derived coupling terms have been introduced within an array
of neural mass models to capture the long-range interactions between local
neuronal populations. Although such network-coupled oscillator models are
capable of producing steady-state power spectra similar to the brains em-
pirical activity, it’s unclear if the connectome’s anatomical information is
enough to recapitulate the spatial distribution of power spectra across brain
regions. Furthermore, these models inherently comprise of hundreds of pa-
rameters whose choices have impact on model derived predictions of brain
activity. Here we employ a Wilson-Cowan oscillator neural mass model cou-
pled by a structural connectome network to observe the effect of introducing
a connectivity and transmission delay to the frequency profile of the brain.
We observe that inference of the many parameters of the high dimensional
network model produces non-unique results. Parameter optimization of sim-
ulated power spectra to better match source localized EEG spectra showed
that introducing structural information to neural mass models does not im-
prove model performance. A combinatorial approach to optimizing local and
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global parameters outperforms other model variations. We demonstrate the
inherent identifiability problem in network models that pose challenges for
the use of such high dimensional models as diagnostic tools for neurological
diseases.

Keywords: Identifiability, Neural Mass Model, Connectome, Power
Spectrum

1. Introduction1

With the advancement of neuronal dynamics modeling, single-neuron2

models of spiking activity have given way to more granular neural field and3

neural mass models. One such established approach is modeling neuronal4

dynamics with the mean-field approach, i.e., modeling the average activity5

with a small number of state variables to summarize the behavior of a neural6

ensemble [1, 2, 3, 4]. A neural ensemble is a set of locally interacting neurons7

[5], and the properties of these neurons can be described in terms of their8

mean firing rate and mean postsynaptic potential, therefore a neural mass9

model can represent the lumped activity of a specific neuronal cell type or a10

particular functional area in the cortex [6, 7].11

Several of these neural masses, located at different brain regions, may12

then be connected to yield whole-brain macroscopic models of brain activ-13

ity. Recent connectome studies have reproduced networks in both healthy14

[8, 9, 10] and diseased [11, 12, 13] human brains. Analysis using such con-15

nectomic [14] approaches focuses on generative simulation models to relate16

structural connectomes to their functional correlates [15, 16, 17]. Recent17

extensions of neural mass models have introduced realistic neuroanatomical18

information from diffusion tensor imaging paired with coupling parameters19

regulating the connectivity strength to explore and simulate the spatiotempo-20

ral dynamics of the brain [18]. In such models, various parameters reflecting21

differences in axonal and dendritic properties between neuronal populations22

are defined based on general assumptions made about the microscopic prop-23

erties of neurons. However, the addition of a global coupling parameter and24

a transmission delay based on anatomical axonal distances are an estimated25

abstraction of the brain’s anatomical connections, it is unclear whether the26

addition of these parameters to a network is actually beneficial to the pa-27

rameter inference problem.28

While it is encouraging that connectome-coupled oscillator models are29
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capable of displaying expected frequency behavior [4, 6, 7, 19] and can repro-30

duce functional connectivity to a limited extent [17, 20, 21], the current state31

of research leave open several important questions. It is still unclear if the32

network models of brain dynamics can recapitulate the spatial distribution33

of a brains frequency spectra with the help of a connectome. The observable34

alpha, beta, gamma, theta, and delta rhythms follow a spatially distributed35

pattern [22, 23, 24, 25, 26]. For example, the alpha range is distinctively36

shown in the occipital lobe and posterior temporal cortex [27, 28, 29, 30],37

while beta activity is present in the anterior brain regions and around the38

postcentral gyri [27]. Neural mass models are able to produce oscillations at39

each of these rhythms via variations of its local parameters at each neural40

ensemble, however, it is unclear if neural masses oscillating at the nodes of41

a structural connectivity network can recapitulate the spatial distribution of42

neuronal activity. In particular, brain regions display heterogenous patterns43

of connectivity, as well as widely varying local oscillatory behavior. Most44

likely, the combination of these factors affect the observable power spectra45

at each region due to the interconnected nature of the brain. Unfortunately,46

connectome-coupled neural mass models can have a very large number of47

local parameters in addition to the global parameters. This presents a po-48

tential challenge of over-fitting model parameters to empirical activity data.49

Thus, the key question of whether global coupling or local parameter diver-50

sity is responsible for observed activity patterns is not straight forward to51

evaluate. These are important issues, as much of the emerging computa-52

tional paradigm requires that connectivity-coupled NMMs be inferred from53

observed recordings, and assumes that the inferred model parameters are54

diagnostic of neurological disease, e.g. the Virtual Brain [30, 31, 32, 33].55

The first challenge to addressing these questions is obtaining neuronal56

activity on the whole brain. While encephalography techniques can record57

at a high sampling rate, the detected signals are limited to whats observable58

via electrodes placed on the scalp. Fortunately, source localization tech-59

niques have been developed to estimate the dipole source activity inside the60

brain that generate the encephalography data to produce datasets with high61

spatiotemporal resolution. These source localized time series can provide av-62

erage activity for individual brain regions of interest (ROIs), which can be63

viewed as nodes on a network, to allow further investigation of functional64

and structural connectivity in a three-dimensional space.65

In this article, we use an oscillating neural mass model (Wilson-Cowan[3])66

to recapitulate resting-state human electroencephalography data and repro-67
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duce the spatially distributed patterns of neuronal activity. The chosen68

model has a set of local parameters to simulate activity of a single node,69

but when a global coupling parameter and transmission delay is introduced,70

as governed by the subjects structural connectivity matrix, the model is able71

to simulate activity at all interconnected regions that are ndoes of the con-72

nectome. We propose a careful simulated annealing algorithm for parameter73

fitting, using information theoretic measures of model performance. Our goal74

is to assess whether it is possible to distinguish between the three scenarios:75

1) individual oscillators at each brain region without structural connectivity,76

2) individual oscillators at each brain region with structural connectivity, and77

3) identical oscillators at each brain region with structural connectivity. We78

believe the addition of a connectome will improve the models ability to repro-79

duce empirical power spectra and the spatial patterns. Accurate inference80

of the model parameters in a complex network of interacting brain regions81

is incredibly difficult for any optimization method, the over-specification of82

the model results in identical solutions with various sets of inferred parame-83

ters. We will specifically test the hypothesis that the addition of long-range84

connectivity to the coupled NMM will improve model performance, in com-85

parison to an alternate model that has no inter-regional interactions via net-86

work connectivity. Consequently, we also want to determine if the higher87

dimensional model with connectivity provide uniquely identifiable solutions88

to the parameter inference problem. These issues are very important for the89

potential utility of network-coupled neural mass models as diagnostic tools90

for neurological diseases, as previously proposed [30, 31, 32, 33].91

2. Methods92

2.1. Subjects and Data Collection93

All experiments were conducted after obtaining written informed consent94

from the subjects and approval by The Institutional Review Board of Weill95

Cornell Medical College. T1-weighted anatomical MRI and diffusion-MRI96

scans were collected from 11 out of the 13 healthy individuals (8 male, 35.297

+/- 12.25 years) on a 3.0 Tesla General Electric Signa Excite HDx (GE98

Healthcare, Waukesha, WI) clinical MRI system with an eight-channel head99

receive-only coil. DMRI scans were obtained using a spin-echo diffusion100

tensor pulse sequence with one T2-weighted image, 33 diffusion-weighted101

images (one subject is an exception with 55 directions) evenly distributed on a102

sphere with b = 1000 s/mm2, TE = 76.7 ms, TR = 9000 ms, field of view = 22103

4

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/480012doi: bioRxiv preprint 

https://doi.org/10.1101/480012
http://creativecommons.org/licenses/by-nc-nd/4.0/


cm, 28 slices of 5.0 mm thickness, matrix size = 128 x 128, reconstructed with104

zero filling to 256 x 256. An axial 3D IR-prepped, fast SPGR with parameters105

tuned to optimize brain tissue contrast sequence (BRAVO sequence) was used106

for anatomical imaging with inversion time = 400 ms, TR = 8.9 ms, TE = 3.5107

ms, flip angle = 13 degrees, axial field of view = 24 cm, 136 slices of 1.2 mm108

thickness, matrix size = 256 x 256, parallel imaging acceleration factor = 2.109

Additionally, eyes-open (EO) and eyes-closed (EC) Resting-state EEG data110

was collected for 9 out of the 13 healthy subjects. Recordings for a minimum111

of 110 seconds were performed with a 129-channel HydroCel Geodesic EEG112

Sensor Net (Electrical Geodesics, Eugene, Oregon). The impedance of all113

electrodes was < 75kΩ at the beginning of the recording, the EEG signals114

were sampled at 250 Hz sampling frequency and filtered from DC to 100Hz.115

Datasets were chosen for analysis only if all data modalities were present116

without unacceptable levels of noise or artifacts.117

2.2. Structural Connectivity Networks118

Structural and diffusion MR volumes were co-registered and pre-processed119

in the manner previously described [34]. Segmentation of gray matter, white120

matter, and cerebrospinal fluid was performed after slice-timing correction,121

realignment, co-registration and/or normalization, and spatial smoothing122

was performed using SPM8 (Statistical Parametric Mapping tool). The gray123

matter was further parcellated into 86 anatomical regions of interest (ROIs)124

based on the Desikan-Killany atlas using the established FreeSurfer package125

[35]. The parcellated regions were used to seed tractography nodes in co-126

registered diffusion MRI volumes. The connectivity between any two regions127

was given by a weighted sum of tracts going between them as described by128

[36]. The algorithm traces likely white matter fiber tracts by taking into129

account tissue probability maps as well as diffusion orientation in a Bayesian130

manner, the tracing stopped when the track angle between steps exceeded131

pi/3 or when encountering a voxel that is outside of the white matter mask.132

2.3. Source Localization133

Source localization of the EEG signals was performed with Brainstorm134

[37], which is documented and freely available for download online under the135

GNU general public license (http://neuroimage.usc.edu/brainstorm). Prior136

to source localization, the raw EEG data were band-pass filtered between 2137

and 45 Hz, transience time segments and unusable channels were manually138

removed after inspecting the time series and its power spectrum. We then139
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applied an average reference followed by independent component analysis to140

remove artifacts such as eye blinks and heart beats that are picked up by the141

EEG electrodes, removal of additional noisy time segments was performed142

manually after inspection.143

Source localization was performed with a ”warped” Colin27 template144

head model to remove variations due to noise level, head position, and145

starting/ending slices for MRI acquisition runs. The Colin27 template is a146

stereotaxic average of 27 T1-weighted MRI scans of a single individuals head147

[38]. To incorporate individual subject’s anatomical information, we created148

pseudo-individual anatomies using Brainstorm’s warp anatomy functions to149

deform and scale the high resolution Colin27 head shapes to match each sub-150

ject’s individual head shapes. Surface meshes of the brain, skull, and scalp151

were extracted from the template MRIs using 1922 vertices per layer. To152

obtain an analytical approximation of the lead field for the conductive brain153

volume, we chose to use the three-shell spherical harmonics expansion meth-154

ods as discussed by [39]. Specifically, an initial grid of 4000 source points155

was generated from the cortex surface and samples the brain volume in an156

adaptive manner towards the center of the brain, each grid layer is down-157

sampled by a factor of 3 for a maximum of 17 layers, resulting in a total158

of 11151 to 16442 dipole sources depending on individual head anatomy. A159

representative visualization of the dipole sources is shown in Fig. S1.160

To obtain the inverse solution, a noise covariance matrix was calculated161

over the EEG recordings to model the noise contaminating our data; only162

the diagonal elements were kept for the inverse solution to estimate the vari-163

ance of each sensor. For all subjects, the activity at each dipole source164

was estimated using a linearly constrained minimum variance (LCMV) spa-165

tial filter [40]. Three-dimensional dipole sources yielded a 4D time series166

(x× y× z× time) for each set of EEG recordings. The norm of the 3 spatial167

coordinates (
√
x2 + y2 + z2) at each time point was taken to produce a 1D168

time series of estimated activation over the entire dipole. An average time169

series was obtained for all sources belonging to each of the same 86 ROIs170

as defined previously (See Fig. S1 for visualization of the dipoles), and the171

source localized time series were used as empirical data for modeling training.172

2.4. Wilson & Cowan Neural Mass Model173

To model neurophysiological activity from anatomical architecture for174

each ROI, we adopt the Wilson-Cowan coupled oscillators [3]. This model175

assumes that a local circuit consists of two lumped masses of excitatory176
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and inhibitory neural populations interacting with each other, whole brain177

regional dynamics are achieved by coupling local masses via structural con-178

nectivity Ajk, global coupling parameter c5, and a transmission delay τ k,jd .179

The simulated average activity at the jth brain region is:180

τe
dEj
dt

= −Ej(t) + (Semax − Ej(t))Se(c1Ej(t)− c2Ij(t)

+ c5
∑
k

AjkEk(t− τ k,jd ) + Pj(t)) + σwj(t) (1)

τi
dIj
dt

= −Ij(t) + (Simax − Ij(t))Si(c3Ej(t)− c4Ij(t)) + σvj(t) (2)

Where E(t) and I(t) represent the firing rate of the excitatory and in-181

hibitory neuronal populations respectively, τ is a time constant and wj(t) and182

vj(t) are random normally distributed noise with standard deviation σ. P (t)183

is an external input parameter to the excitatory neural ensemble that controls184

oscillatory activity, local parameters c1, c2, c3, and c4 represent the average185

number of excitatory and inhibitory synapses within a neuronal ensemble.186

Se and Si are transfer functions characterized by the sigmoidal function cap-187

turing the non-linear response of a cell generating an action potential based188

on summed synaptic input:189

S e
i
(x) =

1

1 + e
−a e

i
(x−θ e

i
)
− 1

1 + e
a e

i
θ e
i

(3)

Different variations of this model (Fig. 1) can simulate average neuronal190

activity at each region in the brain. Here, we will compare three models191

(1) the varying oscillator (VO) model that consists of varying local neuronal192

ensemble with only locally defined parameters and no inter-connectivity be-193

tween nodes, (2) the varying oscillator plus connectome (VOC) model that194

consists of local neuronal ensembles with varying local parameters, plus a195

global coupling parameter, structural connectivity, and transmission delay,196

and (3) the identical oscillators plus connectome (IOC) model that consists197

of local neuronal ensembles with uniform local parameters, plus a global198

coupling parameter, structural connectivity, and transmission delay.199
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External Inputs

inhibitory

excitatory

Network with identical nodes

Network with varying nodes

Varying oscillatory nodes only

Figure 1: Variations of the Wilson-Cowan model. Varying oscillators (VO) at each node
without connectivity, varying oscillators at each node plus connectome (VOC), or identical
oscillators at each node plus connectome (IOC)

2.5. Evaluating Oscillatory Abilities of the Neural Mass Model200

To assess if the neural mass models are able to produce a frequency pro-201

file that covers all signature physiological frequency bands, we performed 2-202

seconds simulations with varying parameters. Firstly, simulations at a single203

node with no connectivity were performed with varying excitatory and in-204

hibitory time constant parameters (τe, τi) operating in the range 1ms−40ms205

with a step size of 1ms and an external driving parameter of P (t) = 2.5.206

When the structural connectivity matrix is introduced, the global coupling207

parameter c5 and transmission velocity also dictate oscillatory activity. For208

the 86-region network model, we varied the global coupling parameter from 0209

to 3 with a step size of 0.2. Upon identifying the value of c5 for which the net-210

work model transitioned to oscillatory behavior (as done previously in [18]),211

additional 1-second simulations were performed with varying transmission212

velocity from 5m/s to 50m/s with a step size of 5m/s. The power spectra213

of each simulation were computed to select the peak oscillatory frequency.214

All power spectra calculations were performed with MATLAB’s multi-taper215

power spectral density destimate function PMTM. Simulations were per-216

formed with default local parameters as illustrated in [18]: c1 = 16, c2 =217

12, c3 = 15, c4 = 3, and sigmoidal function parameters: ae = 1.3, ai = 2, θe =218

4, θi = 3.7.219
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2.6. Model Optimization220

The model was implemented using simulation runs of 3 seconds, using a221

numerical integration time step of4 t = 0.004 sec or 250Hz with MATLAB’s222

ode45 function. The noise term in the model was removed to maintain an223

unchanging parameter space during optimization. To improve the odds that224

we capture the global minimum of a suitably defined goodness of fit (GOF)225

criterion in our parameter space, we chose to implement the probabilistic226

approach of simulated annealing [41]. The algorithm samples a very large227

set of parameters within a set of boundaries by generating an initial trial228

point and choosing the next trial point from the current point by a probability229

distribution with a scale depending on the current ”temperature” parameter.230

While the algorithm alwats accepts new trial points that map to cost-function231

values lower than the previous cost-function values, it will also accept trial232

points that have cost-functions with greater values than the previous point233

to move out of local minima. The acceptance probability function is 1/(1 +234

e
4

max(T ) ), where T is the current temperature and 4 is the difference of the235

new minus old cost-function values.236

Our cost-function was defined as the two-sample Kolmogorov-Smirnov237

(KS) statistic between the empirical source localized spectra and simulated238

spectra from each model variation. The initial parameter value and boundary239

constraints for each parameter are given in Table 1; these had the same values240

regardless of model variation.241

Initial Value Lower/Upper Boundary
Time constants

{
τe, τi

}
20ms [5ms, 30ms]

Local Parameters
{
C1, C2, C3, C4

}
16, 12, 15, 3 respectively [1, 20]

Global Coupling C5 1.5 [0, 10]
Transmission Velocity 10m/s [5m/s, 30m/s]
External Input P (t) 2.5 [2.0, 3.0]

Table 1: Initial values and boundary constraints for all model parameters in the simulated
annealing optimization

All simulated annealing runs were allowed to iterate over the parameter242

space for a maximum of Np × 500, where Np is the number of parameters243

in the model. To ensure the optimization algorithm thoroughly scanned244

the parameter space and arrived at a global minimum within the bound-245

ary constraints, the initial temperature was raised to 200 (default = 100)246
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for all parameters, and the cooling schedule was set to the average of the247

quotient between initial temperature and the iteration number for each pa-248

rameter. Such a cooling schedule ensures that the temperature is low at249

high iteration counts, so that the optimization algorithm only travels along250

the downward slope of the current minimum. The VO model was optimized251

first to obtain parameters for time constants, local parameters, and the ex-252

ternal drive parameter. Then these local parameters were fixed in the VOC253

model optimization that focused on the global parameters of global coupling254

and transmission velocity. The IOC model’s optimization was performed to255

identify global parmaeters and one set of local parameters for all 86 brain256

regions. To ensure that we reached the optimal parameters for the VOC257

model, we performed an additional optimization where the local parameters258

were allowed to vary. A conditional minimization algorithm was employed259

where simulated annealing was performed alternatively for local parameters260

and global parameters over 10 iterations (VOC-CM). Upon the 10th itera-261

tion, four subjects showed slight decreases in cost-function evaluation from262

the 9th iteration. Upon further inspection, their changes in cost-function263

was smaller than 0.5% from the previous iteration. To ensure convergence,264

we continued their optimization to 15 iterations to avoid local minima.265

2.7. Model Performance and Analysis of Simulated Power Distribution266

Simulated power spectra were obtained after reintroducing the Gaussian267

noise term (σ = 0.00001) back into the model and allowing it to run for268

the duration of the simulations. We calculated the average spectra over269

10 different model simulations to account for noise for each set of optimized270

parameters. Each brain region’s source localized and simulated power spectra271

were split into alpha (8 − 12Hz) and beta (12 − 25Hz) bands, the total272

power in each band were computed by summing the normalized power after273

subtracting the mean at each frequency bin. Visualization of regional alpha274

and beta band power are displayed on glassbrains generated with an open-275

source tool ”Brainography” developed by our group [42].276

We also computed the Kolmogorov-Smirnov statistic between the source277

localized spectra and each model variations simulated spectra for each brain278

region. Due to the non-Gaussian distribution in the Kolmogorov-Smirnov279

statistic at the end of all simulations, a Wilcoxon rank-sum test was used280

to compare the distribution of Kolmogoriv-Smirnov statistics between the281

three model versions. All parameters that fell within ±1% of the median op-282

timized Kolmogorov-Smirnov statistics in VO and VOC-CM were extracted283
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for visualization of their distribution.284

3. Results285

Only 7 subjects had complete sets of usable EEG, MRI, and DTI data,286

so we proceeded with analyses using only those subjects.287

3.1. Model parameters produce oscillations in all frequency ranges288

To ensure that our proposed model variations can produce oscillations in289

most physiological frequencies, we repeatedly simulated single node dynam-290

ics without any connectivity for 2-seconds while systematically varying the291

excitatory and inhibitory time constants. For each combination of the time292

constants, we examined whether the model produced an oscillatory wave293

form, and the peak frequency of the oscillations was extracted and assigned294

to a defined frequency band. Figure 2 clearly shows that the model is able to295

produce all frequencies up to 45Hz. More importantly, the entire frequency296

range is covered by time constants ranging from 0−40ms, which is consistent297

with most models [4, 6, 19, 43, 44]. For each frequency band, a characteris-298

tic waveform is shown with its corresponding power spectra. External input299

P (t) was set to P (t) = 2.5 to ensure the uncoupled model is in a limited cycle300

regime within the normal biological range for neuronal activity. The effect301

of the external drive parameter is shown in Figure S3, where the simulations302

show oscillatory behavior near P (t) = 2.5.303

Using the same set of local parameters, we simulated the network dynam-304

ics of 86 interconnected regions using one structural connectivity matrix,305

a transmission velocity of ten meters per second, and varying global cou-306

pling parameter c5 ranging from 0 to 3. A representative subject’s structural307

connectome i.e. weighted connectivity matrix whose elements represent the308

amount of fiber tracts connecting different regions, is given in Fig. S2. The309

external input parameter was lowered to P (t) = 1.5 for these simulations310

to make sure that global coupling and connectivity was the main driver of311

oscillations (see Fig S3). The specific external input parameter value was cho-312

sen because [18] showed default model parameters injected with P (t) = 1.5313

shifted the model from a low oscillatory state to a high oscillatory state.314

3.2. Optimized neural mass models315

Most optimizations terminated upon reaching the maximum number of it-316

erations allowed, which is Nparameters×500 iterations. However, the minimum317
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Figure 2: Peak frequency depends on time contants. Top: Heat map of models peak
frequency (Hz) as a function of the excitatory and inhibitory time constants. Middle: os-
cillatory time course showing different peak frequencies, their corresponding power spectra
is shown to the bottom.
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Figure 3: Global coupling controls oscillations. As the global coupling parameter increases,
the simulated time series of a particular region is oscillating at higher frequencies as shown
on the left column, each time series’ corresponding power spectra is shown in the middle.
The right column shows the average spectra of all 86 brain regions after removing the
mean. Transmission velocity between brain regions was held to a constant (10m/s) for all
simulations.
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Figure 4: Transmission velocity and oscillatory behavior. In the network model, increasing
the transmission velocity causes a time shift of the incoming signal; the left column shows
the effect of the delay on 1 second simulated time course. The middle column shows
the effect of transmission velocity on the corresponding power spectra. The right column
shows the average spectra of all 86 brain regions after removing the mean. Global coupling
was held to c5 = 1.5 for all simulations.
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within the boundary constraints was acquired before reaching the maximum318

iteration, the simulated annealing algorithm accepts additional function eval-319

uations after acquiring a minimum to scan the rest of the parameter space,320

none of the optimization runs terminated while the cost-function evaluations321

were decreasing. None of the optimized parameters were reported to be equal322

to the upper or lower boundary, thus the specified range was not overly nar-323

row, and a minimum was found within the bounds in all cases. The mean and324

standard deviation of all parameters are reported in Table 2. Recall that the325

three models we evaluated were: regionally varying oscillators (VO), region-326

ally identical oscillators coupled by structural connectivity (IOC) and, region-327

ally varying oscillators coupled by connectivity (VOC). We also evaluated the328

VOC model with iterative optimization of local and global parameters (de-329

noted (VOC-CM). We observe that there is a difference between excitatory330

and inhibitory local parameters (c1, c3 and c2, c4 respectively), with the ex-331

citatory constants being consistently larger than inhibitory constants across332

all model variations. This slight variation between excitatory and inhibitory333

parameters in network models reflect physiological conditions and is crucial334

in producing functional neuronal activity. In terms of time constants, we see335

the excitatory term being slightly lower than the inhibitory term. Similarly,336

global coupling parameters are relatively low in VOC models compared to337

IOC, however, we see that IOC model parameters have high optimal values as338

well as high variation across all subjects, suggesting that higher connectome339

coupling is required to optimize the IOC model.340

Figure 5 shows the cost-function values for the conditional minimization341

iterations over the global and local parameters in the VOC-CM optimization342

task. We see that the local parameter optimization iterations always result343

in a lower cost-function value than when optimizing over global parameters.344

However if we compare all of the global cost-function values and all the local345

cost-function values we see a downward trend in both that begins to flatten346

around iteration 7. Further iterations do not materially improve the fits, as347

it appears that the CM optimization has converged. The jaggedness of the348

curve also shows the importance of allowing an increase in the cost-function349

between the local- and global-steps, since otherwise no global step would350

improve upon the initial solution involving only local optimization. The CM351

performance for all all subjects is shown in Fig. S4.352

Figure 6 shows the boxplots of the Kolmogorov-Smirnov (KS) statistic353

between the source localized power spectra and its corresponding simulated354

power spectra from each model variation over each of the 86 brain regions355

14

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/480012doi: bioRxiv preprint 

https://doi.org/10.1101/480012
http://creativecommons.org/licenses/by-nc-nd/4.0/


VO VOC VOC-CM IOC
Time constants (ms) τe = 15.2(3.0) τe = 15.7(2.6) τe = 18.1(9.0)

τi = 19.4(2.9) τi = 18.2(2.7) τi = 24.8(8.8)
Local Parameters c1 = 14.38(1.502) c1 = 16.23 c1 = 17.09(3.465)

c2 = 9.989(2.166) c2 = 7.497(1.541) c2 = 5.032(3.743)
c3 = 15.19(1.534) c3 = 16.63(0.955) c3 = 19.13(1.000)
c4 = 6.117(1.794) c4 = 4.633(1.153) c4 = 4.082(2.711)

External Input P (t) = 2.664(0.094) P (t) = 2.660(0.013) P (t) = 2.607(0.409)
Global Coupling c5 = 0.018(0.043) c5 = 0.003(0.0075) c5 = 5.093(3.697)
Transmission Velocity (m/s) v = 8.714(4.455) v = 11.24(3.56) v = 11.75(5.506)

Table 2: Mean (standard deviation) of model parameters for all model variations. VO =
Varying Oscillators, VOC = Varying Oscillators with Connectome, VOC-CM = Varying
Oscillators with Connectome and optimized by CM, IOC = Identical Oscillators with
Connectome.

in each of the 7 subjects. The best performing model was the individual356

oscillators fitted to the source localized spectra at each node (VO). VO and357

VOC-CM was able to minimize the KS-statistic by optimizing for each in-358

dividual ROI, whereas IOC and VOC required minimizing for the average359

KS-statistic of all 86 ROIs, therefore a high variance around the median is360

shown in their box-plots. Contrary to our belief that connectivity improves361

fitting, introducing a connectome and global coupling to optimized oscil-362

lators resulted in higher cost-function evaluations (VOC). Using one set of363

local parameters for all brain regions in IOC produced similar results to VOC364

(P = 0.1899). On the other hand, optimizing the VOC model variation with365

the CM algorithm resulted in a much better model performance; the model366

fit of VOC-CM was significantly better than IOC and VOC (P < 0.0001).367

To determine the effect of global coupling on model performance, we368

gradually increased the global coupling parameter in the VOC model while369

holding transmission velocity constant. We had hypothesized that introduc-370

ing global coupling, structural connectivity, and transmission delay would371

improve the parameter space and yield a lower cost-function, but our results372

show the exact opposite. Figure 7 shows that introducing global coupling is373

an uphill move in terms of cost-function evaluations and the corresponding374

changes in parameter space does not improve model performance. Alongside375

Fig 5 and 6, we see that re-optimizing for the global coupling and transmis-376

sion velocity parameters in VOC cannot return the cost-function evaluations377
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Figure 5: Conditional minimization performance. The CM algorithm alternatively opti-
mized local parameters and global parameters of the VCN model for 15 iterations. The
optimized local parameters consistently resulted in lower cost-function evaluations than
global parameters over all iterations. The final iteration was used as the set of optimized
parameter for further analysis.

to the minimum achieved by local parameters only (VO).378

The source localized power spectra of all regions and their corresponding379

simulated power spectra for each model variation are visualized in Fig. 8.380

The source localized spectra show a clear alpha peak at 8−12Hz and a beta381

peak with lower power at near 20Hz, which is characteristic of normal neu-382

rophysiological frequency profiles. Consistent with our KS-statistic results in383

Fig. 6, we see that the average IOC spectra does not show these characteris-384

tic peaks while other model variations do to a limited degree. The optimized385

parameters in Table 2 show relatively high variances in IOC compared to386

other models, and the parameter means between excitatory and inhibitory387

time constants differ by a small amount, suggesting the optimization algo-388

rithm had trouble converging onto a parameter range that is suitable for this389

mode lvariation. The consequence of having identical parameters for each390

node and small differences between excitatory and inhibitory parameters for391

IOC is shown in Fig. 8, where each region’s spectra are less likely to have392

various peaks and troughs. Despite the VO and VOC-CM spectra having a393

lower KS-statistic than other spectra in Fig. 6, their beta activity is not as394

distinct as what’s shown in the source localized spectra in Fig. 8. Finally,395

with the exception of IOC, the remaining model variations recapitulates the396

observed alpha peaks in the source localized spectra to a limited degree.397

16

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/480012doi: bioRxiv preprint 

https://doi.org/10.1101/480012
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: Comparison of model performance. Summary of Kolmogorov-Smirnov statistics
between different model variations (VO = varying oscillators, VOC = varying oscillators
with connectome, VOC+CM = varying oscillators with connectome, optimized via CM,
IOC = identical oscillators with connectome) over all 86 ROIs and all 7 subjects. A
Wilcoxon rank-sum test was used to compare the different model values (shown in the top
table). All p-values reported were adjusted for multiple comparisons (Bonferoni).

3.3. Spatially distributed patterns of power spectra398

Figure 9 illustrates via surface-plots the alpha band power (8 − 12Hz)399

over the entire brain for the observed and simulated spectra averaged from400

all subjects. Each of the cortical regions are colored by the intensity of that401

region’s alpha power scaled by the mean alpha power over the entire brain.402

As expected, the source localized spectra (top row) shows relatively larger403

spheres in the posterior regions of the brain. The VO, VOC, and VOC-CM404

models show the same trend, although they are distributed more laterally405

than the observed alpha distribution. The IOC model did not match the406

alpha spectra spatial pattern at all, with only a small number of regions that407

contain alpha powers significantly above the mean. The Pearson’s correlation408

coefficients are displayed on top of each glass-brain plot, and as expected,409

VO and VOC-CM had the highest correlation when comparing the 86 brain410

region’s alpha powers.411
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Figure 7: Global coupling parameter drastically changes the parameter space. Introducing
a structural connectivity matrix with increasing global coupling parameter increases the
cost-function evaluation, but does not continuously increase the evaluations as global
coupling increases.

From the optimization results in Figure 5, we already see a change of less412

than 1% in cost function evaluations as the conditional minimization algo-413

rithm approached the 10th iteration, suggesting any of the solutions along the414

end of the conditional minimization algorithm could be a plausible solution.415

We selected parameter sets that computed cost-function evaluations within416

±1% range of the final cost-function evaluation. The probability distribution417

of these optimized parameters are shown in Figure 10. The majority of the418

parameters from varying oscillators (VO) model shows a bimodal distribu-419

tion, with many peaks in the histogram suggesting different viable solutions420

that satisfies our goodness-of-fit criteria. On the other hand, the parameters421

chosen from the final iteration of the VOC-CM model shows a less obvious422

bimodal distribution with the exception of τi. Additionally, the histogram423

peaks suggest that there are at least two highly probable parameter values424

for each parameter in both cases. Despite conditional minization converging425

to a low cost-function evaluation that drop less than 1% after the 10th iter-426

ation, the parameters were still unable to converge to a single value, further427

emphasizing the difficulty of finding unique solutions to an over-specified428

model.429
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Figure 8: Optimized power spectra. (1) Source localized power spectrum for all 86 regions
averaged over all subjects is shown at the top. Below the source localized spectra, going
clockwise: (2) simulated varying oscillators (VO) model, (3) simulated network model with
varying local parameters at each node (VOC), (4) simulated network model with identical
local parameters at each node (IOC), and (5) simulated network model with varying local
parameters optimized with conditional minimization (VOC-CM).

4. Discussion430

A challenge for emerging models of brain activity is that in a complex431

dynamical system such as the brain, it is difficult to predict function even if432

the underlying architecture, local cortical dynamics, and cortical-cortical in-433

teractions are known. In the present article, we studied the role of local and434

global parameters in a system of coupled oscillating neural mass (Wilson-435

Cowan) models, either unconnected or connected via white matter fibers as436

measured from diffusion-MRI. As described in previous network modeling437

efforts, coupled dynamical systems have a collective behavior that depends438

on the network structure, the local dynamics of each node, and the coupling439

function for the transfer of information [20, 45, 46]. Using different imple-440

mentations of the Wilson-Cowan oscillator model, we reproduced to varying441

degrees of success spatially varying spectral features of human source local-442

ized EEG at rest. Our results show that 1) introduction of the connectome443

to the oscillator model does not improve model fitting to source localized444
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Figure 9: Spatial distribution of alpha band. Glass-brain showing the power in the alpha
band averaged across all subjects. From top to bottom: (1) empirical data, (2) vary-
ing oscillators (VO) model, (3) varying oscillators with connectivity (VOC), (4) identical
oscillators with connectivity (IOC), and (5) varying oscillators with connectivity, opti-
mized using conditional minimization (VOC-CM). The radius of each spheres indicates
the amount of power within the 8 − 12Hz range in the frequency domain, scaled by the
mean of the alpha power over each region. Regions close or below the mean are shown by
smaller spheres or not shown at all. Different lobes of the brain are color-coded for clarity.
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Figure 10: Best Fitting Model Parameters. Histograms showing the probability distribu-
tion of parameters chosen from ±1% of the best fitting solution for the varying oscillators
(VO, top) model and varying oscillators with connectivity, optimized using conditional
minimization (VOC-CM, bottom).

EEG, 2) the identifiability problem manifests itself in the model’s parameter445

space as well as the spatial distribution of the modeled frequency profile.446

First, we aimed to determine which configuration of our chosen neural447

mass model best reproduces source localized EEG data. From our simula-448

tions, it is clear that a model of individual oscillators at each brain region449

(VO) is capable of reproducing the spatial and spectral patterns of EEG data.450

While the absence of network topology in the VO model does not correctly451

depict the interconnected brain regions, the one pair of oscillator model per452

brain region fitting criteria is a much easier parameter inference problem than453

inferring network model parameters. VOs simulations produced a mean KS-454

stat of around 0.15, which is lowest out of all model variations. On the other455
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hand, network models (VOC, VOC-CM) were also able to produce the al-456

pha and beta spatial patterns that closely matched our source localized EEG457

data. The Jansen and Rit model [43] utilized realistic ratios of excitatory458

and inhibitory connections in a neuronal ensemble to arrive at their param-459

eter values, David and Friston [4] expanded on this idea and established a460

neural mass model with similar differences between excitatory and inhibitory461

parameters. Interestingly, IOC parameters exhibiting this difference between462

excitatory and inhibitory parameter values were not able to produce a sat-463

isfactory spectra or a posteriorly distributed alpha pattern, indicating the464

importance of allowing spatially varying local parameters in order to pro-465

duce characteristic neuronal patterns. In the IOC model, the only terms466

driving regional differences in the brain were the connectivity matrix, global467

coupling, and tramission velocity, which is an indirect way of determining468

the effect of introducing a connectome to an optimized network. Surpris-469

ingly, despite it’s anatomical relevance, the structural connectivity does not470

improve the model performance, but drastically alters the parameter space471

instead.472

Our results show a simple addition of network connectivity to individual473

oscillators optimized independently at all brain regions does not improve the474

performance of the model. As shown in Figure 6 and 7, no amount of con-475

nectome coupling, while keeping the VO local parameters, improves model476

performance; in fact, it makes is substantially worse, with the KS-statistic477

cost function plateauing around 0.5-0.55 as global coupling increased gradu-478

ally, compared to the KS cost of the VO model of less than 0.2. We conjecture479

that the one-to-one fitting without any connectivity and transmission veloc-480

ity influences may have provided a simpler optimization problem than the481

network models. Because we used optimized local parameters from the VO482

model in VOC model, we expected similar or better model performance with483

the addition of a more physiological, interconnected brain network. However,484

despite optimized local dynamics at each node, the interconnected regions485

introduced an uphill move for the optimization algorithm instead of a down-486

hill move, suggesting the feedback from adjacent regions may be changing487

local dynamics that are not explainable by just a global coupling parameter488

and transmission velocity. Our conditional minimization algorithm was able489

to optimize our local and global parameters iteratively until we obtained a490

set of parameters that outperformed VOC. As described above, despite IOC491

having identical nodes, meaning only one set of local parameters for the en-492

tire network, the inferred parameters are high in variance and do not reflect493
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neurophysiological conditions. This is consistent with the findings by [47],494

suggesting that network dynamics do not only depend on anatomical connec-495

tivity, but also on ”state-dependent dynamical regimes of the brain regions”496

and on the heterogeneity of node degrees.497

The surface-plots displaying the spatial distribution of each model vari-498

ation’s alpha pattern highlight the identifiability problem of network neural499

mass models. Despite the differences in parameterization, all models show500

spatial alpha patterns that are identical to each other with the exception501

of IOC. In the frequency domain, there are recognizable differences in the502

power spectra produced by each model, however, the minor differences do503

not necessarily capture the neurophysiological oscillations that translates to504

function. Additionally, the histograms in 10 shows there are many probable505

solutions that provide satisfactory spectra according to our goodness-of-fit506

criterion.507

To capture function deteriorations in a diseased brain by mathematical508

models, there has been many recent attemps to correlate neural mass model509

parameters with stroke recovery [31, 48, 49], Alzheimer’s disease [50], and510

epilepsy [51]. However, all these efforts neglect the over-parameterization of511

the models by expanding neural masses to networks in order to maximize a512

fit to functional connectivity. Correlating a set of parameters with a change513

in functional connectivity does not mean such parameter shifts are meaning-514

ful enough to diagnose disease, as another set of parameters may capture the515

same functional connectivity just as well. Our results show the manifestation516

of identifiability problems in neural mass models as a challenge to diagnosing517

disease via mathematical models, as network models need to capture both518

functional and spatial information in order to fully capture disease spread.519

During parameter inference, careful inspection of the parameter distribution520

and model behavior is needed to obtain parameters that converged to a uni-521

form distribution. We believe low dimensional models with parameter con-522

straints may avoid the identifiability problem and provide more meaningful523

model parameters.524
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6. Supplementary Material719

Figure S1: Dots representing volumetric source locations mapped to their respective re-
gions of interest (ROI) viewed from the back, right, and top. Different colors represent
the 86 segmented regions in the FreeSurfer Desikan-Killany atlas, each ROI is viewed as
a node on the connectome.
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Figure S2: Structural connectivity matrix of one representative subject.

Figure S3: Neural mass model’s oscillatory activity changes as external drive parameter
P (t) is gradually increased at one node.

31

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/480012doi: bioRxiv preprint 

https://doi.org/10.1101/480012
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S4: Conditional minimization performance for all subjects.
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