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Abstract Mitochondrial dysfunction can cause various neurological diseases.
We therefore developed a quantitative framework to explore how mitochondrial
dysfunction may influence the progression of Alzheimer’s, Parkinson’s, Hunting-
ton’s and Lou Gehrig’s diseases and cerebral palsy through analysis of genes
showing altered expression in these conditions. We sought insights about the gene
profiles of mitochondrial and associated neurological diseases by investigating
gene-disease networks, KEGG pathways, gene ontologies and protein-protein
interaction network. Gene disease networks were constructed to connect shared
genes which are commonly found between the neurological diseases and Mito-
chondrial Dysfunction. We also generated KEGG pathways and gene ontologies
to explore functional enrichment among them, and protein-protein interaction
networks to identify the shared protein groups of these diseases. Finally, we
verified our biomarkers using gold benchmark databases (e.g., OMIM and dbGaP)
which identified effective reasons of it. Our network-based methodologies are
useful to investigate disease mechanisms, predictions for comorbidities and iden-
tified distinct similarities among different neurological disorders for mitochondrial
dysfunction.
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Introduction
Mitochondria are organelles responsible for cellular en-
ergy metabolism, and mitochondrial dysfunction (MtD)
underlie a heterogeneous group of chronic diseases [1],
directly driving some pathological processes (e.g., in mi-
tochondrial myopathies) and indirectly exacerbating oth-
ers. Patients suffering from MtD may also lack proper
diagnosis due to a lack of awareness about MtD and its
consequences among clinicians [2]. MtD can result in in-
sufficient ATP due to reduced mitochondrial numbers or
defective oxidative phosphorylation, and can be caused by
mutations in either mitochondrial and nuclear DNA. Mito-
chondria are increasingly viewed as having a central role
in human health and disease, and their dysfunction may
even be the root of some common neurological disorders
[2]. Indeed, MtD has been implicated in the progression
of Alzheimer’s disease (AD) [3], Parkinson’s disease (PD)
[4], Huntington’s Disease (HD) [5] and amyotrophic lat-
eral sclerosis (ALS) [6] and cerebral palsy (CP).

A comorbidity refers to a co-incidence of distinct diseases
in the same patient, that can result in disease interactions
at the molecular level with serious repercussions for pa-
tient health and disease development [7, 8]. These as-
sociations can arise from causal relationships and shared
risk factors among the diseases [9, 10]. Different diseases
are associated with commonly dysregulated genes [11].
Studies of gene-disease relations helps us to identify sig-
nificant interactions of molecular mechanism about disea-
some [12]. Examples of comorbidity studies with bidirec-
tional relationship happen between multiple variables in-
clude mental disorders, cancer, immune-related diseases
and obesity. [13, 14, 15, 16, 17].

AD is the most common chronic neurodegenerative dis-
ease and is an irreversible, progressive disorder that can
damage memory, analytical skills and the ability to per-
form elementary tasks [18]. The neuropathology of AD is
characterized by cerebral accumulation and aggregation
of amyloid-β (Aβ) and tau proteins [19] although their
causal role is disputed. Cytochrome Oxidase (CO), a key
enzyme of the mitochondrial electron transport chain can
have reduced activity in AD patients and this may occur
due to mitochondrial DNA (mtDNA) mutations [20]. PD
is the second most common neurodegenerative disorder
of aging that mostly affects the motor system. The clin-
ical features of this disease are characterized by a loss
of dopaminergic function which reduces motor function
[21]. Significant evidence suggests that MtD can play a
significant role in the pathogenesis of PD thhrough in-
hibiting complex I of the electron transport chain. It is
notable that several PD-associated genes participate in
pathways regulating mitochondrial function, morphology,
and dynamics [22]. HD is an inherited neurodegener-
ative disorder caused by gene mutations in huntingtin
(Htt) which is characterised by progressive cognitive im-
pairment, psychiatric disturbances and choreiform move-
ments. Mutant Htt (mHtt) can be associated with MtD
and energy metabolism defects that result in cell death
[23]. ALS (also called Lou Gehrig’s disease) is associated
with a gradual loss of motor neurons of the brain-stem

and spinal cord. There is strong evidence that MtD is in-
volved in ALS), but the underlying mechanisms linking
MtD to motor neuron degeneration in ALS is uncertain.
One possibility is that MtD give rise to SOD1 mutant pro-
teins which damage motor neurons that causes ALS [24].
CP is an umbrella term for conditions that affect muscle
tone, movement and motor skills in children [25]. Devel-
opment of these neurological disorders may also involve
a mtDNA mutation resulting in MtD [26].
The pathways that link MtD, its associated neurological
diseases and biomarkers are essential to determine, in
order to the coincidal occurrence of these diseases with
MtD. We therefore initiated comprehensive KEGG path-
ways and gene ontology (GO) studies to explore these
gene-disease associations, linking the diseases and genes
from a biological perspective. To identify intersecting
pathways affected by MtD which may influence neurons,
we analyzed transcriptome evidence and investigated in
details common gene expression profiles of AD, PD, HD,
ALS, CP and MtD. From this analysis, we found possible
common pathways arising from their common patterns of
gene expression and studied these pathways using gold
benchmark datasets including OMIM, dbGaP and protein
protein interaction (PPI) data. This network based ap-
proach identified significant common pathways and path-
way elements of significant potential interest in these neu-
rological diseases.

Methods & Materials
A multi-stage analysis method is applied to analyze gene
expression microarray data of various resouses of MtD
and associated neurological diseases. We summarized
our experimental approaches in Figure 1, where a sys-
tematic and quantitative approach was considered to as-
sess human disease comorbidities employing existing mi-
croarray data. This approach identifies differentially ex-
pressed genes (DEGs) where functional enrichment stud-
ies was investigated enriched pathways, GO annotation
terms, protein protein interactions, associated relations
to identify putative pathways of common pathways and
justified them with gold benchmark datasets.

Datasets employed in this study
To evaluate the molecular pathways involved in MtD
on AD, PD, HD, ALS and CP at the molecular
level, we first investigated gene expression microar-
ray datasets. These microarray datasets were gath-
ered from Gene Expression Omnibus (GEO) of the
National Center for Biotechnology Information (NCBI)
(ht tp : //www.ncbi.nlm.nih.gov/geo/) [27]. Six differ-
ent datasets were selected with accession numbers such as
GSE28146, GSE54536, GSE24250, GSE833, GSE31243
and GSE13887. The microarray AD dataset (GSE28146)
is an affymetrix human genome U133 plus 2.0 array
where laser capture microdissection is used by exclud-
ing significant white matter tracts. They also gather CA1
hippocampal gray matter from formalin-fixed, paraffin-
embedded (FFPE) hippocampal parts of the 30 subjects of
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their previous study. The PD dataset (GSE54536) is inves-
tigated 10 samples of PD patients where the whole tran-
scriptome of peripheral blood of untreated people with
stage 1 PD (HoehnYahr scale) was analyzed using Illu-
mina HumanHT-12 V4.0 expression beadchip platform.
The microarray HD (GSE24250) is also an affymetrix hu-
man genome U133A array where they indicate a dynamic
biomarker of disease activity and treatment response
needed to accelerate disease-modifying therapeutics for
HD. The ALS (GSE833) is an affymetrix human full-length
hugeneFL array where they compare gray matter associ-
ated genes sporadic and familial ALS patients compared
with controls. The CP (GSE31243) is an affymetrix hu-
man genome U133A 2.0 array where 40 microarrays are
provided into 4 groups to analyze the effects of cerebral
palsy and differences between muscles. The MtD microar-
ray dataset (GSE13887) is an affymetrix Human Genome
U133 Plus 2.0 Array that show the activation of mam-
malian target of rapamycin (mTOR), sensor of the mito-
chondrial transmembrane potential can increase T cell in
SLE.

Methodology

• The selection of GEO data was downloaded with ma-
trices, platform information and converted expres-
sion set class for further analysis. Automatic selec-
tion of GEO data was not straightforward, because
healthy and sick people were mixed together. So, ex-
perimental steps were helped to design model and
factorize the classes of patients.

Figure 1. Flow Diagram of Network Based Approach
to analyze MtD for Different Neurological Diseases

• We investigated gene expression profiles of MtD, AD,
PD, HD, ALS and CP datasets using DNA microar-
ray technologies with global transcriptome analyses.
These datasets were detected DEGs with their respec-
tive pathology to compare disease tissues with nor-
mal one. This analysis was accomplished from origi-
nal raw datasets and applied Limma R Bioconductor
package for this microarray datasets. To overcome
the problems of comparing microarray data in differ-
ent systems and gene expression data were normal-
ized and evaluated for each sample (disease or con-
trol) with the Z-score transformation (Zi j). We used

Zi j =
gi j−mean(gi)

SD(gi)
for each disease gene expression

matrix, where SD is the standard deviation, gi j repre-
sents the expression value of gene i in sample j. This
transformation was permitted direct comparisons of
gene expression values across samples and diseases.

Data were transformed by log2 and student’s un-
paired t-test was employed between two conditions
to find out DEGs in patients over normal samples by
preferring significant genes. A p-value for the t-tests
< 5 ∗ 10−2 and threshold at least 1 log2 fold change
were selected. Besides, a two-way ANOVA with Bon-
ferroni’s post hoc test was applied to explore statisti-
cal significance between groups (< 0.01). Gene sym-
bol and title of different genes were extracted from
each disease. Null Gene symbol records were dis-
carded from each disease. We also explored unique
genes both over and under expressed genes. The
most important up and down-regulated genes were
selected between individual disease and MtD.

• A gene disease network (GDN) was built regarding
the connection of genes and diseases where network
nodes can be either diseases or genes by employing
neighborhood-based benchmarking and topological
methods. This kind of network can be represented
as a bipartite graph whether MtD is the center of this
network. Diseases are associated when they shares
at least one unusual dysregulated gene. Let a special
set of human diseases D and genes G, gene-disease
relations seek where gene g ∈ G is connected with
disease d ∈ D. When Gi , G j , the sets of notable up
and down-dysregulated genes adhered with diseases
i and j respectively, the number of shared dysregu-
lated genes (ng

i j] are associated with both diseases i
and j is as follows:

ng
i j = N(Gi ∩ G j] (1)

Co-occurrence indicates shared genes in the GDN
and common neighbours identified employing the
Jaccard Coefficient method [28], where the edge pre-
diction score of the node pair is:

E(i, j) =
N(Gi ∩ G j]

N(Gi ∪ G j]
(2)

where E is the set of all edges. Our own R software
packages "comoR" [29], and "POGO" [30] had been
used to calculate novel estimators of the disease co-
morbidity associations.

• Gene Set Enrichment Analysis (GSEA) is a statisti-
cal methods which are used to classify genes into
several groups, taking them into common biologi-
cal functions, chromosomal location or regulation.
Genes from microarray or NGS are investigated by
their differential expression, selected as represen-
tative of several diseases, correlated to GO terms
and finding possible pathways linked to phenotype
changes. Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway and Gene Ontology (GO) anal-
ysis are performed both up-regulated and down-
regulated genes of each pair of diseases. To ex-
plore later insight into the functional enrichment,
biological process and annotations of the molecu-
lar pathway of MtD that overlapped with AD, PD,
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HD, ALS and CP, we performed GO analysis and
KEGG pathway using the DAVID (Database for An-
notation, Visualization and Integrated Discovery)
(ht tps : //david − d.nci f cr f .gov/) [31] and En-
richr (ht tps : //amp.pharm.mssm.edu/Enrichr/)
[32] bioinformatics resources [33].

• Protein Protein Interaction (PPI) network is also
constructed from the STRING database (ht tps :
//st r ing − d b.or g) [34] for the neurological dis-
eases. Proteins are represented by nodes and interac-
tion between two proteins are represented by edges.
We generated a PPI network that represented protein
protein association among MtD with different neuro-
logical (AD, PD, HD, ALS and CP) diseases. Thus, we
used Markov Cluster Algorithm (MCL) [35] to split
them into different sub networks.

• Two gold bench mark verified datasets such as
OMIM and dbGap were used to justify the prin-
ciple how MtD was related with different neuro-
logical diseases in network based approach. On-
line Mendelian Inheritance in Man (OMIM) (ht tps :
//www.omim.or g) is a administrated database for
retrieving the genes of all known diseases, rele-
vant disorders, and genotype-phenotype relation-
ships. Thus, database of Genotypes and Phenotype
(dbGaP) (ht tps : //www.ncbi.nlm.nih.gov/gap) is
considered to explore significant genes of different
diseases with a particular disease.

Results
DEG analysis
We used Limma (Bioconductor packages) to analyze DEGs
of all human microarray datasets to compare disease af-
fected tissues (MtD, AD, PD, HD, ALS and CP). The pat-
terns of gene expression of MtD patient tissues were in-
vestigated and validated using global transcription anal-
ysis. In each dataset, DEG were consequently identified
and evaluated by R Bioconductor packages. A threshold
of log21 (2-fold) was increased or decreased in transcript
levels and genes with false discovery rate (FDR) below
0.05 were considered a significant requirement for a gene
to accept as a DEG. We found 2737, 1532, 996, 2488,
551, 588 unfiltered DEG for MtD, AD, PD, HD, ALS and
CP respectively. In MtD, 1154 and 1583 genes were sig-
nificantly up-regulated and down-regulated in this work.
We also accomplished cross comparative analysis to ex-
plore the usual significant genes between MtD and other
neurological diseases and found that MtD shares 38, 30,
12, 14 and, 14 up-regulated genes and 88, 28, 197, 29
and 28 down-regulated genes with AD, PD, HD, ALS and
CP. We constructed up-down diseasome association net-
work (GDN) to find out common DEG among neurolog-
ical diseases with MtD both for up-regulated (see Figure
2) and down-regulated (see Figure 3) genes. In these di-
agram, nodes are indicated genes or diseases and edges
are specified the association between diseases and genes
using Cytoscape V 3.6.1 [36, 37]. If one or more genes are

related between two distinct diseases, then two diseases
are comorbid.

Figure 2. GDN with Up-Regulated (Increased Tran-
script Levels) DEGs

Figure 3. GDN of Down-Regulated (Decreased Tran-
script Levels) DEGs

Besides, some genes were found more than one com-
mon to MtD and neurological diseasedatasets. NOP16
is commonly up-regulated among MtD, AD, PD. Besides,
TYMP, CEACAM1 and ELP5 is commonly up-regulated
among MtD, AD, HD. On the other hand, FBXO32 and
EBF1 are commonly down-regulated among MtD, AD, PD.
CD24, FBXO32 ,RALGPS2, SKIL, CLK1, RTN4, N4BP2L2,
ATF2, ZC3H14 and RUFY2 are commonly down-regulated
among MtD, PD, HD. VIM ,MLH3, SMAD4, WHAMMP3,
DLEU2, DNAJC27, ARID2, MYL12A, LRRFIP1, UTRN,
IL6ST, FBXO32, EDRF1, MYBL1 and LEPROT are com-
monly down-regulated among MtD, AD and HD. Fur-
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thermore, UTRN, IL6ST and NFIB are commonly down-
regulated among MtD, AD and CP. ZNF131 and GNAQ
are commonly down-regulated among MtD, ALS and HD.
LPP, MIR612, BCLAF1, MBNL2, MBNL1, IL6ST, UTRN,
RORA and TAF15 are commonly down-regulated among
MtD, HD and CP. DDX6 and DNAJC7 are commonly down-
regulated among MtD, ALS and CP.

Functional enrichment of DEGs common to MtD
and neurological diseases
We accomplished pathways and GOs on DEG sets (com-
bination of up and down regulated genes) using DAVID
v6.8 and Enrichr bioinformatics resources. In path-
ways analysis, KEGG data enrichment was only em-
ployed to manipulate MtD vs AD, MtD vs PD, MtD
vs HD, MtD vs ALS and MtD vs CP. Integrating large
scale, state of the art transcriptome and proteome
analysis, a regulatory analysis was performed to ob-
tain more insight about the molecular pathways related
with theses common genes and estimated links of af-
fected pathways. KEGG pathway database (ht tps :
//www.genome. jp/keg g/pathwa y.html) was used to
explore pathways of DEGs where we pinpointed sev-
eral overrepresented pathways among DEGs and clas-
sified them into functional groups. We observed that
5, 3, 5, 5 and 10 significant pathways, associated
pathway genes and adjusted p-values are identified on
AD, PD, HD, ALS and CP respectively using (ht tps :
//david − d.nci f cr f .gov/) [31] and Enrichr (ht tps :
//amp.pharm.mssm.edu/Enrichr/) (For exploring the
pathways of PD) which are significantly connected with
DEGs of MtD (see table1-A,B,C,D and E). Pathways es-
teemed common noteworthy enriched DEG sets (FDR <
0.05) were reduced by including only known relevance to
the diseases concerned. On the other hand, we selected
over characterized ontological groups among DEGs and
also classified them into individual functional groups. 6,
12, 11, 11 and 10 significant GO groups, associated genes
in the pathways and adjusted p values are explored for
AD, PD, HD, ALS and CP respectively (see Table 2-A,B,C,D
and E) where DEGs set are also common with MtD. Be-
sides, we noticed a number of relevant significant path-
way for example Insulin resistance was found as a com-
mon significant pathways among MtD, HD and CP.

Protein-protein interaction (PPI) Network Analy-
sis
Malfunction of a protein complex causes multiple dis-
eases. If they share one or more potentially related genes
with each other through protein protein interaction net-
work, then multiple diseases are potentially connected
to each other. Thus, topological analysis of this net-
work is the most important things to explore different
associated protein of different diseases. Identified genes
which involved in pathways and activities regular to MtD
and different neurological diseases, we attempted to find
evidence of existing sub-networks based on known PPI.
Considering the enriched common disease genesets, we

built a PPI networks using web-based visualisation re-
source named STRING (see Figure 4). 413 proteins nodes
are associated by 302 edges with PPI enrichment p-value
0.0486. 118, 34, 30 GO and 1 pathways are significantly
enriched of Biological Process, Molecular Function, Cel-
lular Component and KEGG Pathways respectively of this
network. In this purpose, MCL clustering technique was
performed to cluster proteins and many subnetwork con-
tained proteins within one cluster. It indicated that PPI
sub-network remained in our enriched genesets and clar-
ified the presence of relevant functional pathways.

Comorbidity and Significant Pathway Analysis
Considering both gene expression data in MtD and gene
disease association, GDN is constructed that can be ex-
plored gene disease association and comorbidity network.
Multiple neurological disorders are connected to each
other if they share at least one gene where nodes rep-
resent diseases or genes in which mutations have previ-
ously been related with both diseases. Each of these dis-
eases HD (209 genes), AD (126 genes), PD (58 genes),
ALS (43 genes) and CP (42 genes) are strongly associated
with MtD since highest number of genes shared among
them. We generated biologically relevant network projec-
tions which consisted of two disjoints set of nodes where
one set is corresponding to all known genetic disorders
and other set is indicated our identified significant genes
for MtD. Notably, 16 significant genes (SMAD4, NOP16,
VIM, MLH3, SMAD4, DLEU2, DNAJC27, ARID2, MYL12A,
LRRFIP1, UTRN, IL6ST, FBXO32, EDRF1, MYBL1, and
LEPROT) are commonly dysregulated genes among AD,
HD, and MtD, while 5 significant genes (TYMP, CEACAM1,
ELP5, FBXO32, and EBF1) are widely dysregulated genes
among PD, AD, and MtD. Then, 10 significant genes
(CD24, FBXO32, RALGPS2, SKIL, CLK1, RTN4, N4BP2L2,
ATF2, ZC3H14, and RUFY2) are commonly dysregulated
genes among PD, HD, and MtD. Only 1 siginificant gene
(RBL1) is commonly dysregulated genes among AD, ALS,
and MtD. 3 significant genes (UTRN, IL6ST, and NFIB)
are widely dysregulated genes among AD, CP, and MtD.
Furthermore, 2 significant genes (ZNF700 and IFI44)
are commonly dysregulated genes among HD, ALS, and
MtD. 8 significant genes (LIF, AKAP9, BCLAF1, ANKRD28,
GNAQ, CCDC91, GSAP and MEG3) have commonly dys-
regulated genes among HD, CP, and MtD and 2 signifi-
cant genes (MBP and TXK) are widely dysregulated genes
among ALS, CP, and MtD.

Validating Biomarkers by Gold Benchmark
Databases
The OMIM and dbGaP databases were used to identify
genes using single neucleotide polymorphism (SNP) that
associated with different diseases (see Figure 5). It in-
dicated that MtD associated genes are also responsible
for various diseases. To find out significant neurological
diseases, we found different diseases whose adjusted p-
value were considered below or equal 0.05. Then, several
diseases such as cancer, infectious diseases etc. were re-
moved from this list because they were not concerned in
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Table 1. KEGG pathway analyses which include significant pathways common to MtD and A) AD B) PD C) HD D)
ALS E) CP. Pathways, genes of these pathways and adjusted p-values are given.

A. Common significant pathways of MtD and AD

KEGG ID Pathway Genes in the pathway Adj. p-value

hsa00532 Glycosaminoglycan biosynthesis - chondroitin sulfate /dermatan sulfate CSGALNACT1;DSE 0.007

hsa04611 Platelet activation LCP2;MYL12A;MYLK 0.041

hsa04670 Leukocyte transendothelial migration CLDN23;CYBB;MYL12A 0.038

hsa04810 Regulation of actin cytoskeleton GSN;DOCK1;MYL12A;MYLK 0.045

hsa04110 Cell cycle SMAD4;RBL1;MCM5 0.043

B. Common significant pathways of MtD and PD

KEGG Id Pathway Genes in the pathway Adj. P-value

hsa04672 Intestinal immune network for IgA production CXCR4;TNFRSF17 0.009

hsa04727 GABAergic synapse SLC6A13;GNB5 0.029

hsa00240 Pyrimidine metabolism POLD1;TYMP 0.040

C. Common significant pathways of MtD and HD

KEGG ID Pathway Genes in the pathway Adj. p-Value

hsa04550 Signaling pathways regulating pluripotency of stem cells LIF, ACVR2A, IL6ST, SMAD4, SKIL, CTNNB1 0.011

hsa04520 Adherens junction SMAD4, YES1, TCF7L2, CTNNB1 0.030

hsa03040 Spliceosome SRSF3, SRSF4, TRA2A, HNRNPA1, RBM25 0.038

hsa04922 Glucagon signaling pathway PPP4R3B, GNAQ, PRKAA1, ATF2 0.068

hsa04931 Insulin resistance MGEA5, TRIB3, PRKAA1, PPP1CB 0.084

D. Common significant pathways of MtD and ALS

KEGG ID Pathway Genes in the pathway Adj. p-value

hsa05203 Viral carcinogenesis KRAS, RBL1, TP53, ACTN1, CDK4 0.009

hsa05214 Glioma KRAS, TP53, CDK4 0.028

hsa04720 Long-term potentiation KRAS, GNAQ, PPP3CA 0.029

hsa05218 Melanoma KRAS, TP53, CDK4 0.033

hsa05220 Chronic myeloid leukemia KRAS, TP53, CDK4 0.034

E. Common significant pathways of MtD and CP

KEGG ID Pathway Genes in the pathway Adj. p-value

hsa04024 cAMP signaling pathway PIK3CB, GABBR1, PDE3A, PDE4D, AKT2 0.003

hsa04510 Focal adhesion LAMA2, PIK3CB, RAPGEF1, AKT2, VCL 0.003

hsa05146 Amoebiasis LAMA2, GNAL, PIK3CB, VCL 0.004

hsa04910 Insulin signaling pathway PIK3CB, ACACB, RAPGEF1, AKT2 0.008

hsa05211 Renal cell carcinoma PIK3CB, RAPGEF1, AKT2 0.016

hsa05032 Morphine addiction GABBR1, PDE3A, PDE4D 0.031

hsa04915 Estrogen signaling pathway PIK3CB, GABBR1, AKT2 0.036

hsa05142 Chagas disease (American trypanosomiasis) GNAL, PIK3CB, AKT2 0.039

hsa04931 Insulin resistance PIK3CB, ACACB, AKT2 0.042

hsa05145 Toxoplasmosis LAMA2, PIK3CB, AKT2 0.049

this study. After analyzing them, 3 neurological diseases
were found in figure 5. Then, we constructed a GDN using
Cytoscape and showed gene disease association of differ-
ent diseases. It indicated that our analysis of finding sig-
nificant genes of neurological diseases were also matched
with existing records.

Discussion
The aim of this work is to find out the effectiveness of
extracted information of bioinformatics analyses that can
investigate the relationship of different neurological dis-
eases and its comorbidities for MtD. We identified gene
expression data from microarray experiments available in
online and combined analysis of transcriptomics, genet-
ics, pathways, GO data and PPI that have not been ful-
filled by previous studies. So, It can fill up a significant

gap of our knowledge how MtD may affect AD, PD, HD,
ALS and CP. A simple sequence of steps were applied to
identify a range of possible comorbidities of neurological
diseases. We investigated MtD by using selected patholo-
gies and found experimental results which strengthen the
scientific review of happening neurological diseases. No-
tably, we expect more and more microarray data that can
be used to enrich the set of evidence without affecting
previous outcomes. Therefore, It is suggested to take dif-
ferent datasets from various sources and cell types and
integrated them to find out more robust evidences. The
availability of suitable microarray datasets would be good
to take not only classic class of case vs control, but also
different conditions which comes from genetic variants to
define the risk of having neurological diseases. In addi-
tion, the typology of data is important because all of the
datasets have not contained similar standard. It is mean-
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Table 2. GO analysis to identify Significant pathway common to MtD and A) AD B)PD C) HD D) ALS E) CP.

A. Common significant GOs of MtD and AD
GO Term Pathways Genes in the pathway Adj. p-value

GO:0006366 transcription from RNA polymerase II promoter
GLIS3, EBF1, GATA4, SMAD4, SIX3,
TGFB1I1, MYBL1, ETV6, NFIB 0.016

GO:0001932 regulation of protein phosphorylation CCDC88C, SOCS3, ITPKB 0.019
GO:0060235 lens induction in camera-type eye HIPK1, SIX3 0.025

GO:1904261
positive regulation of basement membrane
assembly involved in embryonic body morphogenesis CLASP2, PHLDB2 0.031

GO:0035726 common myeloid progenitor cell proliferation ITPKB, CEACAM1 0.043
GO:0010470 regulation of gastrulation CLASP2, PHLDB2 0.049

B. Common significant GOs of MtD and PD
GO Term Pathways Genes in the pathway Adj. p-value

GO:1902110
positive regulation of mitochondrial membrane
permeability involved in apoptotic process ATF2 0.027

GO:1902108
regulation of mitochondrial membrane
permeability involved in apoptotic process ATF2 0.024

GO:0000002 mitochondrial genome maintenance TYMP 0.041
GO:1903608 protein localization to cytoplasmic stress granule DHX9 0.024
GO:0010835 regulation of protein ADP-ribosylation WARS 0.027
GO:0042987 amyloid precursor protein catabolic process ABCG1 0.027
GO:0034374 low-density lipoprotein particle remodeling ABCG1 0.035
GO:0042982 amyloid precursor protein metabolic process ABCG1 0.041
GO:1901881 positive regulation of protein depolymerization CFL2 0.038
GO:0060049 regulation of protein glycosylation WARS 0.038
GO:0035269 protein O-linked mannosylation LARGE1 0.035
GO:0006469 negative regulation of protein kinase activity CEACAM1;WARS 0.043

C. Common significant GOs of MtD and HD
GO Term Pathway Genes in the pathway Adj. p-value

GO:0006397 mRNA processing
ZC3H14, SREK1, MBNL2, MBNL1, HNRNPA1, RBBP6,
SRSF4, SCAF11, PAPD4, SFPQ, RBM39, WDR33, RBM25 6E-07

GO:0008380 RNA splicing
SRSF4, SCAF11, SFPQ, SREK1, MBNL2, RBM39,
ZNF638,MBNL1, RBM25 4E-04

GO:0006357 regulation of transcription from RNA polymerase II promoter
ZMYM2, KLF12, ARID4B, ZNF131, MED13L, TCF7L2,
JMY,ATF2, MED6, BLZF1, BRWD1, TFDP2, CHD1, LRRFIP1 1E-03

GO:0000209 protein polyubiquitination CUL3, UBE2D3, RC3H2, RNF217, FBXO3, RBBP6, TRIP12 1E-02
GO:0036092 phosphatidylinositol-3-phosphate biosynthetic process PIK3C2A, PIK3C3, INPP4B, ATM 2E-02

GO:0045892 negative regulation of transcription, DNA-templated
BCLAF1, SP100, TRIM33, CREBZF, SFPQ, SMAD4, TFDP2,
MEG3, TRIB3, LRRFIP1, TCF7L2, CTNNB1 2E-02

GO:0044334
canonical Wnt signaling pathway involved in positive
regulation of epithelial to mesenchymal transition TCF7L2, CTNNB1 2E-02

GO:0051091
positive regulation of sequence-specific DNA binding
transcription factor activity SP100, DDR2, CTNNB1, ATF2, JMY 3E-02

GO:0031047 gene silencing by RNA DICER1, RANBP2, CNOT7, TNRC6B, NUP58 3E-02

GO:0000398 mRNA splicing, via spliceosome
SRSF3, SRSF4, METTL14, TRA2A, HNRNPD,
HNRNPA1, PPWD1 3E-02

GO:0043484 regulation of RNA splicing MBNL2, CLK1, MBNL1 4E-02
D. Common significant GOs of MtD and ALS

GO Term Pathway Genes in the pathway Adj. p-value

GO:0045944
positive regulation of transcription from
RNA polymerase II promoter

CREM, RBL1, TP53, MED12, RARA, TXK,
PPP3CA, NR4A3, HMGA1, ETV4 3E-04

GO:0045787 positive regulation of cell cycle RARA, NR4A3, CDK4 3E-03
GO:0031100 organ regeneration NR4A3, CDK4, GSTP1 5E-03
GO:0007411 axon guidance KRAS, ANK3, NEO1, NR4A3 6E-03
GO:0035726 common myeloid progenitor cell proliferation NR4A3, GSTP1 2E-02
GO:0009636 response to toxic substance CDK4, GSTP1, MBP 2E-02
GO:2000774 positive regulation of cellular senescence KRAS, HMGA1 2E-02
GO:0006468 protein phosphorylation MAPK6, SNRK, RARA, TXK, CDK4 2E-02
GO:0050900 leukocyte migration KRAS, PPIL2, ITGB2 3E-02
GO:0048384 retinoic acid receptor signaling pathway CREM, RARA 4E-02
GO:0006367 transcription initiation from RNA polymerase II promoter MED12, RARA, NR4A3 5E-02

E. Common significant GOs of MtD and CP
GO Term Pathway Genes in the pathway Adj. p-value

GO:0007155 cell adhesion LAMA2, EPHA4, WISP2, LPP, ADAM12, VCL 0.003
GO:0071875 adrenergic receptor signaling pathway AKAP13, PDE4D 0.004
GO:0030334 regulation of cell migration LAMA2, AKT2, VCL 0.012

GO:0007185
transmembrane receptor protein tyrosine
phosphatase signaling pathway TRIO, PTN 0.013

GO:0006936 muscle contraction MYL6B, UTRN, VCL 0.023
GO:0043065 positive regulation of apoptotic process BCLAF1, TRIO, AKAP13, PTN 0.028
GO:0006198 cAMP catabolic process PDE3A, PDE4D 0.033
GO:0061028 establishment of endothelial barrier PDE4D, RAPGEF1 0.035
GO:0007165 signal transduction GNAL, KLRC2, WISP2, PIK3CB, PDE4D, RAPGEF1, AKT2 0.040
GO:0010906 regulation of glucose metabolic process RORA, ACACB 0.047
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Figure 4. PPI network of DEGs with MCL Clustering

ingful that GSE series need more effort to prepare data
for analysis. Before uploading microarray datasets, a per-
sonal quality control step is driven for semi automated
analysis of them. Nevertheless, our approach is a good
way to analyze, compare and integrate data and find a
trade off from the realization of a standard protocols for
MtD that causes various neurological diseases. Such anal-
ysis will be key element in the development of truly pre-
dictive medicine and provide insight to make novel hy-
pothesis about diseases mechanisms of MtD. It will also
predict the probability of developing disease comorbidity
and relevant information about medication overlaps.

We applied a systematic and quantitative approach to
compare how DEG transcripts in MtD that can be utilized
to obtain insights into other human diseases. This work
showed significant associations of neurological diseases
with the corresponding MtD by substantial pathways. The
integration of data obtained from different technologies
which represents several ways to analyze MtD that causes
distinct neurological diseases. Different neurological dis-
eases are expressed potential gene-disease associations by
combining analysis of genetics, regulatory patterns, path-
ways, GO data, and PPIs which have not been captured
in previous studies. Our results show a combination of
molecular and population-level data that can provide in-
sights to happen neurological diseases for MtD. Further-
more, it will predict significant information about med-
ication overlaps and the probability of developing dis-
ease comorbidity (where the occurrence of one disease
may increase the susceptibility of other disease in a pa-
tient) using molecular biomarkers. To explore pathway
and transcript profiles that can indicate disease associa-
tions and comorbid vulnerability for MtD. We analyzed

publicly available microarray data that can be used to in-
vestigate gene enrichment from signalling pathway and
GO data. Besides, flexible, time consuming and seman-
tic analysis-based approaches were used to facilitate this
work and reduce operator bias. In transcript analyses,
there were found an evidence about the processing of dis-
ease of PPI data. So, we can identify different pathways
through inspection of cell proteins and their interactions.
This investigation also represent a high potential of under-
standing the central mechanisms behind the neurological
disease progression for MtD from the molecular and ge-
netic aspects. This analyses will also be considered as a
key element for predictive drugs development.

Table 3. Associated Diseases with Similar Genes

Term Adj. p-value Genes
ALS 2.02077E-09 AKAP13;GNAL;LAMA2;DLGAP1;ARSG
AD 2.6251E-09 ABCA1;SLC35A3;CR1;ARHGAP18;RORA
PD 3.30502E-08 AKAP13;BANK1;CREM;PHACTR2;ETV6

In summary, this work is significant from clinical bioinfor-
matics perspective because this methodology is provided
comorbidity and improved visualization aspects of MtD in
neurological diseases. This process also harmonizes to the
existing software that can use by physicians. The impact
of bioinformatics in clinical investigation is still at the be-
ginning. So, we hope that our approach is not only useful
for the researches of neurological diseases but also other
complex diseases.

CR1

AD

LAMA2

SLC35A3

ARHGAP18

PD BANK1

AKAP13ARSG

GNAL

CREM

DLGAP1

ALS

MtD
ABCA1

RORA

PHACTR2

ETV6

Figure 5. Gene identified by OMIM and dbGap
databases using SNP related with MtD and diseases

Conclusion
This study defines the value of an integrated approach in
disseminating individual neurological disease’s relation-
ships and expressed new opportunities for therapeutic ap-
plications. The multi-stage analysis methods were ap-
plied to analyze gene expression and regulatory data and
DEGs were considered for functional enrichment studies
to identify enriched pathways and GO terms of the bi-
ological processes (KEGG pathways, GO pathways and
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PPI network), investigate disease mechanisms, comor-
bidities and regulated patterns that indicates how to im-
pact MtD to the different neurological diseases. Genomic
information–based personalized medicine is usually pro-
vided new fundamental insights about disease mecha-
nisms. But, much genomic sequence information is not
yet interpretable straightforwardly. Notably, genetic vari-
ant’s effects on transcription control are slowly disclosed.
In this situation, the reduction of sequencing costs can be
enabled a revolution to analyze transcript that sill provide
huge health gains. So, our methods of DEGs analysis will
need more development to analyze DEGs and will predict
complimentary drugs for neurological diseases.

References
[1] Richard H Haas, Sumit Parikh, Marni J Falk, Russell P

Saneto, Nicole I Wolf, Niklas Darin, and Bruce H Cohen.
Mitochondrial disease: a practical approach for primary
care physicians. Pediatrics, 120(6):1326–1333, 2007.

[2] Foundation for Mitochondrial Medicine related diseases.
http://mitochondrialdiseases.org/related-
diseases/. Accessed: 2018-07-20.

[3] Renato X Santos, Sónia C Correia, Xinglong Wang, George
Perry, Mark A Smith, Paula I Moreira, and Xiongwei Zhu.
Alzheimer’s disease: diverse aspects of mitochondrial mal-
functioning. International journal of clinical and experi-
mental pathology, 3(6):570, 2010.

[4] Richard Kones. Parkinson’s disease: mitochondrial molec-
ular pathology, inflammation, statins, and therapeutic
neuroprotective nutrition. Nutrition in Clinical Practice, 25
(4):371–389, 2010.

[5] M Flint Beal. Mitochondrial dysfunction in neurodegen-
erative diseases. Biochimica et Biophysica Acta (BBA)-
Bioenergetics, 1366(1-2):211–223, 1998.

[6] Philip C Wong, Carlos A Pardo, David R Borchelt,
Michael K Lee, Neal G Copeland, Nancy A Jenkins, San-
gram S Sisodia, Don W Cleveland, and Donald L Price.
An adverse property of a familial als-linked sod1 mutation
causes motor neuron disease characterized by vacuolar de-
generation of mitochondria. Neuron, 14(6):1105–1116,
1995.

[7] Mohammad Ali Moni and Pietro Liò. Network-based anal-
ysis of comorbidities risk during an infection: Sars and hiv
case studies. BMC bioinformatics, 15(1):333, 2014.

[8] César A Hidalgo, Nicholas Blumm, Albert-László Barabási,
and Nicholas A Christakis. A dynamic network approach
for the study of human phenotypes. PLoS computational
biology, 5(4):e1000353, 2009.

[9] Bin Tong and Chris Stevenson. Comorbidity of cardiovascu-
lar disease, diabetes and chronic kidney disease in Australia.
Australian Institute of Health and Welfare, 2007.

[10] Haoming Xu, Mohammad Ali Moni, and Pietro Liò. Net-
work regularised cox regression and multiplex network
models to predict disease comorbidities and survival of
cancer. Computational biology and chemistry, 59:15–31,
2015.

[11] Vincent Navratil, Benoit de Chassey, Chantal Rabourdin
Combe, and Vincent Lotteau. When the human viral infec-
tome and diseasome networks collide: towards a systems
biology platform for the aetiology of human diseases. BMC
systems biology, 5(1):13, 2011.

[12] Aldo Segura-Cabrera, Carlos A García-Pérez, Xianwu Guo,
and Mario A Rodríguez-Pérez. A viral-human interactome
based on structural motif-domain interactions captures the
human infectome. PloS one, 8(8):e71526, 2013.

[13] Klaas J Wardenaar and Peter de Jonge. Diagnostic hetero-
geneity in psychiatry: towards an empirical solution. BMC
medicine, 11(1):201, 2013.

[14] Lotte Holm Land, Susanne Oksbjerg Dalton, Trine Lem-
brecht Jørgensen, and Marianne Ewertz. Comorbidity and
survival after early breast cancer. a review. Critical reviews
in oncology/hematology, 81(2):196–205, 2012.

[15] Alexandra Zhernakova, Cleo C Van Diemen, and Cisca Wi-
jmenga. Detecting shared pathogenesis from the shared
genetics of immune-related diseases. Nature Reviews Ge-
netics, 10(1):43, 2009.

[16] Daphne P Guh, Wei Zhang, Nick Bansback, Zubin Amarsi,
C Laird Birmingham, and Aslam H Anis. The incidence of
co-morbidities related to obesity and overweight: a sys-
tematic review and meta-analysis. BMC public health, 9
(1):88, 2009.

[17] Mohammad Ali Moni, Haoming Xu, and Pietro Lio. Cy-
tocom: a cytoscape app to visualize, query and analyse
disease comorbidity networks. Bioinformatics, 31(6):969–
971, 2014.

[18] Alzheimer’s disease fact sheet. https://www.nia.nih.
gov/health/alzheimers-disease-fact-sheet.
Accessed: 2018-07-20.

[19] Dennis J Selkoe. Alzheimer’s disease results from the
cerebral accumulation and cytotoxicity of amyloid\beta-
protein. Journal of Alzheimer’s disease, 3(1):75–82, 2001.

[20] Pierre Chagnon, Mark Gee, Mario Filion, Yves Robitaille,
Majid Belouchi, and Denis Gauvreau. Phylogenetic anal-
ysis of the mitochondrial genome indicates significant dif-
ferences between patients with alzheimer disease and con-
trols in a french-canadian founder population. American
journal of medical genetics, 85(1):20–30, 1999.

[21] Anette Schrag, Laura Horsfall, Kate Walters, Alastair
Noyce, and Irene Petersen. Prediagnostic presentations of
parkinson’s disease in primary care: a case-control study.
The Lancet Neurology, 14(1):57–64, 2015.

[22] Konstanze F Winklhofer and Christian Haass. Mitochon-
drial dysfunction in parkinson’s disease. Biochimica et Bio-
physica Acta (BBA)-Molecular Basis of Disease, 1802(1):29–
44, 2010.

[23] Teresa Cunha-Oliveira, Ildete Luísa Ferreira, and A Cristina
Rego. Consequences of mitochondrial dysfunction in hunt-
ington’s disease and protection via phosphorylation path-
ways. In Huntington’s Disease-Core Concepts and Current
Advances. InTech, 2012.

Page 9 of 10

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 29, 2018. ; https://doi.org/10.1101/483065doi: bioRxiv preprint 

https://doi.org/10.1101/483065


F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

[24] Zhen Jiang, Wenzhang Wang, George Perry, Xiongwei Zhu,
and Xinglong Wang. Mitochondrial dynamic abnormalities
in amyotrophic lateral sclerosis. Translational neurodegen-
eration, 4(1):14, 2015.

[25] Cerebral palsy. https://kidshealth.org/en/
parents/cerebral-palsy.html. Accessed: 2018-07-
20.

[26] Alan Fryer, Richard Appleton, MG Sweeney, Lewis Rosen-
bloom, and AE Harding. Mitochondrial dna 8993 (narp)
mutation presenting with a heterogeneous phenotype in-
cluding’cerebral palsy’. Archives of disease in childhood, 71
(5):419–422, 1994.

[27] Home - geo datasets - ncbi. https://www.ncbi.nlm.
nih.gov/gds. Accessed: 2018-06-12.

[28] Mohammad Ali Moni and Pietro Lio. Genetic profiling and
comorbidities of zika infection. The Journal of infectious
diseases, 216(6):703–712, 2017.

[29] Mohammad Ali Moni and Pietro Liò. comor: a software
for disease comorbidity risk assessment. Journal of clinical
bioinformatics, 4(1):8, 2014.

[30] Mohammad Ali Moni and Pietro Liò. How to build per-
sonalized multi-omics comorbidity profiles. Frontiers in
cell and developmental biology, 3:28, 2015.

[31] Da Wei Huang, Brad T Sherman, and Richard A Lempicki.
Systematic and integrative analysis of large gene lists using
david bioinformatics resources. Nature protocols, 4(1):44,
2008.

[32] Maxim V Kuleshov, Matthew R Jones, Andrew D Rouillard,
Nicolas F Fernandez, Qiaonan Duan, Zichen Wang, Simon
Koplev, Sherry L Jenkins, Kathleen M Jagodnik, Alexander
Lachmann, et al. Enrichr: a comprehensive gene set en-
richment analysis web server 2016 update. Nucleic acids
research, 44(W1):W90–W97, 2016.

[33] GK Smyth, Matthew Ritchie, and N Thorne. Linear models
for microarray data user’s guide. Bioinformatics, 20:3705–
3706, 2011.

[34] Damian Szklarczyk, John H Morris, Helen Cook, Michael
Kuhn, Stefan Wyder, Milan Simonovic, Alberto Santos,
Nadezhda T Doncheva, Alexander Roth, Peer Bork, et al.
The string database in 2017: quality-controlled protein–
protein association networks, made broadly accessible.
Nucleic acids research, page gkw937, 2016.

[35] Anton J Enright, Stijn Van Dongen, and Christos A Ouzou-
nis. An efficient algorithm for large-scale detection of pro-
tein families. Nucleic acids research, 30(7):1575–1584,
2002.

[36] Michael Kohl, Sebastian Wiese, and Bettina Warscheid. Cy-
toscape: software for visualization and analysis of biolog-
ical networks. In Data Mining in Proteomics, pages 291–
303. Springer, 2011.

[37] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S
Baliga, Jonathan T Wang, Daniel Ramage, Nada Amin,
Benno Schwikowski, and Trey Ideker. Cytoscape: a soft-
ware environment for integrated models of biomolecu-
lar interaction networks. Genome research, 13(11):2498–
2504, 2003.

Page 10 of 10

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 29, 2018. ; https://doi.org/10.1101/483065doi: bioRxiv preprint 

https://doi.org/10.1101/483065

