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Abstract 17 

The ability to read out, or decode, mental content from brain activity has significant 18 

practical and scientific implications1. For example, technology that translates cortical 19 

activity into speech would be transformative for people unable to communicate as a result 20 

of neurological impairment2,3,4. Decoding speech from neural activity is challenging 21 

because speaking requires extremely precise and dynamic control of multiple vocal tract 22 

articulators on the order of milliseconds. Here, we designed a neural decoder that 23 

explicitly leverages the continuous kinematic and sound representations encoded in 24 

cortical activity5,6 to generate fluent and intelligible speech. A recurrent neural network 25 

first decoded vocal tract physiological signals from direct cortical recordings, and then 26 

transformed them to acoustic speech output. Robust decoding performance was achieved 27 

with as little as 25 minutes of training data. Naïve listeners were able to accurately 28 
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identify these decoded sentences. Additionally, speech decoding was not only effective 29 

for audibly produced speech, but also when participants silently mimed speech. These 30 

results advance the development of speech neuroprosthetic technology to restore spoken 31 

communication in patients with disabling neurological disorders. 32 

 33 

Text 34 

Neurological conditions that result in the loss of communication are devastating. 35 

Many patients rely on alternative communication devices that measure residual nonverbal 36 

movements of the head or eyes7, or even direct brain activity8,9, to control a cursor to 37 

select letters one-by-one to spell out words. While these systems dramatically enhance a 38 

patient’s quality of life, most users struggle to transmit more than 10 words/minute10, a 39 

rate far slower than the average of 150 words/min in natural speech. A major hurdle is 40 

how to overcome the constraints of current spelling-based approaches to enable far higher 41 

communication rates. 42 

A promising alternative to spelling-based approaches is to directly synthesize 43 

speech11,12. Spelling is a sequential concatenation of discrete letters, whereas speech is 44 

produced from a fluid stream of overlapping, multi-articulator vocal tract movements13. 45 

For this reason, a biomimetic approach that focuses on vocal tract movements and the 46 

sounds they produce may be the only means to achieve the high communication rates of 47 

natural speech, and likely the most intuitive for users to learn14,15. In patients with 48 

paralysis, for example from ALS or brainstem stroke, high fidelity speech control signals 49 

may only be accessed by directly recording from intact cortical networks using a brain-50 

computer interface. 51 
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Our goal was to demonstrate the feasibility of a neural speech prosthetic by 52 

translating brain signals into intelligible synthesized speech at the rate of a fluent speaker. 53 

To accomplish this, we recorded high-density electrocorticography (ECoG) signals from 54 

three participants undergoing intracranial monitoring for epilepsy treatment as they spoke 55 

several hundred sentences aloud. We designed a recurrent neural network that decoded 56 

cortical signals with an explicit intermediate representation of the articulatory dynamics 57 

to generate audible speech.  58 

An overview of our two-stage decoder approach is shown in Figure 1a-d. In the 59 

first stage, a bidirectional long short term memory (bLSTM) recurrent neural network16 60 

decodes articulatory kinematic features from continuous neural activity (Figure 1a, b). In 61 

the second stage, a separate bLSTM decodes acoustic features from the decoded 62 

articulatory features from stage 1 (Figure 1c). The audio signal is then synthesized from 63 

the decoded acoustic features (Figure 1d).  64 

There are three sources of data for training the decoder: high density ECoG 65 

recordings, acoustics, and articulatory kinematics. For ECoG, high-gamma amplitude 66 

envelope (70-200 Hz)17, and low frequency component (1-30 Hz)18 were extracted from 67 

the raw signal of each electrode. Electrodes were selected if they were located on key 68 

cortical areas for speech: ventral sensorimotor cortex (vSMC)19, superior temporal gyrus 69 

(STG)20, or inferior frontal gyrus (IFG)21 (Figure 1a). For acoustics, instead of a typical 70 

spectrogram, we used 25 mel-frequency cepstral coefficients (MFCCs), 5 sub-band 71 

voicing strengths for glottal excitation modelling, pitch, and voicing (32 features in all). 72 

These acoustic parameters are specifically designed to emphasize perceptually relevant 73 

acoustic features while maximizing audio reconstruction quality22.  74 
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Lastly, a key component of our decoder is an intermediate articulatory kinematic 75 

representation between neural activity and acoustics (Figure 1b). Our previous work 76 

demonstrated that articulatory kinematics is the predominant representation in the 77 

vSMC6. Since it was not possible to record articulatory movements synchronously with 78 

neural recordings, we used a statistical speaker-independent Acoustic-to-Articulatory 79 

inversion method to estimate vocal tract kinematic trajectories corresponding to the 80 

participant’s produced speech acoustics. We added additional physiological features (e.g. 81 

manner of articulation) to complement the kinematics and optimized these values within 82 

a speech autoencoder to infer the full intermediate articulatory kinematic representation 83 

that captures vocal tract physiology during speech production (see methods). From these 84 

features, it was possible to accurately reconstruct the speech spectrogram (Figure 1e,f).  85 
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 86 

Figure 1: Speech synthesis from neurally decoded spoken sentences. a, The neural 87 
decoding process begins by extracting high-gamma amplitude (70-200Hz) and low-88 
frequency (1-30Hz) ECoG activity. b, A 3-layer bi-directional long short term memory 89 
(bLSTM) neural network learns to decode kinematic representations of articulation from 90 
filtered ECoG signals. c, An additional 3-layer bLSTM learns to decode acoustics from 91 
the previously decoded kinematics. Acoustics are represented as spectral features (e.g. 92 
Mel-frequency cepstral coefficients (MFCCs)) extracted from the speech waveform. d, 93 
Decoded signals are synthesized into an acoustic waveform. e, Spectrogram shows the 94 
frequency content of two sentences spoken by a participant. f, Spectrogram of 95 
synthesized speech from brain signals recorded simultaneously with the speech in e. Mel-96 
cepstral distortion (MCD), a metric for assessing the spectral distortion between two 97 
audio signals, was computed for each sentence between the original and decoded audio. 98 
g,h 300 ms long, median spectrograms that were time-locked to the acoustic onset of 99 
phonemes from original (g) and decoded (h) audio. Medians were computed from 100 
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phonemes in 100 sentences that were withheld during decoder training (n: /i/ = 112, /z/ = 101 
115, /p/ 69, /ae/ = 86). These phonemes represent the diversity of spectral features. 102 
Original and decoded median phoneme spectrograms were well correlated (r > 0.9 for all 103 
phonemes, p=1e-18) 104 

 105 

Synthesis performance 106 

Overall, we observed highly detailed reconstructions of speech decoded from 107 

neural activity alone (See supplemental video). Examples of decoding performance are 108 

shown in Figure 1 (e,f), where the audio spectrograms from two original spoken 109 

sentences are plotted above those decoded from brain activity. The first sentence is 110 

representative of the median performance and the second shows one of the best decoded 111 

sentences. The decoded spectrogram contained salient energy patterns present in the 112 

original spectrogram.  113 

To illustrate the quality of reconstruction at the phonetic level, we compared 114 

median spectrograms of phonemes from original and decoded audio. As shown in Figure 115 

1 g,h, the formant frequencies (F1-F3, seen as high energy resonant bands in the 116 

spectrograms) and distribution of spectral energy for high and low vowels (/i/ and /ae/, 117 

respectively) of the decoded examples closely resembled the original speech. For alveolar 118 

fricatives (/z/) the high frequency (>4kHz) acoustic energy was well represented in both 119 

spectrograms. For plosives (/p/), the short pause (relative silence during the closure) 120 

followed by a broadband burst of energy (after the release) was also well decoded. The 121 

decoder also correctly reconstructed the silence in between the sentences when the 122 

participant was not speaking.  123 

To quantify performance, we tested the neural decoder for each participant on 100 124 

sentences that were withheld during the training and optimization of the full model. In 125 
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traditional speech synthesis, the spectral distortion of synthesized speech from ground-126 

truth is commonly reported using the mean Mel-Cepstral Distortion (MCD)23. The use of 127 

Mel-Frequency bands emphasizes the distortion of perceptually relevant frequency bands 128 

of the audio spectrogram24. In Figure 2a, the MCD of neurally decoded speech was 129 

compared with reference synthesis from articulatory kinematics and chance-level 130 

decoding (lower MCD is better). The reference synthesis acts as a bound for performance 131 

as it simulated what perfect neural decoding of the kinematics would achieve. For our 132 

participants (P1, P2, P3), the median MCD scores of decoding speech were 5.14 dB, 5.55 133 

dB, and 5.49 dB, all better than chance-level decoding (p<1e-18, n=100 sentences, 134 

Wilcoxon signed-rank test (WSRT), for each participant). These scores were on par with 135 

state-of-the-art approaches to decode speech from facial surface electromyography 136 

(EMG) with similarly sized datasets (average MCD of 5.21 dB)25.  137 

To assess the perceptual intelligibility of the decoded speech, we used Amazon 138 

Mechanical Turk to evaluate naïve listeners’ ability to understand the neurally decoded 139 

trials. We asked 166 people to identify which of 10 sentences (written on screen) 140 

corresponded to the decoded audio they heard. The median percentage of participants 141 

who correctly identified each sentence was 83%, significantly above chance (10%) 142 

(Figure 2b). 143 

In addition to spectral distortion and intelligibility, we also examined the 144 

correlations between original and decoded spectral features. The median correlations (of 145 

sentences, Pearson’s r) of the mean decoded spectral feature (pitch + 25 MFCCs + 146 

excitation strengths + voicing) for each participant were 0.55, 0.49, and 0.42 (Figure 2c). 147 

Similarly, for decoded kinematics (the intermediate representation), the median 148 
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correlations were 0.66, 0.54, and 0.50 (Figure 2d). Finally, we examined three key 149 

aspects of prosody for intelligible speech: pitch (f0), speech envelope, and voicing26 150 

(Figure 2d). For all participants, these features were decoded well above chance-level 151 

correlations (r > 0.6, except f0 for P2: r= 0.49, p<1e-10, n=100, WSRT, for all 152 

participants and features in Figure 2c-d). Correlation decoding performance for all other 153 

features is shown in Extended Data Figure 1a,b. 154 

 155 

Figure 2: Decoded speech intelligibility and feature-specific performance.. a, 156 
Spectral distortion, measured by Mel-Cepstral Distortion (MCD) (lower values are 157 
better), between original spoken sentences and neurally decoded sentences that were held 158 
out from model training (n = 100). Reference MCD refers to the MCD resulting from the 159 
synthesis of original kinematics without neural decoding and provides an upper bound for 160 
performance. MCD scores were compared to chance-level MCD scores obtained by 161 
shuffling data before decoding. b, Decoded sentence intelligibility was assessed by 162 
asking naïve participants to identify the sentence they heard from 10 choices. Each 163 
sample (n = 60) represents the percentage of correctly identified trials for one sentence. 164 
The median sentence was correctly identified 83% of the time. c, Correlation of original 165 
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and decoded spectral features. Values represent the mean correlation of the 32 spectral 166 
features for each sentence (n = 100). Correlation performance for individual spectral 167 
features is reported in extended data figure 1b. d, Correlations between original and 168 
decoded intelligibility-relevant features. Kinematic values represent the mean correlation 169 
of the 33 kinematic features (the intermediate representation) for each sentence (n =100). 170 
Correlation performance for individual kinematic features is reported in extended data 171 
figure 1a. Box plots depict median (horizontal line inside box), 25th and 75th percentiles 172 
(box), 25/75th percentiles ±1.5× interquartile range (whiskers), and outliers (circles). 173 
Distributions were compared with each as other as indicated or with chance-level 174 
distributions using two-tailed Wilcoxon signed-rank tests (p < 1e-10, n = 100, for all 175 
tests). 176 
 177 

 178 

Effects of model design decisions 179 

The following analyses were performed on data from P1. In designing a neural 180 

decoder for clinical applications, there are several key considerations regarding the input 181 

to the model. First, in patients with severe paralysis or limited speech ability, training 182 

data may be very difficult to obtain. In audio-based commercial applications like digital 183 

assistants, successful speech synthesis from text relies on tens of hours of speech27. 184 

Despite having limited neural data, we observed high decoding performance, and 185 

therefore we wanted to assess how much data was necessary to achieve this level of 186 

performance. Furthermore, we wanted to see if there was a clear advantage in explicitly 187 

modeling articulatory kinematics as an intermediate step over decoding acoustics directly 188 

from the ECoG signals. The motivation for including articulatory kinematics was to 189 

reduce the complexity of the ECoG-to-acoustic mapping because it captures the 190 

physiological process by which speech is generated and is encoded in the vSMC6. 191 

We found robust performance could be achieved with as little as 25 minutes of 192 

speech, but performance continued to improve with the addition of more data (Figure 193 

3a,b). A crucial factor in performance was the articulatory intermediate training step. 194 
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Without this step, direct ECoG to acoustic decoding MCD was offset by 0.54 dB using 195 

the full data set (Figure 3a) (p=1e-17, n=100, WSRT), a substantial difference given that 196 

a change in MCD as small as 0.2 dB is perceptually noticeable28. While the two 197 

approaches might perform comparably with enough data, the biomimetic approach using 198 

an intermediate articulatory representation is superior because it requires less training 199 

data.  200 

Second, we wanted to understand the acoustic-phonetic properties that were 201 

preserved in decoded speech because they are important for relative phonetic 202 

discrimination. To do this, we compared the acoustic properties of decoded phonemes to 203 

ground truth by constructing a statistical distribution of the spectral feature vectors for 204 

each phoneme. Using Kullback-Leibler (KL) divergence, we compared the distribution of 205 

each decoded phoneme to the distribution of each ground-truth phoneme to determine 206 

how similar they were (Figure 3c). From the acoustic similarity matrix of only ground-207 

truth phoneme-pairs (Extended Data Figure 2), we expected that, in addition to the same 208 

decoded and ground-truth phoneme being similar to one another, phonemes with shared 209 

acoustic properties would also be characterized as similar to one another. For example, 210 

two fricatives will be more acoustically similar to one another than to a vowel.  211 

Hierarchical clustering on the KL-divergence of each phoneme pair demonstrated 212 

that phonemes were clustered into four main groups. These groups represent the primary 213 

decoded acoustic differences between phonemes. Within each group, phonemes were 214 

more likely to be confused with one another due to their shared acoustic properties. For 215 

instance, a decoded /s/ may easily be confused with /z/ or other phonemes in Group 1. 216 

Group 1 contained consonants with an alveolar place of constriction. Group 2 contained 217 
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almost all other consonants. Group 3 contained mostly high vowels. Group 4 contained 218 

mostly mid and low vowels. The difference between groups tended to correspond to 219 

variations along acoustically significant dimensions (frequency range of spectral energy 220 

for consonants, and formants for vowels). These groupings were similar to those obtained 221 

by clustering KL-divergence of ground-truth phoneme pairs (Extended Data Figure 2).  222 

Third, since the success of the decoder depends on the initial electrode placement, 223 

we wanted to assess how much the cortical activity of each brain region contributed to 224 

decoder performance. We quantified the contributions of the vSMC, STG, and IFG by 225 

training decoders in a leave-one-region-out fashion and comparing performance (Figure 226 

3d). Removing any region led to decreased decoder performance (Figure 3e-f) (p<3e-4, 227 

n=100, WSRT). However, excluding vSMC resulted in the largest decrease in 228 

performance (1.13 dB MCD increase). 229 
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 230 

Figure 3: Effects of model design decisions. a, b, Mean correlation of original and 231 
decoded spectral features (a) and mean spectral distortion (MCD) (b) for model trained 232 
on varying amounts of training data. Training data was split according to recording 233 
session boundaries resulting the following sizes: 2.4, 5.2, 12.6, 25.3, 44.9, 55.2, 77.4, and 234 
92.3 minutes of speaking data. The neural decoding approach that included an 235 
articulatory intermediate stage (purple) performed significantly better with every size of 236 
training data than direct ECoG to acoustics decoder (grey) (all: p < 1e-5, n = 100; 237 
Wilcoxon signed-rank test, error bars = SE). c, Acoustic similarity matrix compares 238 
acoustic properties of decoded phonemes and originally spoken phonemes. Similarity is 239 
computed by first estimating a gaussian kernel density for each phoneme (both decoded 240 
and original) and then computing the Kullback-Leibler (KL) divergence between a pair of  241 
decoded and original phoneme distributions. Each row compares the acoustic properties 242 
of a decoded phoneme with originally spoken phonemes (columns). Hierarchical 243 
clustering was performed on the resulting similarity matrix. d, Anatomical reconstruction 244 
of a single participant’s brain with the following regions used for neural decoding: 245 
ventral sensorimotor cortex (vSMC), superior temporal gyrus (STG), and inferior frontal 246 
gyrus (IFG). e, f, Difference in spectral distortion (MCD) (e), and difference in 247 
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correlation (Pearson’s r) performance (f) between decoder trained on all regions and 248 
decoders trained on all-but-one region. Exclusion of any region resulted in decreased 249 
performance (p < 3e-4, n = 100; Wilcoxon signed-rank test). Box plots as described in 250 
Figure 2. 251 
 252 

Silently mimed speech decoding 253 

Finally, since future speech decoding applications must work even when speakers 254 

do not produce audible sounds, we tested our decoder with a held-out set of 58 sentences 255 

in which the participant (P1) audibly produced each sentence and then mimed the same 256 

sentence, making the same kinematic movements but without making sound. Even 257 

though the decoder was not trained on any mimed speech, the spectrograms of 258 

synthesized silent speech demonstrated similar spectral features when compared to 259 

synthesized audible speech of the same sentence (Figure 4a-c). After dynamic time 260 

warping the acoustics of the decoded silent speech with the original audio of the 261 

preceding audibly produced sentence, we calculated the spectral distortion and 262 

correlation of the spectral features (Figure 4d,e).  As expected, performance on mimed 263 

speech was inferior to spoken speech (30% MCD difference) although this is consistent 264 

with earlier work on silent facial EMG-to-speech synthesis where decoding performance 265 

from EMG signals was significantly worse when participants silently articulated without 266 

audible speech output29. The performance gap may also be due to the absence of voicing 267 

and laryngeal activation. This demonstrates that it is possible to decode important 268 

spectral features of speech that were never audibly uttered (p < 1e-11, compared to 269 

chance, n = 58; Wilcoxon signed-rank test). 270 
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Figure 4: Speech synthesis from neural decoding of silently mimed speech. a-c, 272 
Spectrograms of original spoken sentence (a), neural decoding from audible production 273 
(b), and neural decoding from silently mimed production (c). d, e, Spectral distortion 274 
(MCD) (d) and correlation of original and decoded spectral features (e) for audibly and 275 
silently produced speech. Since correlations are with respect to original audibly produced 276 
sentences, decoded sentences that were silently mimed were dynamically time-warped 277 
according to their spectral features. Decoded sentences were significantly better than 278 
chance-level decoding for both speaking conditions (p < 1e-11, for all comparisons, n = 279 
58; Wilcoxon signed-rank test). Box plots as described in Figure 2. 280 
 281 

Discussion 282 

Our results demonstrate intelligible speech synthesis from ECoG during both 283 

audible and silently mimed speech production. Previous strategies for neural decoding of 284 

speech have primarily focused on direct classification of speech segments like phonemes 285 

or words30,31,32,33. However, these demonstrations have been limited in their ability to 286 

scale to larger vocabulary sizes and communication rates. Meanwhile, decoding of 287 

auditory cortex responses has been more successful for continuous speech sounds18,34, in 288 

part because of the direct relationship between the auditory encoding of spectrotemporal 289 

information and the reconstructed spectrogram. An outstanding question has been 290 

whether decoding vocal tract movements from the speech motor cortex could be used for 291 

generating high-fidelity acoustic output. 292 

We believe that cortical activity at vSMC electrodes was critical for decoding 293 

(Figure 3e,f) because it encodes the underlying articulatory physiology that produces 294 

speech6. Our decoder explicitly incorporated this knowledge to simplify the complex 295 

mapping from neural activity to sound by first decoding the physiological correlate of 296 

neural activity and then transforming to speech acoustics. We have demonstrated that this 297 

statistical mapping permits generalization with limited amounts of training. 298 
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Direct speech synthesis has several major advantages over spelling-based 299 

approaches. In addition to the capability to communicate at a natural speaking rate, it 300 

captures prosodic elements of speech that are not available with text output, for example 301 

pitch intonation (Figure 2d) and word emphasis35. Furthermore, a practical limitation for 302 

current alternative communication devices is the cognitive effort required to learn and use 303 

them. For patients in whom the cortical processing of articulation is still intact, a speech-304 

based BCI decoder may be far more intuitive and easier to learn to use14,15. 305 

Brain-computer interfaces are rapidly becoming clinically viable means to restore 306 

lost function36. Impressive gains have already been made motor restoration of cursor 307 

control and limb movements. Neural prosthetic control was first demonstrated in 308 

participants without disabilities37,38,39 before translating the technology to participants 309 

with tetraplegia40,41,42,43. While this articulatory-based approach establishes a new 310 

foundation for speech decoding, we anticipate additional improvements from modeling 311 

higher-order linguistic and planning goals44,45. Our results may be an important next step 312 

in realizing speech restoration for patients with paralysis. 313 

 314 

 315 

 316 

  317 
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Methods 318 

 319 

Participants and experimental task. Three human participants (30 F, 31 F, 34 M) 320 

underwent chronic implantation of high-density, subdural electrode array over the lateral 321 

surface of the brain as part of their clinical treatment of epilepsy (right, left, and right 322 

hemisphere grids, respectively). Participants gave their written informed consent before 323 

the day of the surgery. All participants were fluent in English. All protocols were 324 

approved by the Committee on Human Research at UCSF. Each participant read and/or 325 

freely spoke a variety of sentences. P1 read aloud two complete sets of 460 sentences 326 

from the MOCHA-TIMIT database46. Additionally, P1 also read aloud passages from the 327 

following stories: Sleeping Beauty, Frog Prince, Hare and the Tortoise, The Princess and 328 

the Pea, and Alice in Wonderland. P2 read aloud one full set of 460 sentences from the 329 

MOCHA-TIMIT database and further read a subset of 50 sentences an additional 9 times 330 

each. P3 read 596 sentences describing three picture scenes and then freely described the 331 

seen resulting in another 254 sentences. P3 also spoke 743 sentences during free response 332 

interviews. In addition to audible speech, P1 also read 10 sentences 12 times each 333 

alternating between audible and silent (mimed i.e. making the necessary mouth 334 

movements) speech. Microphone recordings were obtained synchronously with the ECoG 335 

recordings. 336 

 337 

Data acquisition and signal processing. Electrocorticography was recorded with a 338 

multi-channel amplifier optically connected to a digital signal processor (Tucker-Davis 339 

Technologies). Speech was amplified digitally and recorded with a microphone 340 
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simultaneously with the cortical recordings. ECoG electrodes were arranged in a 16 x 16 341 

grid with 4 mm pitch. The grid placements were decided upon purely by clinical 342 

considerations. ECoG signals were recorded at a sampling rate of 3,052 Hz. Each channel 343 

was visually and quantitatively inspected for artifacts or excessive noise (typically 60 Hz 344 

line noise). The analytic amplitude of the high-gamma frequency component of the local 345 

field potentials (70 - 200 Hz) was extracted with the Hilbert transform and down-sampled 346 

to 200 Hz. The low frequency component (1-30 Hz) was also extracted with a 5th order 347 

Butterworth bandpass filter and parallelly aligned with the high-gamma amplitude. 348 

Finally, the signals were z-scored relative to a 30 second window of running mean and 349 

standard deviation, so as to normalize the data across different recording sessions. We 350 

studied high-gamma amplitude because it has been shown to correlate well with multi-351 

unit firing rates and has the temporal resolution to resolve fine articulatory movements17. 352 

We also included a low frequency signal component due to the decoding performance 353 

improvements note for reconstructing perceived speech from auditory cortex34. Decoding 354 

models were constructed using all electrodes from vSMC, STG, and IFG except for 355 

electrodes with bad signal quality as determined by visual inspection. 356 

 357 

Phonetic and phonological transcription. For the collected speech acoustic recordings, 358 

transcriptions were corrected manually at the word level so that the transcript reflected 359 

the vocalization that the participant actually produced. Given sentence level 360 

transcriptions and acoustic utterances chunked at the sentence level, hidden Markov 361 

model based acoustic models were built for each participant so as to perform sub-362 
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phonetic alignment47. Phonological context features were also generated from the 363 

phonetic labels, given their phonetic, syllabic and word contexts. 364 

 365 

Cortical surface extraction and electrode visualization. We localized electrodes on 366 

each individual’s brain by co-registering the preoperative T1 MRI with a postoperative 367 

CT scan containing the electrode locations, using a normalized mutual information 368 

routine in SPM12. Pial surface reconstructions were created using Freesurfer. Final 369 

anatomical labeling and plotting was performed using the img_pipe python package48. 370 

 371 

Inference of articulatory kinematics. The articulatory kinematics inference model 372 

comprises a stacked deep encoder-decoder, where the encoder combines phonological 373 

and acoustic representations into a latent articulatory representation that is then decoded 374 

to reconstruct the original acoustic signal. The latent representation is initialized with 375 

inferred articulatory movement from Electromagnetic Midsagittal Articulography 376 

(EMA)6 and appropriate manner features. 377 

Chartier et al., 2018 described a statistical subject-independent approach to 378 

acoustic-to-articulatory inversion which estimates 12 dimensional articulatory kinematic 379 

trajectories (x and y displacements of tongue dorsum, tongue blade, tongue tip, jaw, 380 

upper lip and lower lip, as would be measured by EMA) using only the produced 381 

acoustics and phonetic transcriptions. Since, EMA features do not describe all 382 

acoustically consequential movements of the vocal tract, we append complementary 383 

speech features that improve reconstruction of original speech. In addition to voicing and 384 

intensity of the speech signal, we added place manner tuples (represented as continuous 385 
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binary valued features) to bootstrap the EMA with what we determined were missing 386 

physiological aspects in EMA. There were 18 additional values to capture the following 387 

place-manner tuples: 1) velar stop, 2) velar nasal, 3) palatal approximant, 4) palatal 388 

fricative, 5) palatal affricate, 6) labial stop, 7) labial approximant, 8) labial nasal, 9) 389 

glottal fricative, 10) dental fricative, 11) labiodental fricative, 12) alveolar stop, 13) 390 

alveolar approximant, 14) alveolar nasal, 15) alveolar lateral, 16) alveolar fricative, 17) 391 

unconstructed, 18) voicing. For this purpose, we used an existing annotated speech 392 

database (Wall Street Journal Corpus) 49 and trained speaker independent deep recurrent 393 

network regression models to predict these place-manner vectors only from the acoustics, 394 

represented as 25-dimensional Mel Frequency Cepstral Coefficients (MFCCs). The 395 

phonetic labels were used to determine the ground truth values for these labels (e.g., the 396 

dimension “labial stop” would be 1 for all frames of speech that belong to the phonemes 397 

/p/, /b/ and so forth). However, with a regression output layer, predicted values were not 398 

constrained to the binary nature of the input features. In all, these 32 combined feature 399 

vectors form the initial articulatory feature estimates. 400 

Finally, to ensure that the combined 32 dimensional representation has the 401 

potential to reliably reconstruct speech, we designed an autoencoder to optimize these 402 

values. Specifically, a recurrent neural network encoder is trained to convert 403 

phonological and acoustic features to the initialized 32 articulatory representations and 404 

then a decoder converts the articulatory representation back to the acoustics. The stacked 405 

network is re-trained optimizing the joint loss on acoustic and EMA parameters.  After 406 

convergence, the encoder is used to estimate the final articulatory kinematic features that 407 

act as the intermediate to decode acoustics from ECoG. 408 
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 409 

Neural decoder. The decoder maps ECoG recordings to MFCCs via a two stage process 410 

by learning intermediate mappings between ECoG recordings and articulatory kinematic 411 

features, and between articulatory kinematic features and acoustic features. We 412 

implemented this model using TensorFlow in python50. In the first stage, a stacked 3-413 

layer bLSTM16 learns the mapping between 300 ms windows of high-gamma and LFP 414 

signals and the corresponding single time point of the 32 articulatory features. In the 415 

second stage, an additional stacked 3-layer learns the mapping between the output of the 416 

first stage (decoded articulatory features) and 32 acoustic parameters for full sentences 417 

sequences. These parameters are are 25 dimensional MFCCs, 5 sub-band voicing 418 

strengths for glottal excitation modelling, log(F0), voicing. At each stage, the model is 419 

trained to with a learning rate of 0.001 to minimize mean-squared error of the target. 420 

Dropout rate is set to 50% to suppress overfitting tendencies of the model. We	use	a	421 

bLSTM	because	of	their	ability	to	retain	temporally	distant	dependencies	when	422 

decoding	a	sequence51.	423 

 424 

Speech synthesis from acoustic features. We used an implementation of the Mel-log 425 

spectral approximation algorithm with mixed excitation22 to generate the speech 426 

waveforms from estimates of the MFCCs from the neural decoder.  427 

 428 

Model training procedure. As described, simultaneous recordings of ECoG and speech 429 

are collected in short blocks of approximately 5 minutes. To partition the data for model 430 

development, we allocated 2-3 blocks for model testing, 1 block for model optimization, 431 
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and the remaining blocks for model training. The test sentences for P1 and P2 each 432 

spanned 2 recording blocks and comprised 100 sentences read aloud. The test sentences 433 

for P3 were different because the speech comprised 100 sentences over three blocks of 434 

freely and spontaneously speech describing picture scenes.  435 

For shuffling the data to test for significance, we shuffled the order of the 436 

electrodes that were fed into the decoder. This method of shuffling preserved the 437 

temporal structure of the neural activity.  438 

 439 

Mel-Cepstral Distortion (MCD). To examine the quality of synthesized speech, we 440 

calculated the Mel-Cepstral Distortion (MCD) of the synthesized speech when compared 441 

the original ground-truth audio. MCD is an objective measure of error determined from 442 

MFCCs and is correlated to subjective perceptual judgements of acoustic quality22. For 443 

reference acoustic features 𝑚𝑐(!) and decoded features 𝑚𝑐(!
̂
),  444 

 445 

𝑀𝐶𝐷 =
10

𝑙𝑛(10) ∑
!!!!!"

(𝑚𝑐!
(!) −𝑚𝑐!

(!
̂
))! 

 446 

Intelligibility Assessment. Listening tests using crowdsourcing are a standard way of 447 

evaluating the perceptual quality of synthetic speech52. We used the Amazon Mechanical 448 

Turk to assess the intelligibility of the neurally synthesized speech samples. We set up a 449 

listening task where naïve listeners identified which of 10 sentences was played in each 450 

trial. A set of 60 sentences (6 trials of 10 unique sentences) were evaluated in this 451 

assessment. These trials, also held out during training the decoder, were used in place of 452 
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the 100 unique sentences tested throughout the rest of Figure 2 because the listeners 453 

always had the same 10 sentences to chose from.  Each trial sentence was listened to by 454 

50 different listeners. In all, 166 unique listeners took part in the evaluations.  455 

 456 

Data limitation analysis. To assess the amount of training data affects decoder 457 

performance, we partitioned the data by recording blocks and trained a separate model for 458 

an allotted number of blocks. In total, 8 models were trained, each with one of the 459 

following block allotments: [1, 2, 5, 10, 15, 20, 25, 28]. Each block comprised an average 460 

of 50 sentences recorded in one continuous session. 461 

 462 

Quantification of silent speech synthesis. By definition, there was no acoustic signal to 463 

compare the decoded silent speech. In order to assess decoding performance, we 464 

evaluated decoded silent speech in regards to the audible speech of the same sentence 465 

uttered immediately prior to the silent trial. We did so by dynamically time warping53 the 466 

decoded silent speech MFCCs to the MFCCs of the audible condition and computing 467 

Pearson’s correlation coefficient and Mel-cepstral distortion. 468 

 469 

Phoneme acoustic similarity analysis. We compared the acoustic properties of decoded 470 

phonemes to ground-truth to better understand the performance of our decoder. To do 471 

this, we sliced all time points for which a given phoneme was being uttered and used the 472 

corresponding time slices to estimate its distribution of spectral properties. With principal 473 

components analysis (PCA), the 32 spectral features were projected onto the first 4 474 

principal components before fitting the gaussian kernel density estimate (KDE) model. 475 
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This process was repeated so that each phoneme had two KDEs representing either its 476 

decoded and or ground-truth spectral properties. Using Kullback-Leibler divergence (KL 477 

divergence), we compared each decoded phoneme KDE to every ground-truth phoneme 478 

KDE, creating an analog to a confusion matrix used in discrete classification decoders. 479 

KL divergence provides a metric of how similar two distributions are to one another by 480 

calculating how much information is lost when we approximate one distribution with 481 

another. Lastly, we used Ward’s method for agglomerative hierarchical clustering to 482 

organize the phoneme similarity matrix. 483 

 484 

 485 

 486 

 487 

 488 

  489 
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Extended Data: 654 

 655 

Extended Data Figure 1: Decoding performance of kinematic and spectral features. 656 

a, Correlations of all 33 decoded articulatory kinematic features with ground-truth. EMA 657 

features represent X and Y coordinate traces of articulators (lips, jaw, and three points of 658 

the tongue) along the midsagittal plane of the vocal tract. Manner features represent 659 

complementary kinematic features to EMA that further describe acoustically 660 

consequential movements. b, Correlations of all 32 decoded spectral features with 661 

ground-truth. MFCC features are 25 mel-frequency cepstral coefficients that describe 662 

power in perceptually relevant frequency bands. Synthesis features describe glottal 663 

excitation weights necessary for speech synthesis. 664 
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 665 

Extended Data Figure 2: Ground-truth acoustic similarity matrix. Compares acoustic 666 

properties of ground-truth spoken phonemes with one another. Similarity is computed by 667 

first estimating a gaussian kernel density for each phoneme and then computing the 668 

Kullback-Leibler (KL) divergence between a pair of a phoneme distributions. Each row 669 

compares the acoustic properties of a two ground-truth spoken phonemes. Hierarchical 670 

clustering was performed on the resulting similarity matrix. 671 
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