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1 Supplementary Note 1: Exploring hyperparameter space and
training data structure

To arrive at the model used in GLEAMS, we explored the space of model structure and hyperparameter
settings extensively but not exhaustively. To compare trained models, we assessed their performance by
the area under the concentrated receiver operator characteristic (CROC) curve1 on held-out same-label and
different-label pairs of spectra, as described in Methods. Most hyperparameters were selected based on the
results of training on 100,000 pairs of spectra. However, the network structure (the numbers, types and sizes
of layers used for each type of input feature, and the number of fully-connected layers after concatenation)
was selected from a wide variety of structures all trained on one million pairs of spectra. The model presented
had the highest CROC of all models considered. Below, we describe the various models and hyperparameter
settings that we explored.

We considered different types and encodings of input features. The model using all three feature types
(precursor, binned fragment and reference spectrum similarity) outperformed models using one or two of
those feature types. We considered encoding precursor mass and m/z as single, real-value features (with or
without scaling) and with an arbitrary binary encoding lacking the locality benefits of Gray Code. We also
considered binning fragment features at 0.02 Da (convolving peak intensities with a Gaussian representing
estimated fragment measurement error); the resulting enormous number of features was a great impediment
to training. We further considered using the hashing trick (defining a hash function to map large numbers
of features to a smaller number of features, with collisions) to reduce this dimensionality to 2,000, 4,000 or
6,000 features, which improved performance but still lagged behind the 1 m/z binning. We considered using
500 and 1000 reference spectrum similarity features.

We considered many different structures for the embedder model. For each input type (precursor, frag-
ment, reference spectrum) we considered one to three fully-connected layers of various sizes, one to three
convolutional layers followed by max pooling, a recurrent neural network, a dense layer followed by convo-
lutional layers, and long short-term memory (LSTM) layers (single-directional and bidirectional). We also
considered one to four fully-connected layers after concatenation of the network outputs from the three input
types. Surprisingly, deeper networks generally trained more slowly and also reached lower final AUCROCs:
the only input type that benefited from more than a single layer was the precursor input type.

We considered several values for the hyperparameters associated with the convolutional neural networks
(CNNs): number of filters (20, 30 or 50), kernel size (2,3,4), stride length (1,2), pooling kernel size (1,2) and
pooling stride length (1,2). Of particular note, we discovered that the size of the last layer on the precursor
features needed to be small (we settled on five) compared to the number of filters (we settled on 30) used in
the CNNs on the binned fragment and reference spectrum features.

We considered several different nonlinearities for all network layers: ELU, ReLU, SELU, PReLU and
sigmoid, as well as linear activation. We considered training with a fixed learning rate, as well as with
Adam, RMSprop, and Adagrad using several learning rates.

We considered batch normalization and dropout with proportion 0.0005 to 0.2, and L1 and L2 regular-
ization. All decreased performance.

We considered several sizes for the embedded dimension: 8, 16, 24, 32, 64 and 128. Higher dimensionality
gave monotonically higher CROC but slowed down operations on the embedded spectra such as k-nearest-
neighbor search. The improvement from 24 to 32 was substantial, and the improvement from 32 to 64 was
minimal.

We considered four approaches to training and validation data set construction before settling on the
combination of observed and theoretical spectra described in Methods. First, we used only pairs of observed
spectra with the same or different peptide labels, with no further restrictions. Second, we imposed a 3 Da
maximum on the difference between the two precursor masses. The second approach led to higher AUCROC
than the first approach, even when using a validation set without the precursor mass restriction. We suspect
this improvement arose because, without the restriction, too many of the different-label pairs were “too easy,”
having many differences between the spectra and insufficiently representing the difficult task of discriminating
pairs of spectra that share more characteristics. This observation led us to our third approach, in which we
used same-label pairs of real spectra with precursor masses within 0.2 Da and different-label pairs between
observed spectra and theoretical spectra generated by MS2PIP2;3 representing decoy peptides from the top
five search results from Comet search. With this approach the network learned how to separate real from
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theoretical spectra but did not learn as well to separate positive- and negative-label pairs of real spectra. To
address this issue, we developed our fourth and final method, described in Methods, in which we added to
the third approach different-labeled pairs of real spectra and different-labeled pairs of theoretical spectra.
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2 Supplementary Table

Experiment Instrument Organism Additional Search
Parameters

Training Datasets
2013poulsen-PXD000307 TripleTOF human
2014kim-kidney4 Orbitrap Velos human
2014kim-lung4 Orbitrap Elite human
2014kim-adrenalgland4 Orbitrap Velos human
2014kim-monocytes4 Orbitrap Velos human
2014kim-rectum4 Orbitrap Velos human
2014kim-gut4 Orbitrap Velos human
2014kim-fetalovary4 Orbitrap Elite human
2014kim-fetalplacenta4 Orbitrap Elite human
2015clark-redefining5 LTQ Orbitrap human TMT 6-plex (229.1629 to

K, N-terminus)
2015tanca-impact6 Orbitrap Velos human gut microbiome
2015uszkoreit-intuitive7 Orbitrap Elite mouse
2016mann-unpublished QExactive human
2016may-metapeptides8 QExactive ocean microbiome
2016saraf-dynamic9 LTQ-Orbitrap human
2016zhong-quantitative10 Orbitrap Velos human

Test Datasets
2014kim-cd4tcell4 Orbitrap Elite human
2014kim-adultovary4 Orbitrap Elite human
2014kim-eart4 Orbitrap Elite human
2015radoshevich-isg1511 QExactive human
2016audain-in-depth12 LTQ Orbitrap yeast
2016schittmayer-cleaning13 Orbitrap Velos yeast

Table 1: Experiments used in the training and validation of the embedder network.
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3 Supplementary Algorithm

Supplementary Algorithm 1 Hub-and-spoke spectrum community detection. First, ‘hub’ spectra
are associated with their ‘spoke’ neighbors (based on k-nearest neighbors search) within distance threshold τ
in a greedy fashion, with the most-connected hubs chosen first. Then adjacent hub-and-spoke communities
are combined if their hubs are within τ , leaving out any spokes not within τ of the hub of the larger
community. The second step is necessary because the first pass is based on a limited value of k (1000), much
less than the number of nodes. In the below, DN is a mapping from spectra to neighbors; thus for a given
spectrum d, DN (d) are the neighbors (within distance τ) of d.

Input: Dictionary DN mapping each spectrum to its neighbors within distance τ .
1: S ← ∅ . S accumulates a set of assigned ‘spoke’ spectra.
2: DHS ← ∅ . DHS is a dictionary mapping each hub to a set of spokes.
3: Sort keys of DN first by (1) neighbor count, and then by (2) mean neighbor distance (both descending).
4: for d ∈ keys of DN in order do
5: if d /∈ S then
6: Sd ← {n : n ∈ DN (d), n /∈ S, and n /∈ DHS}
7: if Sd 6= ∅ then
8: DHS(d) = Sd

9: S ← S ∪ Sd

10: H ← keys of DHS . H is the list of hub spectra
11: Sort H by number of spokes per hub (ascending).
12: for h1 ∈ H in order do
13: NH ← {n : n ∈ DHS(h1), n ∈ H and |DHS(n)| ≥ |DHS(h1)|}
14: if NH 6= ∅ then
15: h2 = argminx∈NH

||h1 − x|| . h2 is the closest hub neighbor of h1 with at least as many spokes
16: DHS(h2)← DHS(h2) ∪ {h1}
17: for s ∈ DHS(h1) do
18: if ||h2 − s|| < τ then
19: DHS(h2)← DHS(h2) ∪ {s}
20: remove h1 from DHS

return DHS
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4 Supplementary figures
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Supplementary Figure 1: Additional t-SNE projections. Each point represents a spectrum. (A) colored
by charge state. (B) With the per-spectrum values for each of the 32 dimensions of the embedded spectrum
matrix shuffled prior to running t-SNE. The lack of “clumpy” structure in this plot demonstrates that the
structure observed in the unpermuted plots is not an artifact of the t-SNE algorithm. (C) Unpermuted
spectra, with all spectra within a single randomly chosen charge state and 1.000507 Da mass bin (158 mass
spectra across all eight bins) each given a different color and larger dot size. The spectra from each mass
bin all occur within the same globular structure. Legend indicates charges and centers of each mass bin.
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Supplementary Figure 2: Percentage of spectra with 1000 nearest neighbors within distance
thresholds. The percentage of embedded spectra (vertical axis) having all 1000 of their nearest 1000
neighbors within a given Euclidean distance threshold (horizontal axis). (A) Distance thresholds < 1 (B)
Distance thresholds < 0.2

k=5

k=6

τ=0.095

τ=0.12

Supplementary Figure 3: Comparing hub-and-spoke and k-clique-communities methods for com-
munity detection. Comparisons of the numbers of single-peptide and multi-peptide communities detected
among the 3,390,759 charge-2 repository spectra by the hub-and-spoke method with τ ranging from 0.095
to 0.12 and the k-clique-communities method with k = 5 and k = 6.

7



Supplementary Figure 4: Running time for k-means clustering on the charge-2 spectra as a func-
tion of k. k-means clustering was performed with an Intel Xeon(R) E5-2650 CPU and 90GB memory
available.

Supplementary Figure 5: Communities with single amino acid substitutions appear to be gener-
ated by a single peptide. Mass ranges, modulo 1.003355 (the mass difference between 13C and 12C), of
all 82 spectrum communities containing only spectrum identifications representing a single E-to-K amino
acid substitution.
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Supplementary Figure 6: Quality of identified and unidentified spectra. Cumulative density functions
for two proxies for spectrum quality, for spectra that were identified (blue line) or were not identified (red
line) by database search. (A) The natural log of the one-padded count of fragment peaks higher than the
precursor m/z. (B) The mass of the longest high quality sequence tag found by Novor as a percentage of the
mass of the precursor ion.
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