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Figure 4: Speech synthesis from neural decoding of silently mimed speech. a-c, 272 
Spectrograms of original spoken sentence (a), neural decoding from audible production 273 
(b), and neural decoding from silently mimed production (c). d, e, Spectral distortion 274 
(MCD) (d) and correlation of original and decoded spectral features (e) for audibly and 275 
silently produced speech. Since correlations are with respect to original audibly produced 276 
sentences, decoded sentences that were silently mimed were dynamically time-warped 277 
according to their spectral features. Decoded sentences were significantly better than 278 
chance-level decoding for both speaking conditions (p < 1e-11, for all comparisons, n = 279 
58; Wilcoxon signed-rank test). Box plots as described in Figure 2. 280 
 281 

Discussion 282 

Our results demonstrate intelligible speech synthesis from ECoG during both 283 

audible and silently mimed speech production. Previous strategies for neural decoding of 284 

speech have primarily focused on direct classification of speech segments like phonemes 285 

or words30,31,32,33. However, these demonstrations have been limited in their ability to 286 

scale to larger vocabulary sizes and communication rates. Meanwhile, decoding of 287 

auditory cortex responses has been more successful for continuous speech sounds18,34, in 288 

part because of the direct relationship between the auditory encoding of spectrotemporal 289 

information and the reconstructed spectrogram. An outstanding question has been 290 

whether decoding vocal tract movements from the speech motor cortex could be used for 291 

generating high-fidelity acoustic output. 292 

We believe that cortical activity at vSMC electrodes was critical for decoding 293 

(Figure 3e,f) because it encodes the underlying articulatory physiology that produces 294 

speech6. Our decoder explicitly incorporated this knowledge to simplify the complex 295 

mapping from neural activity to sound by first decoding the physiological correlate of 296 

neural activity and then transforming to speech acoustics. We have demonstrated that this 297 

statistical mapping permits generalization with limited amounts of training. 298 
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Direct speech synthesis has several major advantages over spelling-based 299 

approaches. In addition to the capability to communicate at a natural speaking rate, it 300 

captures prosodic elements of speech that are not available with text output, for example 301 

pitch intonation (Figure 2d) and word emphasis35. Furthermore, a practical limitation for 302 

current alternative communication devices is the cognitive effort required to learn and use 303 

them. For patients in whom the cortical processing of articulation is still intact, a speech-304 

based BCI decoder may be far more intuitive and easier to learn to use14,15. 305 

Brain-computer interfaces are rapidly becoming clinically viable means to restore 306 

lost function36. Impressive gains have already been made motor restoration of cursor 307 

control and limb movements. Neural prosthetic control was first demonstrated in 308 

participants without disabilities37,38,39 before translating the technology to participants 309 

with tetraplegia40,41,42,43. While this articulatory-based approach establishes a new 310 

foundation for speech decoding, we anticipate additional improvements from modeling 311 

higher-order linguistic and planning goals44,45. Our results may be an important next step 312 

in realizing speech restoration for patients with paralysis. 313 

 314 

 315 

 316 

  317 
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Methods 318 

 319 

Participants and experimental task. Three human participants (30 F, 31 F, 34 M) 320 

underwent chronic implantation of high-density, subdural electrode array over the lateral 321 

surface of the brain as part of their clinical treatment of epilepsy (right, left, and right 322 

hemisphere grids, respectively). Participants gave their written informed consent before 323 

the day of the surgery. All participants were fluent in English. All protocols were 324 

approved by the Committee on Human Research at UCSF. Each participant read and/or 325 

freely spoke a variety of sentences. P1 read aloud two complete sets of 460 sentences 326 

from the MOCHA-TIMIT database46. Additionally, P1 also read aloud passages from the 327 

following stories: Sleeping Beauty, Frog Prince, Hare and the Tortoise, The Princess and 328 

the Pea, and Alice in Wonderland. P2 read aloud one full set of 460 sentences from the 329 

MOCHA-TIMIT database and further read a subset of 50 sentences an additional 9 times 330 

each. P3 read 596 sentences describing three picture scenes and then freely described the 331 

seen resulting in another 254 sentences. P3 also spoke 743 sentences during free response 332 

interviews. In addition to audible speech, P1 also read 10 sentences 12 times each 333 

alternating between audible and silent (mimed i.e. making the necessary mouth 334 

movements) speech. Microphone recordings were obtained synchronously with the ECoG 335 

recordings. 336 

 337 

Data acquisition and signal processing. Electrocorticography was recorded with a 338 

multi-channel amplifier optically connected to a digital signal processor (Tucker-Davis 339 

Technologies). Speech was amplified digitally and recorded with a microphone 340 
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simultaneously with the cortical recordings. ECoG electrodes were arranged in a 16 x 16 341 

grid with 4 mm pitch. The grid placements were decided upon purely by clinical 342 

considerations. ECoG signals were recorded at a sampling rate of 3,052 Hz. Each channel 343 

was visually and quantitatively inspected for artifacts or excessive noise (typically 60 Hz 344 

line noise). The analytic amplitude of the high-gamma frequency component of the local 345 

field potentials (70 - 200 Hz) was extracted with the Hilbert transform and down-sampled 346 

to 200 Hz. The low frequency component (1-30 Hz) was also extracted with a 5th order 347 

Butterworth bandpass filter and parallelly aligned with the high-gamma amplitude. 348 

Finally, the signals were z-scored relative to a 30 second window of running mean and 349 

standard deviation, so as to normalize the data across different recording sessions. We 350 

studied high-gamma amplitude because it has been shown to correlate well with multi-351 

unit firing rates and has the temporal resolution to resolve fine articulatory movements17. 352 

We also included a low frequency signal component due to the decoding performance 353 

improvements note for reconstructing perceived speech from auditory cortex34. Decoding 354 

models were constructed using all electrodes from vSMC, STG, and IFG except for 355 

electrodes with bad signal quality as determined by visual inspection. 356 

 357 

Phonetic and phonological transcription. For the collected speech acoustic recordings, 358 

transcriptions were corrected manually at the word level so that the transcript reflected 359 

the vocalization that the participant actually produced. Given sentence level 360 

transcriptions and acoustic utterances chunked at the sentence level, hidden Markov 361 

model based acoustic models were built for each participant so as to perform sub-362 
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phonetic alignment47. Phonological context features were also generated from the 363 

phonetic labels, given their phonetic, syllabic and word contexts. 364 

 365 

Cortical surface extraction and electrode visualization. We localized electrodes on 366 

each individual’s brain by co-registering the preoperative T1 MRI with a postoperative 367 

CT scan containing the electrode locations, using a normalized mutual information 368 

routine in SPM12. Pial surface reconstructions were created using Freesurfer. Final 369 

anatomical labeling and plotting was performed using the img_pipe python package48. 370 

 371 

Inference of articulatory kinematics. The articulatory kinematics inference model 372 

comprises a stacked deep encoder-decoder, where the encoder combines phonological 373 

and acoustic representations into a latent articulatory representation that is then decoded 374 

to reconstruct the original acoustic signal. The latent representation is initialized with 375 

inferred articulatory movement from Electromagnetic Midsagittal Articulography 376 

(EMA)6 and appropriate manner features. 377 

Chartier et al., 2018 described a statistical subject-independent approach to 378 

acoustic-to-articulatory inversion which estimates 12 dimensional articulatory kinematic 379 

trajectories (x and y displacements of tongue dorsum, tongue blade, tongue tip, jaw, 380 

upper lip and lower lip, as would be measured by EMA) using only the produced 381 

acoustics and phonetic transcriptions. Since, EMA features do not describe all 382 

acoustically consequential movements of the vocal tract, we append complementary 383 

speech features that improve reconstruction of original speech. In addition to voicing and 384 

intensity of the speech signal, we added place manner tuples (represented as continuous 385 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/481267doi: bioRxiv preprint 

https://doi.org/10.1101/481267
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 20 

binary valued features) to bootstrap the EMA with what we determined were missing 386 

physiological aspects in EMA. There were 18 additional values to capture the following 387 

place-manner tuples: 1) velar stop, 2) velar nasal, 3) palatal approximant, 4) palatal 388 

fricative, 5) palatal affricate, 6) labial stop, 7) labial approximant, 8) labial nasal, 9) 389 

glottal fricative, 10) dental fricative, 11) labiodental fricative, 12) alveolar stop, 13) 390 

alveolar approximant, 14) alveolar nasal, 15) alveolar lateral, 16) alveolar fricative, 17) 391 

unconstructed, 18) voicing. For this purpose, we used an existing annotated speech 392 

database (Wall Street Journal Corpus) 49 and trained speaker independent deep recurrent 393 

network regression models to predict these place-manner vectors only from the acoustics, 394 

represented as 25-dimensional Mel Frequency Cepstral Coefficients (MFCCs). The 395 

phonetic labels were used to determine the ground truth values for these labels (e.g., the 396 

dimension “labial stop” would be 1 for all frames of speech that belong to the phonemes 397 

/p/, /b/ and so forth). However, with a regression output layer, predicted values were not 398 

constrained to the binary nature of the input features. In all, these 32 combined feature 399 

vectors form the initial articulatory feature estimates. 400 

Finally, to ensure that the combined 32 dimensional representation has the 401 

potential to reliably reconstruct speech, we designed an autoencoder to optimize these 402 

values. Specifically, a recurrent neural network encoder is trained to convert 403 

phonological and acoustic features to the initialized 32 articulatory representations and 404 

then a decoder converts the articulatory representation back to the acoustics. The stacked 405 

network is re-trained optimizing the joint loss on acoustic and EMA parameters.  After 406 

convergence, the encoder is used to estimate the final articulatory kinematic features that 407 

act as the intermediate to decode acoustics from ECoG. 408 
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 409 

Neural decoder. The decoder maps ECoG recordings to MFCCs via a two stage process 410 

by learning intermediate mappings between ECoG recordings and articulatory kinematic 411 

features, and between articulatory kinematic features and acoustic features. We 412 

implemented this model using TensorFlow in python50. In the first stage, a stacked 3-413 

layer bLSTM16 learns the mapping between 300 ms windows of high-gamma and LFP 414 

signals and the corresponding single time point of the 32 articulatory features. In the 415 

second stage, an additional stacked 3-layer learns the mapping between the output of the 416 

first stage (decoded articulatory features) and 32 acoustic parameters for full sentences 417 

sequences. These parameters are are 25 dimensional MFCCs, 5 sub-band voicing 418 

strengths for glottal excitation modelling, log(F0), voicing. At each stage, the model is 419 

trained to with a learning rate of 0.001 to minimize mean-squared error of the target. 420 

Dropout rate is set to 50% to suppress overfitting tendencies of the model. We	use	a	421 

bLSTM	because	of	their	ability	to	retain	temporally	distant	dependencies	when	422 

decoding	a	sequence51.	423 

 424 

Speech synthesis from acoustic features. We used an implementation of the Mel-log 425 

spectral approximation algorithm with mixed excitation22 to generate the speech 426 

waveforms from estimates of the MFCCs from the neural decoder.  427 

 428 

Model training procedure. As described, simultaneous recordings of ECoG and speech 429 

are collected in short blocks of approximately 5 minutes. To partition the data for model 430 

development, we allocated 2-3 blocks for model testing, 1 block for model optimization, 431 
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and the remaining blocks for model training. The test sentences for P1 and P2 each 432 

spanned 2 recording blocks and comprised 100 sentences read aloud. The test sentences 433 

for P3 were different because the speech comprised 100 sentences over three blocks of 434 

freely and spontaneously speech describing picture scenes.  435 

For shuffling the data to test for significance, we shuffled the order of the 436 

electrodes that were fed into the decoder. This method of shuffling preserved the 437 

temporal structure of the neural activity.  438 

 439 

Mel-Cepstral Distortion (MCD). To examine the quality of synthesized speech, we 440 

calculated the Mel-Cepstral Distortion (MCD) of the synthesized speech when compared 441 

the original ground-truth audio. MCD is an objective measure of error determined from 442 

MFCCs and is correlated to subjective perceptual judgements of acoustic quality22. For 443 

reference acoustic features 𝑚𝑐(!) and decoded features 𝑚𝑐(!
̂
),  444 

 445 

𝑀𝐶𝐷 =
10

𝑙𝑛(10) ∑
!!!!!"

(𝑚𝑐!
(!) −𝑚𝑐!

(!
̂
))! 

 446 

Intelligibility Assessment. Listening tests using crowdsourcing are a standard way of 447 

evaluating the perceptual quality of synthetic speech52. We used the Amazon Mechanical 448 

Turk to assess the intelligibility of the neurally synthesized speech samples. We set up a 449 

listening task where naïve listeners identified which of 10 sentences was played in each 450 

trial. A set of 60 sentences (6 trials of 10 unique sentences) were evaluated in this 451 

assessment. These trials, also held out during training the decoder, were used in place of 452 
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the 100 unique sentences tested throughout the rest of Figure 2 because the listeners 453 

always had the same 10 sentences to chose from.  Each trial sentence was listened to by 454 

50 different listeners. In all, 166 unique listeners took part in the evaluations.  455 

 456 

Data limitation analysis. To assess the amount of training data affects decoder 457 

performance, we partitioned the data by recording blocks and trained a separate model for 458 

an allotted number of blocks. In total, 8 models were trained, each with one of the 459 

following block allotments: [1, 2, 5, 10, 15, 20, 25, 28]. Each block comprised an average 460 

of 50 sentences recorded in one continuous session. 461 

 462 

Quantification of silent speech synthesis. By definition, there was no acoustic signal to 463 

compare the decoded silent speech. In order to assess decoding performance, we 464 

evaluated decoded silent speech in regards to the audible speech of the same sentence 465 

uttered immediately prior to the silent trial. We did so by dynamically time warping53 the 466 

decoded silent speech MFCCs to the MFCCs of the audible condition and computing 467 

Pearson’s correlation coefficient and Mel-cepstral distortion. 468 

 469 

Phoneme acoustic similarity analysis. We compared the acoustic properties of decoded 470 

phonemes to ground-truth to better understand the performance of our decoder. To do 471 

this, we sliced all time points for which a given phoneme was being uttered and used the 472 

corresponding time slices to estimate its distribution of spectral properties. With principal 473 

components analysis (PCA), the 32 spectral features were projected onto the first 4 474 

principal components before fitting the gaussian kernel density estimate (KDE) model. 475 
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This process was repeated so that each phoneme had two KDEs representing either its 476 

decoded and or ground-truth spectral properties. Using Kullback-Leibler divergence (KL 477 

divergence), we compared each decoded phoneme KDE to every ground-truth phoneme 478 

KDE, creating an analog to a confusion matrix used in discrete classification decoders. 479 

KL divergence provides a metric of how similar two distributions are to one another by 480 

calculating how much information is lost when we approximate one distribution with 481 

another. Lastly, we used Ward’s method for agglomerative hierarchical clustering to 482 

organize the phoneme similarity matrix. 483 

 484 

 485 

 486 

 487 

 488 

  489 
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Extended Data: 654 

 655 

Extended Data Figure 1: Decoding performance of kinematic and spectral features. 656 

a, Correlations of all 33 decoded articulatory kinematic features with ground-truth. EMA 657 

features represent X and Y coordinate traces of articulators (lips, jaw, and three points of 658 

the tongue) along the midsagittal plane of the vocal tract. Manner features represent 659 

complementary kinematic features to EMA that further describe acoustically 660 

consequential movements. b, Correlations of all 32 decoded spectral features with 661 

ground-truth. MFCC features are 25 mel-frequency cepstral coefficients that describe 662 

power in perceptually relevant frequency bands. Synthesis features describe glottal 663 

excitation weights necessary for speech synthesis. 664 
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 665 

Extended Data Figure 2: Ground-truth acoustic similarity matrix. Compares acoustic 666 

properties of ground-truth spoken phonemes with one another. Similarity is computed by 667 

first estimating a gaussian kernel density for each phoneme and then computing the 668 

Kullback-Leibler (KL) divergence between a pair of a phoneme distributions. Each row 669 

compares the acoustic properties of a two ground-truth spoken phonemes. Hierarchical 670 

clustering was performed on the resulting similarity matrix. 671 
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