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Abstract 38 

Intestinal epithelial cells (IECs) are exposed to the low-oxygen environment present in the 39 

lumen of the gut. These hypoxic conditions are on one hand fundamental for the survival of 40 

the commensal microbiota, and on the other hand, favor the formation of a selective 41 

semipermeable barrier allowing IECs to transport essential nutrients/water while keeping the 42 

sterile internal compartments separated from the lumen containing commensals. The 43 

hypoxia-inducible factor (HIF) complex, which allows cells to respond and adapt to fluctuations 44 

in oxygen levels, has been described as a key regulator in maintaining IEC barrier function by 45 

regulating their tight junction integrity. In this study, we sought to better evaluate the 46 

mechanisms by which low oxygen conditions impact the barrier function of human IECs. By 47 

profiling miRNA expression in IECs under hypoxia, we identified miRNA-320a as a novel barrier 48 

formation regulator. Using pharmacological inhibitors and short hairpin RNA-mediated 49 

silencing we could demonstrate that expression of this miRNA was HIF-dependent. 50 

Importantly, using over-expression and knock-down approaches of miRNA-320a we could 51 

confirm its direct role in the regulation of barrier functions in human IECs. These results reveal 52 

an important link between miRNA expression and barrier integrity, providing a novel insight 53 

into mechanisms of hypoxia-driven epithelial homeostasis.   54 
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Introduction 55 

The human gastrointestinal (GI) tract is the organ forming the largest barrier towards 56 

the external environment and a key player in nutrient absorption (1). It is made of a monolayer 57 

of epithelial cells separating the lamina propria from the lumen of the gut. This epithelium on 58 

the one hand allows for the translocation of nutrients, water and electrolytes from the lumen 59 

to the underlying tissue and, on the other hand, builds up a tight barrier to prevent 60 

penetration of commensal bacteria and potential harmful microorganisms (bacterial and viral) 61 

to the lamina propria (1). Although these luminal microorganisms have well characterized 62 

beneficial functions for the host, they can represent a risk when epithelial barrier and gut 63 

homeostasis are disrupted. Altered barrier functions increase the risk of enteric pathogen 64 

infection and can lead to the dysregulation of the mechanisms leading to the tolerance of the 65 

commensals which ultimately can lead to inflammation of the GI tract and the development 66 

of chronic diseases like inflammatory bowel disease (IBD), including Crohn’s disease (CD) and 67 

ulcerative colitis (UC) (2, 3). Multiple cellular strategies are utilized to physically separate the 68 

content of the gut lumen from the host. First, goblet cells and Paneth cells in the mucosal 69 

lining secrete mucus together with antimicrobial and antiviral peptides which forms a layer of 70 

separation between the intestinal epithelial cells and the luminal content of the digestive tract 71 

(4–6). Second, epithelial cells polarize and express tightly juxtaposed adhesive junctional 72 

complexes between neighbouring cells. These junctional complexes are composed of integral 73 

transmembrane proteins that are linked via intracellular scaffoldings proteins to the actin 74 

cytoskeleton (7). This tight organization of intestinal epithelial cells (IECs) inhibits paracellular 75 

diffusion of ions and other solutes as well as antigenic material (8). The junctional complex 76 

therefore is essential for establishing and maintaining the barrier function of the mucosal layer 77 

and is composed of tight and adherens junction proteins such as claudins, occludin, junctional 78 
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adhesion molecule-A (JAM-A), tricellulin, zona occludens-1 (ZO-1) and E-cadherin (8). The 79 

interaction between the different tight junction and adherens junction proteins thus creates 80 

a tight epithelial barrier and determines selective permeability through the intestinal 81 

epithelium.  82 

Within the physiological organization of the GI tract, an important but often 83 

overlooked parameter is the low oxygen level present in the lumen of the gut. This 84 

environment is fundamental for the survival of many commensals. Within the complex 3D 85 

organization of the crypt-villus axis, the tip of the villi protrudes into the low oxygen (1-2%) 86 

environment of the gut (hypoxic environment) (9). Conversely, within of the mucosal lining, 87 

oxygen-rich blood vessels are located in the subepithelium, providing the stem cell containing 88 

crypts with a high oxygen content of around 8-21% (normoxic environment) (10, 11). Besides 89 

this oxygen gradient among the intestinal epithelium, the subepithelium of the GI tract is also 90 

exposed to daily fluctuations in oxygen content. After food ingestion, the intestinal blood flow 91 

increases and the oxygen content in the subepithelium rises up to 40-64%, but can also 92 

decrease below 8% under fasting conditions (12, 13). 93 

Cells respond to the hypoxic environment by specifically regulating the expression of 94 

hundreds of genes through the major hypoxic-induced transcription factor hypoxia inducible 95 

factor (HIF) (14). HIFs are heterodimeric transcription factors that are composed of a 96 

constitutively expressed HIF-β subunit and one of the three oxygen-regulated alpha subunits 97 

(HIF-1α, HIF-2α or HIF-3α) (15). Under normoxic conditions, HIF-1α is rapidly hydroxylated at 98 

specific proline residues by different prolyl hydroxylases (PHD's), leading to binding to the E3 99 

ubiquitin ligase containing the von Hippel-Lindau (VHL) tumor suppressor protein, 100 

polyubiquitination and subsequent proteasomal degradation of the protein (16). Under 101 

hypoxic conditions, lack of substrates such as Fe2+, 2-oxoglutarate and O2 inhibits 102 
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hydroxylation (17), therefore stabilizing HIF-1α and leading to dimerization with its 103 

constitutively expressed β-subunit (HIF-1ß), translocation to the nucleus and binding of the 104 

coactivators CBP (CREB-binding protein) and p300 (18). This enables the complex to bind to 105 

target genes at the consensus sequence 5’-RCGTG-3’ (where R refers to A or G) and leads to 106 

formation of the transcription initiation complex (TIC) with subsequent expression of many 107 

genes that promote erythropoiesis, angiogenesis, glucose transport and metabolism, all 108 

needed in adaptation to low oxygen concentrations (19).  109 

Beside the importance of hypoxia for the commensal flora, it has been shown that low 110 

oxygen conditions also impact epithelial cells by inducing secretion of several proteins into the 111 

surrounding of the cells, including cytokines and growth factors (20). Precisely, in the context 112 

of epithelial barrier function, the intestinal trefoil factors (TFFs) exhibit intestinal-specific 113 

barrier-protective features and are specifically upregulated under hypoxia through a hypoxia 114 

inducible factor HIF-1α–dependent manner (21). The molecular mechanisms of TFF function 115 

and how they achieve the barrier protection is still not fully understood. Recent publications 116 

indicate a stabilizing effect on mucosal mucins (22), induction of cellular signals that modulate 117 

cell-cell junctions of epithelia leading to increased levels of claudin-1, impairment of adherens 118 

junctions and facilitation of cell migration in wounded epithelial cell layers (23–25). 119 

In recent years it has become appreciated that hypoxia additionally regulates the 120 

expression of an expanding but specific subset of miRNAs, termed hypoxamiRs (26, 27). 121 

miRNAs are endogenous, small non-coding RNAs that consist of 18-23 nucleotides. After 122 

transcription and subsequent maturation, the functional strand of the mature miRNA is 123 

loaded into the RNA-induced silencing complex (RISC), where it silences target mRNAs through 124 

mRNA cleavage, translational repression or deadenylation (28). miRNAs coordinate complex 125 

regulatory events relevant to a variety of fundamental cellular processes (29). Although it has 126 
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been shown that miRNAs can participate in the regulation of barrier function (30), it remains 127 

unclear whether the hypoxic environment in the lumen of the gut can induce the expression 128 

of a specific subsets of hypoxamiRs which in turn will influence barrier function of the 129 

intestinal epithelium.  130 

In the current study, we sought to investigate how hypoxia impacted the formation of 131 

a tight barrier in human intestinal epithelial cells. We found that human intestinal cells grown 132 

under hypoxic conditions more rapidly displayed barrier functions compared to cells grown 133 

under normoxia. We could correlate this improved barrier function with the faster assembly 134 

of the tight junction belt under low oxygen conditions. Through transcriptome microarray 135 

analysis, we identified three hypoxamiRs, miRNA-320a, miRNA-16-5p and miRNA-34a-5p, 136 

known to play a role in barrier formation. Using overexpression and depletion experiments, 137 

we could demonstrate that miRNA-320a acts as a key player in promoting barrier formation 138 

in human intestinal epithelial cells under hypoxic conditions. Our data demonstrates that the 139 

hypoxic condition around intestinal epithelial cells regulates the expression of a specific 140 

subsets of miRNAs which in turn participates in the establishment of a fully functional 141 

epithelial barrier. Importantly, our work highlights the importance of studying the cellular 142 

functions of intestinal epithelial cells under their physiological hypoxic environment.  143 

  144 
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Results 145 

Low oxygen levels improve barrier function in human intestinal epithelial cells. The gastro-146 

intestinal tract is characterized by a steep oxygen gradient along the crypt-villus axis with high 147 

levels of oxygen at the bottom of the crypts and a low oxygen environment at the tip of the 148 

villi (10). Several studies (21, 31, 32) have shown that low oxygen concentrations can influence 149 

the barrier function of epithelial cells in vitro by changing gene expression profiles and 150 

inducing secretion of barrier-regulating proteins, i.e. TFFs. To investigate the mechanism by 151 

which hypoxic conditions regulate barrier function, the T84 colon adenocarcinoma-derived 152 

cell line was seeded onto transwell inserts and allowed to polarize under normoxic (21% O2) 153 

or hypoxic (1% O2) conditions. To determine the effect of hypoxia on the ability of T84 cells to 154 

form a tight barrier, transepithelial electrical resistance (TEER) measurements were 155 

performed at 24-hour intervals for five days. TEER is a well characterized method used to 156 

quickly access barrier function characterized by the rise in the electrical resistance over a cell 157 

monolayer. Similar to our previous observations (33), normoxic cells reached a polarized state 158 

and acquired a fully functional barrier function within 4-5 days post-seeding (Figure 1A). 159 

However, T84 cells cultured under hypoxic conditions established their barrier function 160 

significantly faster compared to cells under normoxic conditions, reaching a polarized state 161 

within two days post-seeding (Figure 1A). To further assess paracellular permeability and the 162 

integrity of the IEC-monolayer, the diffusion of fluorescein isothiocyanate (FITC)-labeled 163 

dextran across the epithelial monolayer was measured (Figure 1B). In this assay, when cells 164 

are non-polarized, dextran added to the apical chamber of a transwell insert is able to rapidly 165 

diffuse to the basal compartment. However, upon cellular polarization and creation of a tight 166 

barrier, the FITC-dextran is retained in the apical chamber. Results show that similar to the 167 

rapid increase in TEER measurements, T84 cells grown under hypoxic conditions are able to 168 
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more quickly control FITC-dextran diffusion from the apical into the basal compartment of the 169 

transwell. This indicates that a tight barrier function has been achieved faster under hypoxia 170 

compared to normoxia (Figure 1B). This increase in barrier function was rapid and was already 171 

apparent at one day post-seeding. To determine whether the increase in the rate of 172 

polarization and barrier formation was also apparent at the level of the tight junction belt, T84 173 

cells were seeded onto transwell inserts and the formation of tight junctions was monitored 174 

by indirect immunofluorescence of ZO-1 and by qPCR for the tight and adherens junction 175 

proteins E-Cadherin (CDH1), occludin (OCLN) and junctional adhesion molecule 1 (F11R/JAM-176 

A). Results show that similar to the TEER and dextran diffusion assay, cells cultured under 177 

hypoxic conditions already showed, within one day of seeding, a well-defined tight junction 178 

belt characterized by the classical cobblestone pattern. On the contrary, cells grown under 179 

normoxic conditions did not have well defined tight junctions one day post seeding and this 180 

coincided with the presence of dispersed ZO-1 protein in the cytosol of the cells (Figure 1C). 181 

Additionally, mRNA expression of the junction proteins E-cadherin, occludin and JAM-A was 182 

increased under hypoxia. E-cadherin showed a higher induction initially after hypoxic culture, 183 

while occludin and JAM-A required a prolonged treatment under hypoxia to show increases 184 

in their expression (Figure 1D). All together these results suggest that hypoxia favors the 185 

establishment of barrier function in T84 cells. 186 

Increased barrier formation induced by hypoxia is HIF-1α dependent. The main transcription 187 

factor involved in cellular response following changes in oxygenation is the hypoxia-inducible 188 

factor 1α (HIF-1α). To address whether the phenotype of faster barrier establishment under 189 

hypoxia was dependent on the activation of HIF1-α, we aimed at mimicking the hypoxic 190 

conditions using the pharmacological HIF-1α activator Dimethyloxaloylglycine (DMOG). 191 

DMOG exerts its function by inhibiting prolylhydroxylases (PHDs), which under normoxic 192 
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conditions induce degradation of HIF-1α (31). Therefore, DMOG treatment of normoxic cells 193 

stabilizes HIF-1α allowing for its translocation to the nucleus and production of HIF-responsive 194 

elements (HRE) dependent gene expression (Figure 2A). To confirm that DMOG was capable 195 

of stabilizing HIF-1α in T84 cells, cells were treated with DMOG and the transcriptional 196 

upregulation of the archetypical HIF-1α-target proteins vascular endothelial growth factor 197 

(VEGF) and carbonic anhydrase 9 (CA9) were assessed by qPCR. Results show that, similar to 198 

hypoxic treatment (Supp. Figure 1A), DMOG treatment results in the significant upregulation 199 

of both VEGF and Ca9 (Suppl. Figure 1B). To determine whether HIF-1α upregulation leads to 200 

the observed increase in the rate of barrier formation, T84 cells were seeded onto transwell 201 

inserts and incubated under normoxic conditions in the presence or absence of DMOG. The 202 

barrier function was assessed by monitoring TEER in 24-hour intervals over a five-day time 203 

course. In line with our previous observations, DMOG treated cells established their barrier 204 

function faster than the solvent-treated control cells (Figure 2B). To further confirm that the 205 

observed phenotype was HIF-1α dependent, HIF-1α was knocked-down by lentiviral 206 

transduction of shRNAs (Figure 2A). Quantification of HIF-1α knockdown efficiency revealed a 207 

75% reduction of HIF-1α mRNA compared to cells expressing a scrambled shRNA control 208 

(shScrambled) (Supp. Figure 1C). Knockdown of HIF-1α abolished the faster barrier formation 209 

under hypoxic conditions, as seen by similar TEER values under normoxic and hypoxic 210 

conditions (Figure 2C). Interestingly, cells expressing the shRNA exhibited a slower barrier 211 

formation in comparison to scrambled shRNA expressing cells even under normoxic 212 

conditions, revealing a general dependency of barrier formation on HIF-1α even in normal 213 

oxygen levels (Figure 2C). These results strongly suggest that faster establishment of barrier 214 

function in T84 cells observed under hypoxic conditions is HIF-1α dependent. 215 
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Whole transcriptome miRNA profiling reveals regulation of several miRNAs which are 216 

involved in barrier formation. Since significant differences in the barrier state between 217 

hypoxic and normoxic conditions could be observed already 24 hours after seeding, we 218 

hypothesized that the very fast changes in protein expression and barrier establishment must 219 

occur within hours after exposure of the cells to hypoxic conditions. Several proteins (21, 23) 220 

have been shown to contribute to mucosal repair and barrier formation in intestinal cells, but 221 

the role of miRNAs in finetuning gene expression involved in barrier formation has recently 222 

become appreciated (34). So far, most of these studies have only been conducted under 223 

normoxic conditions, hence overlooking the physiological hypoxic conditions of the gut. To 224 

directly address the role of miRNAs in regulating barrier functions of IECs under low oxygen 225 

conditions, miRNAome microarray analysis was employed for cells incubated under normoxic 226 

or hypoxic conditions. This allowed us to broadly screen hypoxia-regulated miRNAs, so called 227 

hypoxamiRs. By comparing the miRNA expression patterns from normoxic and hypoxic 228 

conditions we could identify a total of 108 differentially regulated hypoxamiRs of which 65 229 

were up- and 43 were downregulated under hypoxic conditions (Figure 3A). Detailed analysis 230 

of hypoxamiRs expression revealed that upon hypoxic exposure, T84 cells highly upregulate 231 

miRNA-210-3p expression (Figure 3A). This miRNAs is a master-regulator for adaptation to low 232 

oxygen concentration (27) and is a well characterized hypoxamiRs for which expression is 233 

strongly linked to hypoxic conditions. This upregulation of miRNA-210-3p strongly suggests 234 

that T84 cells have established a hypoxia-specific transcription profile. To probe for miRNAs, 235 

which could regulate barrier function, we performed KEGG and MetaCore-driven pathway 236 

analysis allowing us to identify three potential hypoxamiRs involved in barrier function 237 

establishment (miRNA-320a, miRNA-34a-5p and miRNA-16-5p) (Figure 3B and Supp. Figure 2). 238 

miRNA-320a has been shown to be crucial for intestinal barrier integrity through modulation 239 
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of the regulatory subunit PPP2R5B of phosphatase PP2A (35). Additionally, miRNA-320a was 240 

found to both target ß-catenin directly (36) and VE-cadherin through inhibition of the 241 

transcriptional repressor TWIST1 (37, 38).  miRNA-34a-5p has been shown to serve as an 242 

inhibitor for the zinc-finger transcription factor Snail (39, 40), which in turn functions as a 243 

transcriptional repressor of the adherens and tight junction proteins E-Cadherin, claudins and 244 

occludin (41–43). Interestingly, we recently (44) determined that miRNA-16-5p acts as a 245 

regulator of claudin-2 expression and its expression negatively correlated with occurrence of 246 

IBS in patients, therefore playing a key role in modulating barrier function.  247 

To validate the results of the miRNA microarray profiling, we performed qRT-PCR 248 

analysis for these specific miRNAs. As observed in our microarray approach, miRNA-210-3p, 249 

miRNA-320a, miRNA-34a-5p and miRNA-16-5p were upregulated under hypoxic conditions in 250 

T84 cells 24- or 48-hours post-seeding (Figure 4A). Since T84 cells are immortalized cells 251 

derived from carcinoma, they may show altered gene regulation, protein expression and 252 

signaling pathways. To verify that the observed hypoxia-dependent upregulation of barrier 253 

function related miRNAs was not an artefact of the cancerogenic nature of the T84 cells, stem 254 

cell-derived primary intestinal epithelial cells, so called human mini-gut organoids, were 255 

employed. Organoids are primary cell cultures and thereby retain key features like structural 256 

architecture and all major cell lineages present in the inner lining of the gut, hence mimicking 257 

the physiological organization of the human gut epithelium in vivo (45). In line with the results 258 

found in T84 cells, qRT-PCR confirmed upregulation of all four tested targets under hypoxic 259 

conditions 24- or 48-hours post-seeding in our human intestinal organoids (Figure 4B). Our 260 

observations made both in immortalized carcinoma derived cell lines and in primary human 261 

IECs therefore confirm the increased expression of the hypoxamiRs miRNA-320a, miRNA-34a-262 

5p and miRNA-16-5p under hypoxic conditions in the human intestinal epithelial cells. 263 
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Overexpression of miRNA-320a and miRNA-16-5p induces faster barrier formation in T84 264 

cells. Our above results indicate that miRNA-320a, miRNA-34a-5p and miRNA-16-5p are 265 

upregulated under hypoxic conditions. To directly validate that these hypoxamiRs are 266 

responsible for the observed improved barrier function under hypoxia, we stably 267 

overexpressed these miRNAs in T84 cells by lentiviral transduction. Following confirmation of 268 

their overexpression using qRT-PCR (Suppl. Figure 3), miRNA overexpressing T84 cells were 269 

seeded on transwell inserts and their barrier formation was monitored by TEER measurements 270 

in 24-hour intervals (Figure 5). Results show that miRNA-320a overexpressing cells exhibited 271 

a significantly faster barrier formation in comparison to scrambled miRNA expressing cells. 272 

miRNA-16-5p over expressing cells also showed a slight but non-significant increase in barrier 273 

formation as compared to scrambled miRNA expressing cells. miRNA-34a-5p expressing cells 274 

showed no alteration in barrier formation compared to scrambled miRNA cells, even though 275 

they displayed the highest overexpression levels (Figure 5 and Suppl. Figure 3). Taken 276 

together, these data provide direct evidence for a key role of miRNA-320a in regulating barrier 277 

function in intestinal epithelial cells.  278 

Inhibition of miRNA-320a expression diminishes barrier formation in T84 cells. To confirm 279 

the role of miRNA-320a in increasing barrier formation under hypoxic conditions, we 280 

generated T84 cells expressing a miRNA-320a-sponge. We confirmed through qPCR that these 281 

cells have a downregulation of miRNA-320a as the sponge binds to the miRNA and blocks its 282 

function (Suppl Figure 4). In line with our previous results, T84 cells expressing a miRNA-320a 283 

sponge displayed a slower establishment of barrier function in comparison to scrambled 284 

transduced cells under both normoxic and hypoxic conditions (Figure 6A). The effect was much 285 

more prominent under hypoxic conditions, decreasing the rate of barrier formation to the 286 

level of normoxic scrambled cells, thereby abolishing the hypoxia-dependent miRNA-320a 287 
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driven barrier establishment. To confirm the role of miRNA-320a in regulating barrier function, 288 

T84 cells over expressing miRNA-320a or depleted of miRNA-320a were seeded on transwell 289 

inserts and their barrier integrity was monitored using the FITC-dextran diffusion assay. In line 290 

with our previous results, miRNA-320a overexpressing cells show a reduced flux of FITC-291 

dextran to the basal compartment of the transwell chamber, while cells depleted of miRNA-292 

320a show an increased flux compared to scrambled miRNA cells (Figure 6B). Taken together, 293 

these findings strongly suggest a model where hypoxia-induced expression of miRNA-320a 294 

directly regulates the establishment of a functional barrier in the epithelial cells lining our 295 

gastrointestinal tract.  296 

Discussion 297 

 In this work, we demonstrate that the physiological hypoxic environment improves 298 

intestinal epithelial barrier function of T84 cells as shown by the faster establishment of 299 

transepithelial electrical resistance, by the more rapid decrease in barrier permeability to 300 

FITC-dextran, as well as by the faster establishment of the tight junction belt compared to 301 

normoxic conditions. Using pharmacological inhibitor and knock-down approaches, we could 302 

show that this increased barrier function is dependent on the hypoxia regulator HIF-1α. 303 

Additionally, using a miRNA microarray approach we identified miRNA-320a as a key miRNA 304 

induced under hypoxia being directly responsible for regulating barrier functions in human 305 

intestinal epithelial cells. We could demonstrate that its overexpression is sufficient to 306 

promote barrier function in epithelial cells while interfering with its expression under hypoxic 307 

conditions counteracts the hypoxia-mediated barrier formation establishment. Together our 308 

results show that miRNA-320a is a hypoxia-induced miRNA which plays a key role in regulating 309 

barrier function in human intestinal epithelial cells. 310 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/483206doi: bioRxiv preprint 

https://doi.org/10.1101/483206
http://creativecommons.org/licenses/by-nd/4.0/


14 

 

 The importance of hypoxic conditions in regulating barrier function in intestinal 311 

epithelial cells has been previously studied and several potential mechanisms highlight the 312 

central role of the transcription factor HIF. It was shown that specific shRNA-mediated knock-313 

down of HIF-1β in T84 and Caco-2 cells resulted in the decrease of claudin-1 expression on 314 

mRNA and protein level accompanied by defects in barrier function and abnormal morphology 315 

of tight junctions (46). This is thought to be a direct effect from the HIFs themselves as HIF 316 

responsive elements have been identified in the promoter region of claudin-1 (46). 317 

 One of the best characterized means by which hypoxia induces barrier formation 318 

involves the HIF-dependent expression of the intestinal trefoil factor (TFFs). The trefoil factor 319 

family consists of three peptides: TFF1, TFF2 and TFF3; all three are widely distributed in the 320 

gastrointestinal tract and are present in virtually all mucosal membranes (47). Recently, TFFs 321 

have been shown to induce a stabilizing effect on mucosal mucins (22). Additionally, the Van-322 

Gogh-like protein 1 (Vangl1) was identified as a downstream effector of TFF3 and described 323 

to mediate wound healing in IECs, thereby promoting recovery of barrier function under 324 

condition of local loss of epithelium integrity (23). Importantly, TFF3 also regulates the 325 

expression of tight junctions and adherens junctions in IECs by elevating the levels of claudin-326 

1 and downregulating the expression of E-cadherin (24). This further activates the 327 

phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, which leads to an increase in 328 

barrier function and altered proliferation of cells in the intestinal epithelium (25, 48). 329 

Extensions of these studies in vivo revealed the protective role of TFFs on intestinal 330 

permeability and barrier function, as both administration of TFFs as well as administration of 331 

a novel prolyl hydroxylase (PHD) inhibitor (FG-4497) were protective and had a beneficial 332 

influence on clinical symptoms (weight loss, colon length, tissue TNFα) in a mouse colitis 333 

model (49, 50). Correspondingly, HIF-1α was found to be highly expressed in Crohn’s Disease 334 
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and ulcerative colitis patients (51) and seems to play a protective role in inflammatory bowel 335 

disorders through improvement of epithelial barrier function (52). It has been suggested that 336 

HIF-1α helps to control intestinal inflammation by interacting with the inflammation 337 

transcription factor nuclear factor-kappa B (NF-κB) (53).  338 

  To date, most of the work aimed at understanding the effect of hypoxia on barrier 339 

function in the gut has focused on the transcripts and proteins that are induced under hypoxia. 340 

In the emerging field of miRNA, several miRNAs have been identified as potential regulators 341 

of barrier function. However, to the best of our knowledge, these miRNAs were not studied 342 

under hypoxic conditions but in normal cell culture conditions or in patient samples with 343 

inflammatory diseases. For example, McKenna et al. demonstrated that claudin-4 and 344 

claudin-7 were not expressed in the apical membrane of intestinal epithelial cells in Dicer 1-345 

deficient mice, resulting in impaired intestinal barrier function thus strongly supporting the 346 

importance of miRNA regulation in barrier formation (54). Additionally, overexpression of 347 

miRNAs has been linked to a regulation of barrier function in intestinal epithelial cells (35, 55). 348 

miRNA-31 was found to increase the TEER by decreasing the transepithelial permeability 349 

through interaction with tumor necrosis factor superfamily member 15 (TNFSF15) in Caco2-350 

BBE cells (56). Of note, TNFSF15 is a well-known risk gene involved in the pathogenesis of 351 

irritable bowel syndrome (IBS) and inflammatory bowel disease (57, 58).  hsa-miRNA-26b was 352 

found to regulate the Ste20-like proline/alanine rich kinase (SPAK) involved in epithelial 353 

barrier integrity (59) and overexpression of miRNA-21 in patients with ulcerative colitis has 354 

been associated with the impaired intestinal epithelial barrier function through targeting the 355 

Rho GTPase RhoB (60). We recently identified miRNA-16 and miRNA-125b, as being 356 

downregulated in patients suffering from IBS with diarrhea and determined that these two 357 

miRNAs modulated the tight junction proteins claudin-2 and cingulin (44).  358 
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 Similar to our work, miRNA-320a was previously reported to play a role in barrier 359 

function under normoxic conditions. Cordes et al. could show a functional role of miRNA-320a 360 

in stabilizing the intestinal barrier function through reinforcement of barrier integrity in T84 361 

cells and in a murine colitis model (35). They suggest that this is due to a potential modulation 362 

of the tight junction complex during intestinal inflammation. However, they did not address 363 

how different oxygen concentration could influence expression of this hypoxamiR. Our miRNA 364 

expression profiling showed an upregulation in all members of the miRNA-320 family under 365 

hypoxic conditions. We further demonstrate that, as a result of the induced expression of 366 

miRNA-320, hypoxic conditions favor barrier function of intestinal epithelial cells. As such we 367 

propose that the hypoxic environment present in the lumen of the gut impacts barrier 368 

functions not only via direct HIF-mediated regulation of tight junction and adherens proteins 369 

expression but also through a miRNA-based regulation of cell-cell contact formation.  370 

 To conclude, our work further emphasizes the importance of studying intestinal 371 

epithelial cells in their physiological environment. On the one hand, hypoxia directly influences 372 

the cell biology of the mucosal layer by regulating cell to cell contact, migration, stem-cellness 373 

and metabolism. On the other hand, a low oxygen concentration is critical for the 374 

establishment and maintenance of a stable microbiota. As such, given the growing interests 375 

in understanding both host/commensal interactions in health and diseases and the complex 376 

interplay between host and pathogens in the gastrointestinal tract, it is critical to integrate 377 

the impact of local oxygen concentration and fluctuation in regulating/altering these 378 

molecular processes. 379 

  380 
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Material & Methods: 392 

Cell Lines. T84 human colonic adenocarcinoma cells (ATCC CCL-248) were cultured in GibCo’s 393 

Dulbecco’s Modified Eagle Medium/F-12 Nutrient Mixture (1:1), supplemented with 10 % 394 

fetal bovine serum (FBS), 100 U/mL penicillin and 100 μg/mL streptomycin (GibCo) in collagen 395 

coated T25 cell culture flasks. The cells were kept in a constant humid atmosphere containing 396 

37°C, 5% CO2 and either 21% oxygen (normoxia) or 1% oxygen (hypoxia). HEK293T human 397 

embryonic kidney cells (ATCC CRL 3216) and cultured in Iscove’s modified Dulbecco’s medium 398 

supplemented with 10% FBS and 100 U/mL penicillin and 100 µg/mL streptomycin. Cells were 399 

grown at 37°C in a humidified atmosphere containing 5% CO2. Human intestinal epithelial 400 

organoids were isolated from biopsy tissue provided by the University Hospital Heidelberg as 401 

described before (61). This study was carried out in accordance with the recommendations of 402 

the University Hospital Heidelberg with written informed consent from all subjects in 403 

accordance with the Declaration of Helsinki. All samples were received and maintained in an 404 

anonymized manner. The protocol was approved by the “Ethics commission of the University 405 

Hospital Heidelberg” under the protocol S-443/2017.  In short, resected intestinal tissue was 406 

incubated with 2 mM EDTA in PBS for 1 hour at 4°C. Intestinal crypts containing the Lgr5+ stem 407 

cell niche were isolated after 2 mM EDTA treatment, washed with ice cold PBS and 408 

resuspended in Matrigel. The Matrigel was then overlaid with basal medium (Advanced 409 

DMEM/F12, supplemented with 1% penicillin/streptomycin, 10 mM HEPES, 50% v/v L-WRN 410 

conditioned media (ATCC #CRL-3276, expressing Wnt3A, R-spondin and Noggin), 1x B-27 (Life 411 

technology), 1x N-2 (Life technology), 2 mM GlutaMax (Gibco), 50 ng/mL EGF (Invitrogen), 412 

1 mM N-acetyl-cysteine (Sigma), 10 mM nicotinamide (Sigma), 10 μM SB202190 (Tocris 413 

Bioscience) and 500 nM A-83-01 (Tocris)) and cultured at 37°C, 5% CO2 and 21% or 1% oxygen.  414 
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Antibodies/Reagents. Mouse monoclonal antibody against ZO-1 (Invitrogen #339100) was 415 

used at a 1/100 dilution for immunostaining. Secondary antibodies were conjugated with 416 

AF568 (Molecular Probes) and directed against the animal source. ProLong Gold Antifade 417 

containing DAPI was obtained from Thermo Fisher Scientific. 4 kDa FITC-labelled dextran and 418 

Dimethyloxalylglycine (DMOG) was obtained from Sigma-Aldrich. 419 

Monitoring Transepithelial Electrical Resistance. To monitor barrier function, 1 x 105 T84 cells 420 

were grown on transwell filters (6.5 mm polycarbonate membrane, 3 μm pore size; Corning). 421 

The medium was changed one day post seeding and subsequently every second day. 422 

Transepithelial resistance was measured with the EVOM2 chopstick electrode. T84 cells were 423 

considered to have a completely formed barrier when being also fully polarized. Full 424 

polarization in our setting was reached with a TEER of 1000 Ω (33). Taking into account the 425 

surface of the membrane,  reaching a value of 330 Ω*cm2 indicated full barrier function (62). 426 

Fluorescent flux assay using fluorescein isothiocyanate (FITC)-labeled dextran. 1x105 T84 427 

cells were grown on collagen coated transwell filters under normoxic and hypoxic conditions. 428 

Every 24 hours, 2 mg/mL FITC-labelled dextran was added to the apical compartment and 429 

media was collected from the basal compartment three hours post-treatment. Increase of 430 

fluorescence in the basal media was measured with the FLUOstar Omega spectrofluorometer 431 

(BMG Labtech) at an excitation wavelength of 495 nm and an emission wavelength of 518 nm. 432 

As a positive control, the fluorescence of a 100 μL aliquot of a collagen coated but cell-free 433 

transwell filter was measured to assess maximum diffusion of FITC-labeled dextran. 434 

Immunofluorescence staining. 1x105 T84 cells were grown on transwell filters. At the 435 

indicated times post-seeding, the polycarbonate membrane was removed from the transwell 436 

holder, rinsed once in PBS and fixed in 2% PFA for 20 min. PFA was removed, cells were washed 437 
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3x with PBS and permeabilized with 0.5% Triton X-100 (v/v) at RT for 15 min. After blocking 438 

with 3% BSA-PBS for 1 hour at RT, cells were incubated with primary antibody against ZO-1 in 439 

3% BSA-PBS for 1 hour at RT. Cells were then washed with 0.1% Tween-20-PBS (v/v) followed 440 

by incubation with the secondary goat anti-mouse Alexa 568 antibody diluted in 1% BSA at RT 441 

for 45 min. After 45 min, cells were subjected to 3x washing with 0.1% Tween-20-PBS. The 442 

membrane was then briefly rinsed in Millipore H2O and mounted onto glass slides using 443 

ProLong Gold Antifade reagent with DAPI. Samples were imaged on a Nikon Eclipse Ti-S 444 

inverted microscope using a 40x oil objective. 445 

RNA Isolation, cDNA, and qPCR. Total RNA was purified from lysed T84 colonic 446 

adenocarcinoma cells or intestinal organoids using the NucleoSpin RNA extraction kit by 447 

Marchery-Nagel following the manufacturer’s instruction. 100-250 ng total RNA was reversed 448 

transcribed into cDNA using the iScript cDNA Synthesis kit as per manufacturer’s instruction 449 

(BioRad Laboratories). qRT-PCR was performed using the Bio-Rad CFX96 Real-Time PCR 450 

Detection System and SsoAdvanced Universal SYBR Green Supermix (Bio-Rad). The data was 451 

analyzed with the Bio-Rad CFX Manager 3.0, using the housekeeping gene HPRT1 for 452 

normalization. Expression of E-Cadherin, occludin, Jam-A, VEGF and CA9 were analyzed using 453 

specific primers for the respective human sequence. The expression levels of the investigated 454 

genes were calculated as ΔΔCq, normalizing to normoxic control samples and to the 455 

normalizing genes. 456 

Table 1: Primer Sequences qRT-PCR 457 

Primer Sequence 

CA9 fw  AGGATCTACCTACTGTTGAG 

CA9 rev  TGGTCATCCCCTTCTTTG 

E-Cadherin fw CCGAGAGCTACACGTTC 
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E-Cadherin rev TCTTCAAAATTCACTCTGCC 

JAM-A fw  AAGGGACTTCGAGTAAGAAG 

JAM-A rev AAGGCAAATGCAGATGATAG 

HPRT1 fw CCTGGCGTCGTGATTAGTGAT 

HPRT1 rev AGACGTTCAGTCCTGTCCATAA 

occludin fw  GGACTGGATCAGGGAATATC 

occludin rev  ATTCTTTATCCAAACGGGAG 

VEGF fw  CTACCTCCACCATGCCAAGT 

VEGF rev  AGCTGCGCTGATAGACATCC 

 458 

miRNA microarray. Expression of miRNA’s under normoxic and hypoxic conditions was 459 

analyzed by extracting total RNA including miRNA using the miRNeasy Mini Kit by Qiagen 460 

according to the manufacturer’s instructions. Microarray analysis was performed using the 461 

Agilent human miRNA v21 microarray chip. Quantile normalized miRNA expression values 462 

were log2-transformed and differentially expressed miRNAs between experimental conditions 463 

were identified using the empirical Bayes approach based on moderated t-statistics as 464 

implemented in the Bioconductor package limma. P-values were adjusted for multiple testing 465 

using the Benjamini-Hochberg correction to control the false discovery rate. Adjusted p-values 466 

below 5% were considered statistically significant. For heatmap display, miRNAs were scaled 467 

across samples, and hierarchical clustering of samples and miRNAs was performed using 468 

euclidean distance and Ward’s linkage. Analyses were carried out using R 3.348, with add-on 469 

package pheatmap. Target genes of significantly regulated miRNAs were retrieved from 470 

miRTarBase database v6.1 using Bioconductor package multiMiR (63). Overrepresentation of 471 

KEGG pathways was tested with limma functions kegga and goana. P-values were adjusted for 472 

multiple testing using the Benjamini-Hochberg correction. Subsequent pathway analysis was 473 

performed using the MetaCore™ software. 474 
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miRNA validation. For further validation of miRNA-210-3p, miRNA-320a, miRNA-34a-5p and 475 

miRNA-16-5p, total RNA including miRNA was transcribed into cDNA using the miScript II RT 476 

Kit (Qiagen). After cDNA-synthesis, qRT-PCR was performed using the miScript SYBR® Green 477 

PCR Kit (Qiagen) and the respective miScript Primer Assays (Qiagen) on the Bio-Rad CFX96 478 

Real-Time PCR Detection System, normalizing to RNU6-2 as a housekeeping snRNA. The fold 479 

of expression of the investigated miRNAs were calculated as ΔΔCq, normalizing to normoxic 480 

control samples and to the housekeeping snRNA. 481 

Production of lentiviral constructs expressing miRNAs and shRNA against HIF-1α. 482 

Oligonucleotides encoding the sequence for mature miRNA-16-5p, miRNA-34a-5p, and 483 

miRNA-320a were designed according to protocol “Lentiviral Overexpression of miRNAs” (64), 484 

oligonucleotides encoding the sequence for HIF-1α knockdown were designed from the TRC 485 

library, cloneID: TRCN0000003808 (Table 2). Annealed oligonucleotides were ligated with the 486 

AgeI-HF and EcoRI-HF digested pLKO.1 puro vector (Addgene #8453) using the T4 DNA Ligase 487 

(New England Biolabs) and the resulting plasmids were transformed into E. coli DH5α-488 

competent cells. Amplified plasmid DNA was purified using the NucleoBondR PC 100 kit by 489 

Marchery-Nagel following the manufacturer’s instruction.  490 

Table 2: Oligonucleotides for shRNA and miRNA expression. Bold characters mark the 491 

respective target or miRNA sequence. 492 

Name Sequence 
shHIF fw CCGGCCGCTGGAGACACAATCATATCTCGAGATATGA 

TTGTGTCTCCAGCGGTTTTTG 

shHIF rev AATTCAAAAACCGCTGGAGACACAATCATATCTCGAG 

ATATGATTGTGTCTCCAGCGG 

MIR-320a fw CCGGTCGCCCTCTCAACCCAGCTTTTCTCGAGAAAA 

GCTGGGTTGAGAGGGCGATTTTTG 

MIR-320a rev AATTCAAAAATCGCCCTCTCAACCCAGCTTTTCTCGA 

GAAAAGCTGGGTTGAGAGGGCGA 

MIR-16-5p fw CCGGCGCCAATATTTACGTGCTGCTACTCGAGTAGC 
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AGCACGTAAATATTGGCGTTTTTG 

MIR-16-5p rev AATTCAAAAACGCCAATATTTACGTGCTGCTACTCGA 

GTAGCAGCACGTAAATATTGGCG 

MIR-34a-5p fw CCGGACAACCAGCTAAGACACTGCCACTCGAGTGGC 

AGTGTCTTAGCTGGTTGTTTTTTG 

MIR-34a-5p rev AATTCAAAAAACAACCAGCTAAGACACTGCCACTCGA 

GTGGCAGTGTCTTAGCTGGTTGT 

 493 

Lentivirus production and selection of stable cell lines. HEK293T cells were seeded on 10 cm2 494 

dishes and allowed to adhere for 2 days. When cells reached 70-80% confluence they were 495 

transfected with 4 μg of pMD2.G (Addgene #12259), 4 μg of psPAX2 (Addgene #12260) and 496 

8 μg of purified pLKO.1 plasmid containing the shRNA or miRNA constructs. Cell supernatant 497 

containing generated lentivirus was harvested 48-72 h post-transfection, filtered through a 498 

45 μM Millex HA-filter (Merck Millipore) and purified by ultracentrifugation at 27,000x g for 499 

three h. For lentiviral transduction, 3x105 T84 cells were seeded onto collagen coated 6-well 500 

plates. After 24 h, medium was replaced with 4 mL medium containing 20 μL of the purified 501 

lentivirus or lentivirus encoding the 320a-sponge (MISSION® Lenti microRNA Inhibitor, 502 

Human, Sigma, #HLTUD0470). Two to three days after transduction, medium was 503 

supplemented with 10 µg/mL puromycin for selection of successfully transduced cells. 504 

  505 
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Figure Legends 684 

Figure 1: 685 

Hypoxia improves barrier function in intestinal epithelial cells. T84 cells were seeded onto 686 

transwell inserts and cultured for the indicated time under normoxic (21% O2) or hypoxic 687 

conditions (1% O2). (A) Rate of TEER increase over the cell monolayer was measured every 24 688 

hours using the EVOM2 chopstick electrode. TEER greater than 330 Ohm*cm2 indicates 689 

complete barrier formation and is marked with a dotted line (33). (B) Paracellular permeability 690 

of the cell monolayer on transwell inserts was assessed by adding 4 kD FITC-dextran to the 691 

apical compartment (schematic overview left panel). Three hours post-incubation the basal 692 

medium was analyzed for an increase of fluorescence by spectrofluorometry (right panel). (C) 693 

T84 cultured for 24 and 48 hours under normoxic and hypoxic conditions were evaluated for 694 

the expression of the tight junction protein ZO-1 (red). Cell nuclei were stained with DAPI 695 

(blue). Scale bar indicates 25 µm. Representative image shown. (C) RNA samples of normoxic 696 

and hypoxic cultures of T84 were analyzed by qPCR for the expression of tight junction-697 

proteins E-Cadherin, occludin and JAM-A. (A-B) Values shown represent the mean (+/- SEM) 698 

of N=9 from triplicate experiments. ***=P < 0.0001 (two-way Anova). (D) Experiments were 699 

performed in quadruplicate. Error bars indicate the standard deviation. *= P < 0.05, **= < 0.01, 700 

n.s. = not significant (one-sample t-test on log-transformed fold changes). 701 

 702 

Figure 2: 703 

HIF-1α is responsible for faster barrier establishment under hypoxic conditions. (A) 704 

Schematic showing the regulation of the transcription factor HIF-1α at high and low oxygen 705 
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concentrations. Under normoxic conditions, HIF-1α is hydroxylated at two specific proline 706 

residues by different prolyl hydroxylases (PHDs), leading to binding to the E3 ubiquitin ligase 707 

containing the von Hippel-Lindau (VHL) tumor suppressor protein. This mediates the 708 

polyubiquitination of HIF-1α and its downstream proteasomal degradation. Under hypoxic 709 

conditions, degradation is inhibited due to the lack of substrate for the PHDs, therefore 710 

stabilizing HIF-1α, leading to dimerization with its constitutively expressed β-subunit (HIF-1ß) 711 

and subsequent gene expression. Pharmacological activation of HIF-1α-function by DMOG and 712 

inhibition by shRNA against HIF-1α mRNA are indicated by red arrows. (B) T84 cells were 713 

seeded on transwell inserts and incubated under normoxic conditions in the presence or 714 

absence of DMOG. TEER measurements were taken in 24-hour intervals for four days. (C) T84 715 

cells depleted of HIF-1α through shRNA knock-down or expressing a scrambled shRNA were 716 

seeded on transwell inserts. Cells were incubated in normoxic or hypoxic conditions and TEER 717 

measurements were taken in 24-hour intervals for five days. TEER greater than 330 Ohm*cm2 718 

indicates complete barrier formation and is marked with a dotted line (33). (B-C) Values shown 719 

represent the mean (+/- SEM) of N=9 from triplicate experiments. *= P:0.0417 (two-way 720 

Anova), n.s. = not significant. 721 

 722 

Figure 3: 723 

Hypoxia leads to changes in expression of several hypoxamiRs known to regulate barrier 724 

function. T84 cells were seeded on transwell inserts and incubated under hypoxic or normoxic 725 

conditions for 48 hours. miRNA was isolated and evaluated by miRNA microarray. (A-B) 726 

Heatmaps of differentially expressed miRNAs in T84 cells cultured under normoxic and hypoxic 727 

conditions. The color scale shown on the right illustrates the relative expression levels of 728 
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differentially expressed miRNAs. Orange indicates up‐regulated (>0), purple shows down‐729 

regulated miRNAs (<0). (A) Heatmap for 108 differentially regulated hypoxamiRs that were 730 

significantly up- or down-regulated compared to normoxic conditions. Connecting lines in the 731 

cluster dendrogram between up- and downregulated miRNAs were shortened to enable 732 

visualization (indicated by two skewed lines). (B) Heatmap of miRNA-210-3p (positive control 733 

for hypoxic conditions), miRNA-320a, miRNA-34a-5p and miRNA16-5p, identified by pathway 734 

analysis for playing a role in barrier formation. (A-B) Samples were performed in quadruplicate 735 

and the level of expression of each replicate is shown in the heatmap. 736 

 737 

Figure 4: 738 

Validation of upregulated hypoxamiRs in carcinoma derived T84 cells and primary human 739 

mini-gut organoids. The expression of miRNA-210-3p (hypoxia control), miRNA-320a, 740 

miRNA-34a-5p and miRNA-16-5p was investigated 24 and 48 hours post transfer to hypoxia 741 

by qRT-PCR in (A) T84 and (B) human primary mini-gut organoids. Data was normalized to 742 

normoxic cells 24 hours post transfer. All experiments were performed in triplicate. Error bars 743 

indicate the standard error (SEM). 744 

 745 

Figure 5:  746 

Overexpression of miRNA-320a and miRNA 16-5p induces faster barrier formation in T84 747 

cells. T84 cells stably expressing miRNA-320a, miRNA-16-5p and miRNA-34a-5p by lentiviral 748 

transduction were seeded onto transwell inserts and barrier formation was assessed by TEER 749 

measurement in 24-hour intervals over four days. TEER greater than 330 Ohm*cm2 indicates 750 
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complete barrier formation and is marked with a dotted line (33). Values shown represent the 751 

mean (+/- SEM) of N=6 (miRNA-16-5p & miRNA-34a-5p) or N=12 (miRNA-320a) from triplicate 752 

or quadruplicate experiments, respectively. ***= P:0.0002 (two-way Anova), n.s. = not 753 

significant. 754 

 755 

Figure 6: 756 

Inhibition of miRNA-320a expression diminishes barrier formation in T84 cells. (A) T84 cells 757 

stably expressing miRNA-320a sponge were seeded onto transwell inserts and barrier function 758 

was assessed by TEER measurements in 24-hours intervals over four days. TEER greater than 759 

330 Ohm*cm2 indicates complete barrier formation and is marked with a dotted line (33). (B) 760 

Paracellular permeability of T84 cells overexpressing the miRNA-320a (overexpression (OE)) 761 

or the miRNA-320a sponge. Cell monolayer on transwell inserts was assessed by adding 4 kD 762 

FITC-dextran to the apical compartment and measuring fluorescence of the basal medium 763 

three hours post treatment every 24 hours for four days. Values shown represent the mean 764 

(+/- SEM) of N=12 from quadruplicate experiments (A) and N=3 from triplicate experiments 765 

(B), *= P: 0.0174 (two-way Anova). 766 

 767 

  768 
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Supplementary Information 769 

Supplementary Figure 1 770 

HIF-1α modulation through pharmacological treatment and shRNA knock-down. (A) RNA 771 

samples of normoxic and hypoxic cultures of T84 taken in 24-hour intervals for four days were 772 

analyzed by qPCR for the expression of the hypoxia-induced genes VEGF and Ca9. (B) T84 cells 773 

were seeded on transwell inserts and incubated under normoxic conditions in the presence 774 

or absence of DMOG. RNA was isolated and the upregulation of VEGF and Ca9 were evaluated 775 

by qPCR. (C) T84 cells expressing a shRNA against HIF-1α were evaluated for their expression 776 

of HIF-1α. (A-C) Values shown represent the mean plus standard deviation of three (A) or four 777 

(B,C) independent experiments, *= P < 0.05, **= P < 0.01, ***= P < 0.001, n.s. = not significant 778 

(one-sample t-test on log-transformed fold changes).  779 

 780 

Supplementary Figure 2 781 

Pathway analysis by KEGG and MetaCore reveals miRNA-320a, miRNA-34a-5p and miRNA-782 

16-5p as regulators of tight- and adherens junction proteins. (A) Target genes of significantly 783 

regulated miRNAs were retrieved from miRTarBase database v6.1 and subjected to KEGG 784 

pathway analysis. The 100 most targeted pathways by number of targeted genes are shown. 785 

(B) Number of targeted genes and percentage of targeted genes per pathway for barrier 786 

function related pathways. (C) MetaCore-driven pathway analysis identified three potential 787 

hypoxamiRs involved in barrier function establishment. Interaction maps are shown for (A) 788 

miRNA-320a, (B) miRNA-34a-5p and (C) miRNA-16-5p. miRNA of interest is marked by a red 789 

square, targeted proteins involved in barrier formation are underlined in red.  790 

 791 
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Supplementary Figure 3 792 

T84 cells overexpress miRNAs after lentiviral transduction. T84 cells were selected to 793 

overexpress miR-320a, miR-16-5p, and miR-34a-5p through lentivirus transduction. Cells were 794 

harvested and the overexpression of each miRNA was evaluated by miScript PCR. Values 795 

shown represent the mean plus standard deviation of three independent experiments. *= P < 796 

0.05, **= P < 0.01, ***= P < 0.001 (one-sample t-test on log-transformed fold changes). 797 

 798 

Supplementary Figure 4 799 

Confirmation of miRNA-320a and miRNA-320a sponge expression in T84 cells. T84 cells 800 

overexpressing (OE) miRNA-320a or depleted of miRNA-320a by expression of a sponge were 801 

evaluated by miScript PCR. Values shown represent the mean plus standard deviation of three 802 

independent experiments. *= P < 0.05, **= P < 0.01, ***= P < 0.001 (one-sample t-test on log-803 

transformed fold changes). 804 
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(two-way Anova). (D) Experiments were performed in quadruplicate. Error bars indicate the standard deviation. *= P < 0.05, **= < 0.01, n.s. = not significant 
(one-sample t-test on log-transformed fold changes).
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HIF-1α is responsible for faster barrier establishment under hypoxic conditions. (A) Schematic showing the regulation of the transcription factor HIF-1α 
at high and low oxygen concentrations. Under normoxic conditions, HIF-1α is hydroxylated at two specific proline residues by different prolyl hydroxylases 
(PHDs), leading to binding to the E3 ubiquitin ligase containing the von Hippel-Lindau (VHL) tumor suppressor protein. This mediates the polyubiquitination of 
HIF-1α and its downstream proteasomal degradation. Under hypoxic conditions, degradation is inhibited due to the lack of substrate for the PHDs, therefore 
stabilizing HIF-1α, leading to dimerization with its constitutively expressed β-subunit (HIF-1ß) and subsequent gene expression. Pharmacological activation of 
HIF-1α-function by DMOG and inhibition by shRNA against HIF-1α mRNA are indicated by red arrows. (B) T84 cells were seeded on transwell inserts and 
incubated under normoxic conditions in the presence or absence of DMOG. TEER measurements were taken in 24-hour intervals for four days. (C) T84 cells 
depleted of HIF-1α through shRNA knock-down or expressing a scrambled shRNA were seeded on transwell inserts. Cells were incubated in normoxic or 
hypoxic conditions and TEER measurements were taken in 24-hour intervals for five days. TEER greater than 330 Ohm*cm2 indicates complete barrier 
formation and is marked with a dotted line (33). (B-C) Values shown represent the mean (+/- SEM) of N=9 from triplicate experiments. *= P:0.0417 (two-way 
Anova), n.s. = not significant.
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Hypoxia leads to changes in expression of several 
hypoxamiRs known to regulate barrier function. T84 cells 
were seeded on transwell inserts and incubated under 
hypoxic or normoxic conditions for 48 hours. miRNA was 
isolated and evaluated by miRNA microarray. (A-B) 
Heatmaps of differentially expressed miRNAs in T84 cells 
cultured under normoxic and hypoxic conditions. The color 
scale shown on the right illustrates the relative expression 
levels of differentially expressed miRNAs. Orange indicates 
up‐regulated (>0), purple shows down‐regulated miRNAs 
(<0). (A) Heatmap for 108 differentially regulated hypoxam-
iRs that were significantly up- or down-regulated compared to 
normoxic conditions. Connecting lines in the cluster dendro-
gram between up- and downregulated miRNAs were 
shortened to enable visualization (indicated by two skewed 
lines). (B) Heatmap of miRNA-210-3p (positive control for 
hypoxic conditions), miRNA-320a, miRNA-34a-5p and 
miRNA16-5p, identified by pathway analysis for playing a role 
in barrier formation. (A-B) Samples were performed in 
quadruplicate and the level of expression of each replicate is 
shown in the heatmap.
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Validation of upregulated hypoxamiRs in carcinoma derived T84 cells and primary human mini-gut organoids. The expression of miRNA-210-3p 

(hypoxia control), miRNA-320a, miRNA 34a-5p and miRNA-16-5p was investigated 24 and 48 hours post transfer to hypoxia by qRT-PCR in (A) T84 and (B) 

human primary mini-gut organoids. Data was normalized to normoxic cells 24 hours post transfer. All experiments were performed in triplicate. Error bars 

indicate the standard error (SEM).
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Overexpression of miRNA-320a and miRNA 16-5p induces faster barrier formation in T84 cells. T84 cells stably expressing miRNA-320a, miRNA-16-5p 
and miRNA-34a-5p by lentiviral transduction were seeded onto transwell inserts and barrier formation was assessed by TEER measurement in 24-hour 
intervals over four days. TEER greater than 330 Ohm*cm2 indicates complete barrier formation and is marked with a dotted line (33). Values shown represent 
the mean (+/- SEM) of N=6 (miRNA-16-5p & miRNA-34a-5p) or N=12 (miRNA-320a) from triplicate or quadruplicate experiments, respectively. ***= P:0.0002 
(two-way Anova), n.s. = not significant.
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Inhibition of miRNA-320a expression diminishes barrier formation in T84 cells. (A) T84 cells stably expressing miRNA-320a sponge were seeded onto 

transwell inserts and barrier function was assessed by TEER measurements in 24-hours intervals over four days. TEER greater than 330 Ohm*cm2 indicates 

complete barrier formation and is marked with a dotted line (33). (B) Paracellular permeability of T84 cells overexpressing the miRNA-320a (overexpression 

(OE)) or the miRNA-320a sponge. Cell monolayer on transwell inserts was assessed by adding 4 kD FITC-dextran to the apical compartment and measuring 

fluorescence of the basal medium three hours post treatment every 24 hours for four days. Values shown represent the mean (+/- SEM) of N=12 from quadrupli-

cate experiments (A) and N=3 from triplicate experiments (B), *= P: 0.0174 (two-way Anova).
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HIF-1α modulation through pharmacological treatment and shRNA knock-down. (A) RNA samples of normoxic and hypoxic cultures of T84 taken in 

24-hour intervals for four days were analyzed by qPCR for the expression of the hypoxia-induced genes VEGF and Ca9. (B) T84 cells were seeded on 

transwell inserts and incubated under normoxic conditions in the presence or absence of DMOG. RNA was isolated and the upregulation of VEGF and Ca9 

were evaluated by qPCR. (C) T84 cells expressing a shRNA against HIF-1α were evaluated for their expression of HIF-1α. (A-C) Values shown represent the 
mean plus standard deviation of three (A) or four (B,C) independent experiments, *= P < 0.05, **= P < 0.01, ***= P < 0.001, n.s. = not significant (one-sample 

t-test on log-transformed fold changes). 
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Pathway analysis by KEGG and MetaCore reveals miRNA-320a, 
miRNA-34a-5p and miRNA-16-5p as regulators of tight- and adherens 
junction proteins. (A) Target genes of significantly regulated miRNAs were 
retrieved from miRTarBase database v6.1 and subjected to KEGG pathway 
analysis. The 100 most targeted pathways by number of targeted genes are 
shown. (B) Number of targeted genes and percentage of targeted genes per 
pathway for barrier function related pathways. (C) MetaCore-driven pathway 
analysis identified three potential hypoxamiRs involved in barrier function 
establishment. Interaction maps are shown for (A) miRNA-320a, (B) 
miRNA-34a-5p and (C) miRNA-16-5p. miRNA of interest is marked by a red 
square, targeted proteins involved in barrier formation are underlined in red. Suppl. Figure 2
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T84 cells overexpress miRNAs after lentiviral transduction. T84 cells were selected to overexpress miR-320a, miR-16-5p, and miR-34a-5p through 
lentivirus transduction. Cells were harvested and the overexpression of each miRNA was evaluated by miScript PCR. Values shown represent the mean plus 
standard deviation of three independent experiments. *= P < 0.05, **= P < 0.01, ***= P < 0.001 (one-sample t-test on log-transformed fold changes).
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Confirmation of miRNA-320a and miRNA-320a sponge expression in T84 cells. T84 cells overexpressing (OE) miRNA 320a or depleted of miRNA-320a 
by expression of a sponge were evaluated by miScript PCR. Values shown represent the mean plus standard deviation of three independent experiments. *= 
P < 0.05, **= P < 0.01, ***= P < 0.001 (one-sample t-test on log-transformed fold changes).
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