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Abstract  20 

Systematically organizing the anatomical, molecular, and physiological properties 21 

of cortical neurons is important for understanding their computational functions. 22 

Hippocampome.org defines 122 neuron types in the rodent hippocampal formation 23 

(dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex) based on their somatic, 24 

axonal, and dendritic locations, putative excitatory/inhibitory outputs, molecular marker 25 

expression, and biophysical properties such as time constant and input resistance. Here 26 

we augment the electrophysiological data of this knowledge base by collecting, 27 

quantifying, and analyzing the firing responses to depolarizing current injections for every 28 

hippocampal neuron type from available published experiments. We designed and 29 

implemented objective protocols to classify firing patterns based on both transient and 30 

steady-state activity. Specifically, we identified 5 transients (delay, adapting spiking, 31 

rapidly adapting spiking, transient stuttering, and transient slow-wave bursting) and 4 32 

steady states (non-adapting spiking, persistent stuttering, persistent slow-wave bursting, 33 

and silence). By characterizing the set of all firing responses reported for hippocampal 34 

neurons, this automated classification approach revealed 9 unique families of firing 35 

pattern phenotypes while distinguishing potential new neuronal subtypes. Several novel 36 

statistical associations also emerged between firing responses and other 37 

electrophysiological properties, morphological features, and molecular marker 38 

expression. The firing pattern parameters, complete experimental conditions (including 39 

solution and stimulus details), digitized spike times, exact reference to the original 40 

empirical evidence, and analysis scripts are released open-source through 41 

Hippocampome.org for all neuron types, greatly enhancing the existing search and 42 
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browse capabilities. This information, collated online in human- and machine-accessible 43 

form, will help design and interpret both experiments and hippocampal model simulations. 44 

 45 

Significance Statement  46 

Comprehensive characterization of nerve cells is essential for understanding 47 

signal processing in biological neuronal networks. Firing patterns are important 48 

identification characteristics of neurons and play crucial roles in information coding in 49 

neural systems. Building upon the comprehensive knowledge base Hippocampome.org, 50 

we developed and implemented automated protocols to classify all known firing 51 

responses exhibited by each neuron type of the rodent hippocampus based on analysis 52 

of transient and steady-state activity. This approach identified the most distinguishing 53 

elements of every firing phenotype and revealed previously unnoticed statistical 54 

associations of firing responses with other electrophysiological, morphological, and 55 

molecular properties. The resulting data, freely released online, constitute a powerful 56 

resource for designing and interpreting experiments as well as developing and testing 57 

hippocampal models. 58 

 59 

 60 

Introduction  61 

  Quantitative characterization of neurons is essential for understanding the 62 

functions of neuronal networks at different hierarchical levels. The hippocampus provides 63 
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an excellent test-bed for this exploration as it is one of the most intensively studied parts 64 

of the mammalian brain, and is involved in critical functions including learning (Rudy and 65 

Sutherland, 1989, 1995), memory (Eichenbaum et al., 1992; Eichenbaum, 2000, 2017), 66 

spatial navigation (Hafting et al. 2005; O'Keefe and Dostrovsky, 1971), and emotional 67 

associations (Buchanan, 2007).  68 

Transmission of information between neurons is carried out by sequences of 69 

spikes, and firing rates are commonly believed to represent the intensity of input stimuli. 70 

Since the first discovery in sensory neurons (Adrian and Zotterman, 1926), this principle 71 

was generalized and extended to neurons from different brain regions including the 72 

hippocampus (McNaughton et al, 1983). However, it was also found that the firing rate of 73 

certain neurons is not constant over time even if the stimulus is permanently applied. One 74 

form of such time-dependent responses is spike frequency adaptation, manifested in a 75 

decrease of firing rate (Adrian and Zotterman, 1926). Neurons can produce diverse firing 76 

patterns in response to similar stimuli due to the inhomogeneity in their intrinsic properties 77 

(Connors and Gutnick, 1990). Both firing rates and temporal firing patterns are now 78 

recognized to play important roles in neural information coding (Ferster and Spruston, 79 

1995).  80 

In electrophysiological experiments in vitro, hippocampal neurons demonstrate a 81 

vast diversity of firing patterns in response to depolarizing current injections. These 82 

patterns are referred to by many names, including delayed, adapting, accommodating, 83 

interrupted spiking, stuttering, and bursting (Canto and Witter 2012a,b; Hemond et al., 84 

2008; Lübke et al, 1998; Mercer et al., 2007; Pawelzik et al., 2002; Tricoire et al., 2011). 85 
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Uncertainties and ambiguities in classification and naming of neuronal firing patterns are 86 

similar to other widely spread terminological inconsistencies in the neuroscience 87 

literature, posing obstacles to effective communication within and across fields 88 

(Hamilton et al., 2017). 89 

 Recent efforts aimed to develop firing pattern classification for identifying distinct 90 

electrical types of cortical neurons (Markram et al., 2004, 2015; Petilla Interneuron 91 

Nomenclature Group et al., 2008). Notably, statistical analysis of a large set of electrical 92 

features of neocortical interneurons with different firing patterns from a single lab yielded 93 

a refinement of the physiological component of the Petilla Nomenclature (Druckmann et 94 

al., 2013). However, comparisons across labs and experimental studies are typically 95 

limited to qualitative assessments of the illustrated firing traces or subjectively intuitive 96 

criteria. Moreover, firing pattern data are seldom unambiguously linked to neuron types 97 

independently defined by morphological and molecular criteria. 98 

The Hippocampome.org knowledge base defines neuron types based on the 99 

locations of their axons, dendrites, and somata across 26 parcels of the rodent 100 

hippocampal formation, putative excitatory/inhibitory output, synaptic selectivity, and 101 

major and aligned differences in molecular marker expressions and biophysical properties 102 

(Wheeler et al., 2015). Version 1.3 of Hippocampome.org identified 122 neuron types in 103 

6 major areas: 18 in dentate gyrus (DG), 25 in CA3, 5 in CA2, 40 in CA1, 3 in subiculum 104 

(SUB), and 31 in entorhinal cortex (EC). The core assumption of this identification scheme 105 

is that neurons with qualitatively different axonal or dendritic patterns, or with multiple 106 

substantial differences in other dimensions, belong to different types. For the majority of 107 
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neuron types, Hippocampome.org reports 10 basic biophysical parameters that 108 

numerically characterize passive and spike properties (hippocampome.org/ephys-defs), 109 

consistent with other literature-based neuroinformatics efforts (Tripathy et al., 2015). 110 

 Here, we developed an objective numerical protocol to automatically classify all 111 

published electrophysiological recordings of somatic spiking activity for morphologically 112 

identified hippocampal neurons from Hippocampome.org. This process revealed specific 113 

firing pattern phenotypes, potential neuronal subtypes, and statistical associations 114 

between firing responses and other properties. Inclusion of the classified firing patterns 115 

and their quantitative parameters, along with a comprehensive tabulation of the 116 

underlying experimental conditions, substantially extends the online search and browse 117 

functionalities of Hippocampome.org, providing a wealth of annotated data for quantitative 118 

analysis and modeling. 119 

 120 

Materials and Methods 121 

Data collection, extraction and digitization. The firing patterns of hippocampal neurons 122 

were classified based on their spiking responses to supra-threshold step-current pulses 123 

of different amplitude and duration as reported in peer-reviewed publications. Firing 124 

pattern parameters were extracted from electronic figures using Plot Digitizer 125 

(plotdigitizer.sourceforge.net) for all Hippocampome.org neuron types (Wheeler et al., 126 

2015) for which they were available (90 out of 122). A total of 247 traces were analyzed. 127 

We extracted values of first spike latency (i.e. delay), inter-spike intervals (ISIs), and post-128 

firing silence (in ms), as well as slow-wave amplitude (in mV) for burst firing recording. 129 
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For firing pattern identification and analysis, ISIs in each recording were normalized to 130 

the shortest inter-spike interval (ISImin) within that time series, to allow meaningful 131 

comparison. 132 

All analyzed recordings were obtained in normal artificial cerebrospinal fluids 133 

(ACSF) from rodents (rats 85%, mice 12%, and guinea pigs 3%) generally described as 134 

‘young adults’ (ages ranging from 11 to 70 days for rats and from 10 to 56 days for mice). 135 

All firing traces considered in this report were recorded in slice preparations; 74% of 136 

electrophysiological traces were obtained using whole-cell patch clamp and 26% 137 

intracellular recording with sharp microelectrodes. All experimental conditions and 138 

solution compositions were extracted and stored with every recording and are available 139 

at Hippocampome.org as specified in the “Web portal” section below. Representative 140 

examples of ACSF and of solutions for pipette filling are shown in Table 1 and Table 2, 141 

respectively. 142 

[Table 1 is near here]  143 

[Table 2 is near here]  144 

Firing pattern classification. Hippocampal neuron types display a variety of firing 145 

pattern elements in both their transient and steady state responses to continuous 146 

stimulation (Figure 1). Specifically, transients (which we label by dot-notation) can be 147 

visually differentiated into delay (D.), adapting spiking (ASP.), rapidly adapting spiking 148 

(RASP.), transient stuttering (TSTUT.), and transient slow-wave bursting (TSWB.). 149 

Steady states include silence (SLN), non-adapting spiking (NASP), persistent stuttering 150 

(PSTUT), and persistent slow-wave bursting (PSWB).  151 
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[Figure 1 is near here] 152 

In certain cases, a constant current injection elicits firing patterns consisting of 153 

single firing pattern elements (NASP, PSTUT or PSWB). In other cases, complex firing 154 

patterns are observed as sequences of two or more firing pattern elements, such as 155 

delayed non-adapting spiking (D.NASP), silence preceded by adapting spiking 156 

(ASP.SLN), and non-adapting spiking preceded by delayed transient slow-wave bursting 157 

(D.TSWB.NASP). Experimental recordings without identifiable steady states were 158 

deemed uncompleted firing patterns (e.g. ASP., D.ASP., or RASP.ASP.). 159 

In order to define the firing pattern elements unambiguously, we developed a set 160 

of quantitative classification criteria (Table 3). The transient response was classified as 161 

delayed (D.) if the latency to the first spike was longer than the sum of the first two inter-162 

spike intervals (ISI1 and ISI2). Similarly, post-firing silence (PFS) was considered to be a 163 

steady state (SLN) if it exceeded the sum of the last two inter-spike intervals (ISIn-1 and 164 

ISIn). In addition, post-firing silence had to last at least twice the longest inter-spike interval 165 

(ISImax).  166 

A persistent firing response with relatively equal inter-spike intervals denotes non-167 

adapting spiking (NASP); in contrast, transients with a progressive increase or decrease 168 

of ISIs can be classified as adapting or accelerating spiking, respectively. To discriminate 169 

among several possible combinations of these firing patterns objectively and 170 

reproducibly, we devised a minimum information description criterion by comparing 171 

piecewise (segmented) linear regression models of increasing complexity. Specifically, 172 

non-adapting spiking (NASP) can be described by a single parameter, namely the 173 
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(average) firing rate (Y=c). Similarly, fitting normalized inter-spike intervals versus 174 

normalized time with a (2-parameter) linear function Y=aX+b (with a>0) corresponds to 175 

adapting spiking (ASP.). Fitting data with a piecewise linear function  176 

  

177 

corresponds to adapting-non-adapting spiking (ASP.NASP) when a1>0 and a2=0 (3 178 

parameters), and to adapting-adapting spiking with different adaptation rates (ASP.ASP.) 179 

when both a1>0 and a2>0 (4 parameters). We only selected a model with more 180 

parameters if the fit relative to a less complex model improved in a statistically significant 181 

way. The significance threshold for the differences between one-parameter fitting (NASP) 182 

and two-parameter linear-regression fitting (ASP.) was conventionally set at 0.05. 183 

Furthermore, in order to avoid identifying very weak adaptations as ASP., a minimum 184 

threshold of 0.003 was used for the slope a1. 185 

[Table 3 is near here] 186 

For each subsequent stage of comparison, we used Bonferroni-corrected p-187 

values. Specifically, in order for a pattern with an adapting spiking transient (i.e. ASP.) to 188 

be qualified as ASP.NASP, the p-value must be less than 0.025. Similarly, the p-value for 189 

the differences between three-parameter piecewise-linear-regression fitting (ASP.NASP) 190 

and four-parameter piecewise-linear-regression fitting (ASP.ASP.) must be less than 191 

0.016. Figure 2 shows examples of fitting spiking activity with linear regression and 192 
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piecewise linear regression models. If adaptation was only observed in the first two or 193 

three ISIs in a longer train of spikes, and if the linear fitting of slope a1 exceeded 0.2, then 194 

this transient was classified as rapidly adapting spiking (RASP.) (see Fig.1; cf. Pawelzik 195 

et al., 2002). For accelerating spiking (ACSP.), the linear fitting slope must be negative. 196 

[Figure 2 is near here] 197 

We defined transient stuttering (TSTUT.) as a short high-frequency (>25 Hz) 198 

cluster of action potentials (APs) followed by other distinctive activity. In addition, the first 199 

ISI after a TSTUT cluster must be 2.5 times longer than the last ISI of the cluster and 1.5 200 

times longer than the next ISI (see Fig. 1; cf. Hamam et al., 2000). Under transient slow-201 

wave bursting activity (TSWB.), a cluster of two or more spikes rides on a slow 202 

depolarization wave (>5mV) followed by a strong slow after-hyperpolarization (AHP) (see 203 

Fig. 1; cf. Chevaleyre and Siegelbaum 2010). Persistent stuttering (PSTUT) was 204 

classified as firing activity with high-frequency clusters of APs separated by silence 205 

intervals >5 times longer than the sum of the preceding and following ISIs (see Fig. 1; cf. 206 

Fuentealba et al. 2010; Price et al.  2005). Similarly, under persistent slow-wave bursting 207 

(PSWB) activity, these clusters of two or more tightly grouped spikes ride on slow 208 

depolarizing waves (>5 mV) followed by strong, slow AHPs (Golomb et al. 2006; Bilkey 209 

and Schwartzkroin 1990). As exemplified above, the choices of firing pattern identification 210 

parameters were consistent with literature reports of experimental results with similar 211 

activities. 212 

Algorithm Implementation. Based on the aforementioned methods, we 213 

implemented a firing pattern classification algorithm (Fig. 3) using the values of ISIs, 214 
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delay, post-firing silence, and slow-wave amplitude as input data. Firing pattern elements 215 

were identified based on calculated characteristics of responses (Table 3). First, it was 216 

determined whether the pattern contained a delay (D.), then whether it contained a 217 

TSTUT. or TSWB. The remaining ISIs were processed using the described statistical test 218 

to identify spike frequency adaptation (ASP., ASP.NASP, ASP.ASP.) by fitting the 219 

sequence of intervals with a piecewise linear function. In the case of an incomplete pattern 220 

or an insufficient number of ISIs to perform the test, the presence of post firing silence 221 

(SLN) was checked. If the test did not identify the pattern containing the adaptation, then 222 

the firing pattern was checked for the presence of PSTUT or PSWB, and then for NASP 223 

or RASP. If rapid adaptation was detected, the cycle with the statistical test was 224 

performed again on the remaining ISIs. The algorithm terminated upon detection of one 225 

of the steady states (SLN, NASP, PSTUT, or PSWB). 226 

Software Accessibility. The classification algorithm was initially piloted in Microsoft 227 

Excel (Visual Basic) using Solver and the Data Analysis Toolbox (F-test and t-test) to 228 

perform piecewise linear fitting and statistical tests. The program was then re-229 

implemented in the Java programming language using the Apache Commons 230 

Mathematics Library (commons.apache.org/proper/commons-math). The Java 231 

implementation is available open source at github.com/Hippocampome-232 

Org/NeuroSpikePatterns. 233 

[Figure 3 is near here] 234 

Experimental Design and Statistical Analysis. We explored pairwise correlations 235 

between all observed firing patterns, firing pattern elements, and 316 properties of 236 
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Hippocampome.org neuron types, including: primary neurotransmitter; axonal, dendritic, 237 

and somatic locations in the 6 sub-regions and 26 parcels of the hippocampal formation; 238 

the projecting (between sub-regions) or local (within sub-regions) nature of axonal and 239 

dendritic patterns; axon and dendrite co-presence within any parcel; axonal and dendritic 240 

presence in a single layer only (intra-laminar) or in ≥3 layers (trans-laminar); clear positive 241 

or negative expression of any molecular markers; high (top third) or low (bottom third) 242 

values for biophysical properties (Wheeler et al., 2015); and potential connectivity 243 

patterns and super-patterns (Rees et al., 2016). To evaluate the correlations between 244 

these categorical properties, we used 2×2 contingency matrices with Barnard’s exact test 245 

(Barnard, 1947), which provides the greatest statistical power when row and column totals 246 

are free to vary (Lydersen et al., 2009). The correlation analysis was implemented in 247 

MATLAB (MathWorks, Inc.). 248 

We analyzed numerical electrophysiological data, such as the relationship 249 

between the width of an action potential and the minimum ISI using linear regression and 250 

histograms. Spike duration was measured as the width at half-maximal amplitude as is 251 

most commonly defined (Bean, 2007). Minimum inter-spike intervals (ISImin) were 252 

extracted from digitized recordings or directly from tables or textual excerpts of the 253 

corresponding papers. 254 

For cluster analysis of weighted categorical firing pattern data, we assigned 255 

weights to firing pattern elements according to the formula We=(N-ne)/N, where We is the 256 

weight of the element e, ne is the number of cell types expressing firing pattern(s) with 257 

element e, N is the total number of cell types/subtypes, and e={ASP., D., RASP., NASP, 258 
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PSTUT, PSWB, SLN, TSUT., TSWB.}. We employed a two-step cluster analysis using 259 

the IBM SPSS Statistics 24 software. Silhouette measures of cohesion and separation 260 

greater than 0.5 indicated that the elements were well matched to their own clusters and 261 

poorly matched to neighboring clusters, and that the clustering configuration was 262 

appropriate.  263 

Statistical data were expressed as mean ± standard deviation. 264 

Web portal and database representation of firing patterns and experimental 265 

conditions. Hippocampome.org provides access to morphological, molecular, 266 

electrophysiological, and connectivity information for 122 neuron types. The firing pattern 267 

data newly added and made freely available for download with this work include recording 268 

illustrations, the duration and amplitude of stimulation, digitized ISIs and firing pattern 269 

parameters (as comma-separated-value files), the complete solution compositions of the 270 

ACSF and of the micropipettes or patch pipettes, and the result of the firing pattern 271 

classification algorithm detailed above. Additional metadata is collected and displayed for 272 

all electrophysiological evidence in Hippocampome.org including the animal species (rat 273 

vs. mouse) and other details regarding the subject (inbred strain, age, sex, and weight, if 274 

reported), slice thickness and orientation, recording methods (intracellular microelectrode 275 

or variations of patch clamp), and temperature. 276 

 The implementation of Hippocampome.org supports the model-view-control 277 

software design. The model component defines the database interface and is provided 278 

solely by server-side code. The view component rendering the web pages and the control 279 

code implementing the decision logic are both served up by the server, but are run in the 280 
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user’s browser. The underlying relational database ensures flexibility in establishing 281 

relations between data records.  282 

Hippocampome.org is deployed on a CentOS 5.11 server running Apache 2.2.22 283 

and runs on current versions of several web browsers (Mozilla Firefox, Google Chrome, 284 

Apple Safari, and Microsoft Internet Explorer). Knowledge base content is served up to 285 

the PHP 5.3.27 website from a MySQL 5.1.73 database. Django 1.7.1 and Python 3.4.2 286 

provide database ingest capability of comma separated value annotation files derived 287 

from human-interpreted peer-reviewed literature. Hippocampome.org code is available 288 

at github.com/Hippocampome-Org. 289 

 290 

Results 291 

From firing patterns to firing pattern phenotypes 292 

Version 1.3 of Hippocampome.org contains suitable electrophysiological recordings for 293 

90 of the 122 morphologically identified neuron types. Applying the firing pattern 294 

identification algorithm to these digitized data resulted in the detection of 23 different firing 295 

patterns. A given neuron type may demonstrate distinct firing patterns in response to 296 

different stimuli or conditions. The set of firing patterns exhibited by a given neuron type 297 

forms its firing pattern phenotype. 298 

 The simplest case consists of those neuron types that systematically demonstrate 299 

the same firing pattern independent of experimental conditions or stimulation intensity. 300 

These neuron types may still display quantitatively different responses to stimuli of 301 
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various amplitudes (typically increasing their firing frequency upon increasing 302 

stimulation), but their qualitative firing patterns remain the same. We identified 37 such 303 

“individual/simple-behavior types” in Hippocampome.org, as exemplified by DG Basket 304 

cells with their NASP phenotype (Savanthrapadian et al., 2014).  305 

In contrast to the above scenario, certain neuron types exhibit qualitatively distinct 306 

firing patterns in response to different amplitudes of stimulation. We identified 21 such 307 

“multi-behavior” types; for instance, CA1 Neurogliaform cells (Price et al., 2005; Tricoire 308 

et al., 2011) display delayed firing, adapting spiking, and persistent stuttering at different 309 

stimulus intensities. The firing phenotype of these interneurons thus consists of the 310 

combination of all three firing patterns. 311 

In a different set of cases, subsets of neurons from the same morphologically 312 

identified type display distinct firing patterns under the same experimental conditions 313 

(typically from the same study) in response to identical stimulation. These neuron types 314 

can thus be divided into electrophysiological subtypes. For example, of the CA3 Spiny 315 

Lucidum interneurons, some are adapting spikers whereas others are persistent 316 

stutterers (Szabadics and Soltesz, 2009). In certain neuron types, one or more of the 317 

subtypes could also display multiple behaviors at different stimulation intensities. For 318 

instance, a subset of entorhinal Layer III Pyramidal neurons consists of non-adapting 319 

spikers and another subset switches from ASP.NASP at rheobase to RASP.ASP. at 320 

higher stimuli (Canto and Witter, 2012b). Of the 90 neuron types with firing patterns in 321 

Hippocampome.org, 22 could be divided into 52 electrophysiological subtypes. Notably, 322 

these included the principal neurons of most sub-regions of the hippocampal formation: 323 
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CA3, CA1, and subiculum Pyramidal cells, entorhinal Spiny Stellate cells, but also several 324 

GABAergic interneurons such as Total Molecular Layer (TML) cells (Mott et al, 1997). 325 

Specifically, 8 neuron types yielded 18 subtypes exclusively demonstrating single 326 

behaviors; for 11 neuron types, at least one of the subtypes exhibited multi-behaviors, 327 

resulting in 13 multi-behavior subtypes and 13 additional single-behavior subtypes. 328 

This meta-analysis is complicated by the variety of experimental conditions used 329 

in the published literature from which the electrophysiological data were extracted. 330 

Several differences in materials and methods could affect firing patterns above and 331 

beyond common species (rats vs. mice) or recording (patch clamp vs. microelectrode). 332 

For example, 30% of experimental traces were recorded from transverse slices, 24% from 333 

horizontal, 8% coronal, 29% mixed (e.g. “horizontal or semicoronal”), and 9% other 334 

directions (e.g. custom angles). Furthermore, pipettes were filled with potassium 335 

gluconate in 69% of cases, with potassium methylsulfate in 22%, and with potassium 336 

acetate in 9% (see e.g. Table 2). While these different experimental conditions can affect 337 

membrane biophysics substantially (Tebaykin et al., 2018) and often quantitatively 338 

influence neuronal firing (e.g. changing the spiking frequency), occasionally they can also 339 

cause a qualitative switch between distinct firing patterns. A striking case is that of rat DG 340 

Granule cells, which have demonstrated transient slow-wave burst followed by silence in 341 

whole-cell recordings of horizontal slices from Sprague-Dawley animals (Williams et al., 342 

2007); delayed non-adapting spiking in whole-cell recording of transverse slices from 343 

Wistar animals (Lübke et al., 1998); or adapting spiking in intracellular recording of 344 

horizontal slices from Wistar animals (Han et al., 1993). Because the different firing 345 

patterns could be caused by the differences in experimental methods, we annotate a 346 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 1, 2018. ; https://doi.org/10.1101/212084doi: bioRxiv preprint 

https://doi.org/10.1101/212084


 

 

17 

possible “condition-dependence,” but cannot conclusively categorize these cells as multi-347 

behavior or subtypes. Most of the condition-dependent behaviors could be attributed at 348 

least in part to the occasional use of microelectrode instead of patch-clamp (now 349 

considered the preferred recording method) or the animal species as in the case of CA1 350 

Horizontal Basket cells which display adapting and non-adapting firing in rats and mice, 351 

respectively (Zemankovics et al, 2010; Tricoire et al, 2011). 352 

Condition dependence can alter the firing patterns not only in cell types with single 353 

behaviors, such as MOPP cells (Han et al., 1993; Armstrong et al., 2011), but also in 354 

multi-behavior neuron types, such as CA1 Axo-Axonic cells (Buhl et al., 1994; Pawelzik 355 

et al., 2002). These cases account for 6 and 4 Hippocampome.org neuron types, 356 

respectively. Lastly, condition dependence may also be found in specific 357 

electrophysiological subtypes, whether they display single behaviors, such as CA1 358 

Pyramidal neurons (Chevaleyre and Siegelbaum, 2010; Zemankovics et al, 2010; Kirson 359 

and Yaari, 2000; Staff et al., 2000) or multi-behavior, such as entorhinal Layer V Deep 360 

Pyramidal neurons (Canto and Witter, 2012; Hamam et al., 2000; Hamam et al., 2002). 361 

These cases respectively account for 2 and 1 Hippocampome.org neuron types, in turn 362 

giving rise to 6 condition-dependent subtypes with single behaviors and 2 condition-363 

dependent subtypes with multi-behavior. 364 

Figure 4 presents the full firing pattern phenotypes of all 90 Hippocampome.org 365 

neurons with available data in form of separate matrices for the 68 individual neuron types 366 

(Fig. 4A) and the 52 subtypes divided from the remaining 22 types (Fig. 4B). In both cases 367 

the simple behaviors constitute larger proportions than multi-behavior with condition 368 
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dependence only reported for a minority of types and subtypes (Fig. 4C). Across these 369 

neuron types/subtypes, 44 distinct phenotypes can be identified as unique combinations 370 

of firing patterns, excluding those that differ from others only by the absence of a 371 

detectable stable state in one of the firing patterns (like ASP. versus ASP.NASP or 372 

ASP.SLN). An interactive online version of these matrices is available at 373 

hippocampome.org/firing_patterns.  374 

[Figure 4 is near here] 375 

 376 

Dissecting firing patterns into firing pattern elements across neuron types 377 

Firing patterns and firing pattern elements are also diverse with respect to their relative 378 

frequency of occurrence among hippocampal neuron types. Firing patterns can be 379 

grouped based on the number of elements comprising them, namely single (e.g., NASP 380 

or PSTUT), double (e.g. ASP.NASP or TSWB.SLN), and triple (D.RASP.NASP and 381 

D.TSWB.NASP) or based on whether they are completed (ASP.NASP, TSWB.SLN) or 382 

uncompleted, as in ASP., RASP.ASP., and TSTUT.ASP. (Fig. 5A). Of the nine firing 383 

pattern elements, the most frequent are ASP and NASP, while the least common are 384 

TSTUT, TSWB, and PSWB (Fig. 5B). Notably, accelerated spiking (ACSP) has not been 385 

reported in the rodent hippocampus although it is commonly observed in other neural 386 

systems, such as turtle ventral horn interneurons (Smith and Perrier 2006) and 387 

motoneurons (Leroy et al. 2014). 388 
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The relationships between sets of firing pattern elements observed in hippocampal 389 

neuron types can be summarized in a Venn diagram with firing pattern elements 390 

represented as ellipses and the intersections thereof corresponding to complex firing 391 

patterns (Fig. 5C). This analysis highlights the following features: the four main firing 392 

transients (ASP., RASP., TSTUT., TSWB.) often end either with NASP or with SLN; ASP. 393 

is often preceded by RASP. and occasionally by TSTUT.; interrupted steady-state firings 394 

(PSTUT and PSWB) stand out as a separate group; and delay (D.) most often precedes 395 

NASP. 396 

[Figure 5 is near here] 397 

Our classification of firing pattern elements implies the possibility of three completed 398 

single-element firing patterns (NASP, PSTUT, PSWB) and 19 completed double-element 399 

firing patterns consisting of one of four steady states (SLN, NASP, PSTUT, PSWB) 400 

preceded by one of five transients (D, ASP, RASP, TSTUT, TSWB), with exclusion of the 401 

“empty” combination D.SLN. Also, four double-transients are possible after an initial 402 

delay, resulting in an additional 16 triple-element firing patterns. Only 15 of these possible 403 

38 completed firing patterns were discovered in literature data for morphologically 404 

identified hippocampal neuron types (Table 4). Three additional firing patterns were found 405 

in other neurons: D.PSWB has been shown in the cultured rutabaga mutant giant neuron 406 

of Drosophila (Zhao and Wu 1997), D.ASP.SLN in the neuron of the external lateral 407 

subnucleus of the lateral parabrachial nucleus (Hayward and Felder 1999), and 408 

D.TSTUT.SLN in the striatal fast-spiking neuron (Sciamanna and Wilson 2011). We 409 

deemed 16 firing patterns as “not found but possible” (white shading and black text in 410 
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Table 4) and 4 firing patterns as “improbable” (white shading and gray text). In particular, 411 

we consider combination of stuttering and slow-wave bursting (TSWB.PSTUT or 412 

TSTUT.PSWB) as unlikely to occur under physiological conditions from a dynamical 413 

viewpoint due to incompatible underlying mechanisms. Slow-wave bursting is provided 414 

by a slow negative feedback which terminates the burst of action potential evoking slow 415 

AHP. Such feedback could be produced by different ionic mechanisms, but it is most 416 

typically based on intracellular Ca2+ dynamics and Ca2+-activated K+ current (Golomb et 417 

al. 2006; Xu and Clancy  2008) or muscarinic-sensitive K+ current (Golomb et al. 2006). 418 

Slow-wave bursting could be “square-wave bursting”, with one slow process, or “parabolic 419 

bursting”, with two (positive and negative feedback) slow processes (Rinzel and 420 

Ermentrout 1998). In contrast, stuttering activity is associated with “elliptic bursting” 421 

(Golomb et al. 2007), where the silent phase is characterized by dumping and growing 422 

fast (spiking) oscillations as the trajectory slowly drift through bifurcation of the fast 423 

subsystem (Rinzel and Ermentrout 1998). Suggested mechanism for stuttering in fast 424 

spiking interneurons includes Na+ “window” current that induces high frequency tonic 425 

firing, and slowly inactivating K+ current through KV1 channels (Golomb et al. 2007).   426 

[Table 4 is near here] 427 

 428 

Classification and distribution of firing pattern phenotypes 429 

In order to classify the 44 unique firing pattern phenotypes observed in the hippocampal 430 

formation, we weighted the constituent firing pattern elements according to the frequency 431 

of occurrence among 120 neuron types and electrophysiological subtypes (see Materials 432 
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and Methods). As a result, infrequent firing pattern elements (PSWB, TSTUT and TSWB) 433 

received high weights (0.99, 0.95 and 0.93, respectively), very frequent elements (ASP 434 

and NASP) were assigned low weights (0.42 and 0.41), and common elements (D, RASP, 435 

PSTUT and SLN) obtained intermediate weights (0.90, 0.80, 0.88 and 0.87). Two-step 436 

cluster analysis identified ten firing pattern families as leaves of a seven-level hierarchical 437 

binary tree (Fig. 6A). At the highest level, hippocampal neuron types and subtypes are 438 

divided into two major groups: those with spiking phenotypes (78%) and those with 439 

interrupted firing phenotypes (22%). The latter are separated into bursting (6%) and 440 

stuttering (16%), and each of these is subdivided into persistent and non-persistent 441 

families. A first group of the neuron types with spiking phenotypes is distinguished based 442 

on delay (9% of cell types). The remaining neuron types split into adapting (54%) and 443 

non-adapting phenotypes (15%). The adapting group consists of neuron types with 444 

rapidly adapting phenotypes (18%) and normally adapting (36%) phenotypes. Among the 445 

normally adapting group, the following phenotypes can be distinguished: discontinuous 446 

adapting spiking (6%) with ASP.SLN pattern, adapting-non-adapting spiking (15%) with 447 

ASP.NASP patterns, and a last “spurious” phenotype of uncompleted adapting spiking 448 

(15%) with ASP. pattern only, for which the steady state (SLN or NASP) was not 449 

determined. This division of the adapting spiking groups reflects differences in adaptation 450 

rates, duration, and subsequent steady states.  451 

 This analysis also highlights the most distinguishing firing pattern elements of each 452 

family (Fig. 6B). In particular, D. is the defining element for delayed spiking, PSTUT for 453 

persistent stuttering, ASP. and SLN for discontinuous adapting spiking. Each of the four 454 

major elements of interrupted firing patterns (PSWB, PSTUT, TSWB. and TSTUT.) is 455 
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observed in a single firing pattern phenotype (persistent bursting, non-persistent bursting, 456 

persistent stuttering, and non-persistent stuttering, respectively). Other firing pattern 457 

elements (D., RASP., ASP., NASP, and SLN) appear in several firing pattern phenotypes. 458 

The proportions of non-defining firing pattern elements range from 5% to 83%. 459 

 The families of firing pattern phenotypes are differentially distributed within the set 460 

of 120 neuron types/subtypes (Fig. 6C). Certain phenotype families are associated with 461 

excitatory neuron types, either exclusively (e.g. persistent bursting and non-persistent 462 

bursting) or predominantly (non-persistent stuttering, rapidly adapting, and adapting-non-463 

adapting spiking). Conversely, persistent stuttering, delayed spiking, non-adapting 464 

spiking and simple adapting spiking are phenotypes composed largely by inhibitory 465 

neuron types. The discontinuous adapting spiking phenotype has relatively balanced 466 

proportions of excitatory and inhibitory neuron types.  467 

 The firing pattern phenotypes also have different distributions among the sub-468 

regions of the hippocampal formation (Fig. 6D). Among CA1 neuron types, the persistent 469 

stuttering (16%), non-adapting (24%), simple adapting (16%), and rapidly adapting 470 

spiking (13%) phenotypes are more common than other phenotypes; in DG, the most 471 

expressed phenotypes are delayed (20%), rapidly adapting (20%), and simple adapting 472 

spiking (15%); in EC, ASP-NASP (61%), discontinuous ASP. (11%), RASP. (28%), and 473 

NASP (19%) occur more often than other phenotypes.  474 

[Figure 6 is near here]  475 

 476 
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Usage of information from Hippocampome.org 477 

Searching and Browsing. The addition of firing pattern data to Hippocampome.org 478 

extends opportunities for broad-scope analytics and quick-use checks of neuron types. 479 

Similar to morphological, molecular, and biophysical information, firing patterns and their 480 

parameters can be browsed online with the interactive versions of the matrices presented 481 

in Figure 4 (hippocampome.org/firing_patterns), along with an accompanying matrix to 482 

browse the stimulation parameters (duration and intensity) and the firing pattern 483 

parameters (delay, number of inter-spike intervals, etc.).  484 

 Moreover, all classification and analysis results reported here can be searched 485 

with queries containing AND & OR Boolean logic using an intuitive graphical user 486 

interface (see Hippocampome.org → Search → Neuron Type). The integration within the 487 

existing comprehensive knowledge base enables any combination of both qualitative (e.g. 488 

PSTUT) and quantitative (e.g. ) firing pattern properties with molecular (e.g. 489 

calbindin-negative), morphological (e.g. axons in CA1 pyramidal layer), and biophysical 490 

(e.g. action potential width < 1 ms) filters (Fig. 7). For example, of 14 neuron types with 491 

persistent stuttering, in 5 the maximum inter-spike interval is at least an order of 492 

magnitude longer than the subsequent spike. When adding the other three selected 493 

criteria, the compound search leads to a single hit: CA1 Axo-axonic neurons (Fig. 7A). 494 

Clicking on this result leads to the interactive neuron page (Fig. 7B) where all information 495 

associated with a given neuron type is logically organized, including synonyms, 496 

morphology, biophysical parameters, molecular markers, synaptic connectivity, and firing 497 

patterns. Every property on the neuron pages and browse matrices, including firing 498 

max
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patterns and their parameters, links to a specific evidence page that lists all supporting 499 

bibliographic citations, complete with extracted quotes and figures (Fig. 7C). The 500 

evidence page also contains a table with all corresponding firing pattern parameters (Fig. 501 

7D), experimental details including information about animals (Fig. 7E), preparations (Fig. 502 

7F), recording method and intra-pipette solution (Fig. 7G), ACSF (Fig. 7H), and a 503 

downloadable file of inter-spike intervals (Fig. 7I). 504 

[Figure 7 is near here] 505 

The portal also reports, when available, the original firing pattern name 506 

descriptions used by the authors of the referenced publication (Hippocampome.org → 507 

Search → Original Firing Pattern).  508 

Statistical analysis of categorical data. Firing pattern information more than doubles 509 

the Hippocampome.org knowledge base capacity to over 27,000 pieces of knowledge, 510 

that is, associations between neuron types and their properties. This extension allows the 511 

unearthing of hidden relationships between firing patterns and molecular, biophysical, and 512 

morphological data in hippocampal neurons, which are otherwise difficult to find amongst 513 

the large body of literature. Several interesting examples of such findings are presented 514 

in Box 1. For instance, adapting spiking (ASP.) tends to co-occur with expression of 515 

cholecystokinin (p=0.0113 with Barnard’s exact test from all n = 26 pieces of evidence); 516 

moreover among 284 analyzed recordings there are no neurons with extremely high input 517 

resistance that show persistent stuttering (PSTUT) (p=0.0478). 518 

 [Box 1 is near here]  519 
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Analysis of numerical electrophysiological data. The extracted quantitative data 520 

allow one to study the relationship between firing pattern parameters and membrane 521 

biophysics or spike characteristics, such as the correlations between minimum inter-spike 522 

intervals (ISImin) and action potential width (APwidth). We analyzed these two variables in 523 

the 81 neuron types and subtypes for which both measurements are available (Fig. 8). 524 

The scatter plot of APwidth against ISImin reveals several distinct groupings (Fig. 8A), and 525 

the corresponding histograms (Figs. 8B,C) demonstrate poly-modal distributions. The 526 

horizontal dashed line (ISImin=34 ms) separates 9 neurons with slow spikes (all excitatory 527 

except one) from 72 neurons (61% of which are inhibitory) with fast and moderate spikes. 528 

The latter group shows a general trend of ISImin rise with increasing APwidth (black dashed 529 

line in panel A). This trend was adequately fit with a linear function Y = 13.79X - 0.05 (R 530 

= 0.72; p=0.03). Neuron types with slow spikes demonstrate the opposite trend, which 531 

was fit with a decreasing linear function Y = - 26.72X + 76.42 (R = -0.91, p=10-6). 532 

Furthermore, the neuron types can be separated by spike width. The vertical dashed lines 533 

w1 (APwidth=0.73 ms) and w2 (APwidth=1.12 ms) separate neuron types with narrow, 534 

medium and wide action potentials. The group of neuron types with narrow spikes (n=22) 535 

includes only inhibitory neurons, which have APwidth in the range from 0.20 to 0.73 ms 536 

(0.54 ± 0.12 ms). In contrast, the group of neuron types with wide spikes (n=28) contains 537 

only excitatory neurons with APwidth in the range from 1.13 to 2.10 ms (1.49 ± 0.23 ms). 538 

The group of neuron types with medium spikes (n = 31), with APwidth range from 0.74 to 539 

1.12 ms (0.89 ± 0.12 ms), includes a mix of inhibitory (74%) and excitatory (26%) neurons.  540 

[Figure 8 is near here]   541 
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Among the 22 neuron types/subtypes from the group with APwidth<0.72 ms, 13 542 

demonstrated so-called fast spiking behavior, which is distinguished by narrow spikes, 543 

high firing rate, and the absence or weak expression of spike frequency adaptation (Jonas 544 

et al., 2004). Besides these common characteristics, however, their firing patterns vary 545 

broadly even from a qualitative standpoint. Five of these 13 neuron types belong to the 546 

PSTUT family, namely CA3 Trilaminar (Gloveli et al., 2005), CA3 Aspiny Lucidum ORAX 547 

(Spruston et al., 1997), CA2 Basket (Mercer et al., 2007), CA1 Axo-axonic (Pawelzik et 548 

al., 2002), and CA1 Radial Trilaminar (Tricoire et al., 2011). Three types belong to the 549 

NASP family: DG Basket (Savanthrapadian et al., 2014), CA1 Horizontal Axo-axonic 550 

(Tricoire et al, 2011), and MEC LIII Superficial Multipolar Interneuron (Kumar and 551 

Buckmaster 2006). Two types, CA3 Axo-axonic (Dugladze et al., 2012) and CA2 552 

Bistratified (Mercer et al., 2007), belong to the simple adapting spiking family; two types, 553 

DG HICAP (Mott et al., 1997) and DG AIPRIM (Lubke et al, 1998; Scharfman 1992), 554 

belong to the ASP-NASP family; and lastly CA1 Basket (Lee et al., 2011) belongs to non-555 

persistent stuttering family.  556 

Additionally, firing pattern families are unequally distributed among the groupings 557 

revealed by the above analysis. Persistent and non-persistent stuttering families and non-558 

persistent bursting phenotypes are composed entirely of neuron types with narrow and 559 

medium fast/moderate spikes. Conversely, the rapidly adapting – non-adapting spiking 560 

phenotype is represented solely by neurons with spikes of intermediate width.  561 

 562 

Discussion 563 
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Neurons differ from each other by morphological and molecular features including the 564 

diversity and distribution of ion membrane channels in somata and dendrites. These 565 

intrinsic properties determine important physiological functions such as excitability, 566 

efficacy of synaptic inputs (Häusser et al., 2000; London et al., 2002; Komendantov and 567 

Ascoli, 2009), shapes of individual action potentials and their frequency (Bean, 2007), 568 

and temporal patterns (Mainen and Sejnowski, 1996; Krichmar et al., 2006).  569 

In the neuroscience literature, the firing patterns of neuronal activity are commonly 570 

used to characterize or identify groups of neurons. Examples include descriptions of 571 

“strongly adapting, normally adapting, and nonadapting cells” (Mott et al., 1997); “fast-572 

spiking and non-fast-spiking” interneurons (Bjorefeldt et al., 2016); “late spiking” cells 573 

(Tamas et al., 2003); “stuttering interneurons” (Song et al., 2013); “bursting” and “non-574 

bursting” neurons (Hablitz and Johnston, 1981; Maskawa et al., 1982); “regular spiking, 575 

bursting, and fast spiking” (McCormick et al., 1985), and many more. However, it has until 576 

now remained challenging to integrate these characterizations across different 577 

laboratories and studies besides largely qualitative summaries.  578 

In this study, we show that a quantitative, data-driven methodology based on the 579 

analysis of transients and steady states of evoked spiking activity can meaningfully 580 

classify the firing patterns of hippocampal neuronal types. This work is a further 581 

development of the effort initiated by the Petilla Interneuron Nomenclature Group (2008), 582 

which was applied to firing patterns in cortical neurons (Druckmann et al., 2013; Markram 583 

et al., 2015). At the same time, this work demonstrates the feasibility of systematic, 584 

comprehensive meta-analysis of electrophysiological data from the published literature. 585 
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This is especially important as a necessary approach to help link and interpret the growing 586 

information from centralized, large-scale, “industrial” neuroscience projects (Kandel et al., 587 

2013; Migliore et al., 2018; Teeter et al., 2018), with the distributed accumulation of data 588 

in traditional research laboratories (Ferguson et al., 2014). 589 

From the electrophysiological recordings of 90 neuron types in the rodent 590 

hippocampus, we identified 23 firing patterns, 15 of which were completed, that is, 591 

included both transient(s) and putative steady state components (see Figs. 4 and 5). 592 

Taking into consideration the firing pattern information enables a possible refinement of 593 

neuron type delineation by identifying 52 putative electrophysiological subtypes among 594 

22 neuron types. Subsequent two-step cluster analysis allows for the clear distinguishing 595 

of 9 unique families of 44 firing pattern phenotypes among 120 neuron types and putative 596 

subtypes. Notwithstanding the focus of the present research on the hippocampal 597 

formation, the firing pattern classification framework introduced with this study can be 598 

readily applied to spiking activity of neurons from other brain regions.  599 

The two firing pattern families characterized by bursting phenotypes (transient and 600 

persistent) are comprised of excitatory neurons, while the persistent stuttering family only 601 

included inhibitory neurons. However, the majority of phenotype families are mixed 602 

between putatively glutamatergic and GABAergic types (Fig. 6B). Thus, the identification 603 

of a firing pattern phenotype by itself is a useful but in most cases insufficient attribute for 604 

a reliable categorization of excitatory and inhibitory neurons.  605 

The frequency of discharges is an important characteristic of neuronal 606 

communication. Many neuron types, especially interneurons, show fast spiking behavior: 607 
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they are capable of firing at high frequencies (200 Hz or more) with little decrease in 608 

frequency during prolonged stimulation (Jonas et al., 2004; Bean 2007). Spike frequency 609 

correlates with electrophysiological characteristics, such as action potential duration or 610 

fast AHP amplitude (Druckmann et al., 2013). Fast spiking neurons typically have narrow 611 

action potentials and high-amplitude fast AHP (Bean 2007). Our correlation analysis of 612 

Hippocampome.org data reveals that transient stuttering (TSTUT.) is not typical for cells 613 

with extremely high-amplitude fast AHPs and delayed firing (D.) is not characteristic for 614 

neuron types with wide action potentials (Box 1). Interestingly, plotting ISImin against 615 

APwidth for all neuron types with relatively faster firing (maximum frequencies higher than 616 

~30 Hz) and for all neuron types with slower firing (maximum frequencies lower than 29 617 

Hz) reveals opposite, statistically significant linear relationships (Fig. 8A). 618 

Firing pattern phenotypes of central mammalian neurons are determined by 619 

biophysical properties associated with expression and distribution of several types of Ca2+ 620 

and K+ channels, which modulate specific ion currents (Llinás 1988; Migliore and 621 

Shepherd, 2005; Bean, 2007), as well as with expression of other molecular markers 622 

(Caballero et al., 2014; Markram et al., 2004; Petilla Interneuron Nomenclature Group et 623 

al., 2008). Despite the relative sparsity of molecular marker information, analysis of the 624 

correlations between firing patterns and other neuronal properties revealed novel 625 

interesting relationships in hippocampal neuron types (see Box 1 for illustrative 626 

examples). 627 

Firing patterns play important roles in neural networks including the representation 628 

of input features, transmission of information, and synchronization of activity across 629 
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separate anatomical regions or distinct cell assemblies. Although single spikes can 630 

provide temporally precise neurotransmitter release, this release usually has low 631 

probability in central synapses. Neurons can compensate for the unreliability of their 632 

synapses by transmitting signals via multiple synaptic endings or repeatedly activating a 633 

single synapse (Lisman, 1997). Thus, spikes grouped together in bursting or stuttering 634 

activity increase the probability of transmission via unreliable synapses compared to 635 

separate spikes with the same average frequency. In the hippocampus, a single burst 636 

can produce long-term synaptic potentiation or depression (Lisman, 1997). It has also 637 

been hypothesized that, due to the interplay between short-term synaptic depression and 638 

facilitation, bursting with certain values of ISIs are more likely to cause a postsynaptic cell 639 

to fire than bursts with higher or lower frequencies (Izhikevich et al., 2003). Recent results 640 

have also revealed that single bursts in hippocampal neurons may selectively alter 641 

specific functional components of the downstream circuit, such as feedforward inhibitory 642 

interneurons (Neubrandt et al., 2018). 643 

Experimental studies provide strong evidence that different brain circuits employ 644 

distinct schemes to encode and propagate information (Xu et al, 2012): while information 645 

relay by isolated spikes is insignificant for the acquisition of recent contextual memories 646 

in the hippocampus, it is essential for memory function in the medial prefrontal cortex. 647 

However, even within the hippocampus, different neuronal circuits may employ distinct 648 

coding schemes by relying on isolated spikes or bursts of spikes for execution of critical 649 

functions (Xu et al, 2012). Indeed, distinct sub-regions of the hippocampal formation show 650 

differential distributions of spiking, bursting, and stuttering firing pattern phenotypes (Fig. 651 

6).  652 
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In this study, the phenotyping of most types of neurons was relied on the 653 

digitization and quantitative analysis of single (or limited numbers of) experimental 654 

recordings of electrical activity extracted from many relevant publications. Until 655 

neuroscience switches to the systematic deposition of all firing traces recorded and 656 

analyzed for a given publication to public repositories, such representative illustrations, 657 

however limited, constitute a fairly accurate reflection of the communal knowledge about 658 

neuronal physiology in particular neural system. Thus, our approach is based on the 659 

statistical quantification of integrated data presented in the literature. 660 

The findings presented in this report resulted from the analysis of firing patterns in 661 

response to depolarizing current. To this date, this is by far the most common 662 

experimental protocol for characterizing the neuronal input-output function. Nevertheless, 663 

different types of neurons also exhibit distinct responses to hyperpolarization, as well as 664 

to its termination. For example, several neuron types described in Hippocampome.org 665 

demonstrate rebound spiking: CA1 Trilaminar (Tricoire et al., 2011, Sik et al., 1995), CA1 666 

Back-Projection (Sik et al., 1994), CA1 O-LM (Sik et al., 1995), CA1 SO-SO (Pawelzik et 667 

al., 2002), MEC LIII Multipolar Interneuron (Kumar and Buckmaster 2006), MEC LII 668 

Stellate (Canto and Witter 2012b), MEC LII Oblique Pyramidal (Canto and Witter 2012b). 669 

Such neuronal behaviors, owing to the hyperpolarization-activated cation current (h-670 

current), may play an important role in hippocampal rhythmogenesis (raHasselmo 2014) 671 

and could be locally modulated by activity-dependent changes in intrinsic excitability 672 

(Ascoli et al., 2010). It will therefore be interesting to extend the current firing pattern 673 

phenotyping by considering these additional neuronal properties in future work. 674 
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The information on firing patterns of neuron types further expands the rich 675 

knowledge base of neuronal properties Hippocampome.org, which already contained 676 

information on morphology, molecular marker expression, connectivity, and other 677 

electrophysiological characteristics (Wheeler et al., 2015). Computation of the potential 678 

connectivity map of all known 122 neuron types by supplementing available synaptic data 679 

with spatial distributions of axons and dendrites enabled the reconstruction of a circuitry 680 

containing more than 3200 putative connections (Rees et al., 2016). 681 

Further development also includes simulation of firing activity of different neuron 682 

types based on dynamical systems modeling (Venkadesh et al., 2018). This ongoing 683 

accumulation of data and knowledge makes Hippocampome.org a powerful tool for 684 

building real-scale models of the entire hippocampal formation, thus substantially 685 

expanding the potential scope of recent advances in this regard (Bezaire et al., 2016). 686 

More generally, such knowledge bases are playing an increasingly important role in 687 

neuroscience research by fostering computational analyses and data-driven simulations. 688 
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Legends 1054 

Figure 1. Firing pattern elements observable in hippocampal neurons in vitro.  ISI - inter-1055 

spike interval, PFS – post firing silence, sDW – slow depolarization wave, sAHP – slow 1056 

after-hyperpolarization. Original data extracted from Lübke et al. (1998) (D), Vida et al. 1057 

(1998) (ASP), Pawelzik et al. (2002) (RASP), Hamam et al. (2002) (TSTUT), Chevaleyre 1058 

and Seigelbaum (2010) (TSWB), Mercer et al. (2012) (SLN), Mott et al. (1997) (NASP), 1059 

Fuentealba et al. (2010) (PSTUT), and Golomb et al. (2006) (PSWB, spontaneous 1060 

bursting in Ca2+-free ACSF).  1061 

 1062 

Figure 2. Examples of fitting of spiking activity with linear regression and piecewise 1063 

linear regression models. A. Responses to current injection of a DG aspiny interneuron 1064 
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with axonal projection to the inner molecular layer (AIPRIM in Hippocampome.org) 1065 

(Original data extracted from Lübke et al., 1998). B. Fitting of digitized experimental 1066 

data with different models.  1067 

1 parameter fit is a constant function Y=2.78;   1068 

2 parameter fit is a linear function Y=0.017X+1.67;   1069 

3 parameter fit is a piecewise linear function 
;
 1070 

4 parameter fit is a piecewise linear function 
. 

1071 

Based on p-values, the firing pattern was identified as adapting-non-adapting spiking 1072 

(ASP.NASP): p2,1 < 0.05 (p2,1 =1.26.10-10), p3,2< 0.025 (p3,2=2.7.10-3 ), p4,3> 0.016 1073 

(p4,3=5.5.10-2 ). p2,1, p3,2, p4,3 – p-values of differences between 2 parameter fit and 1 1074 

parameter fit, 3 parameter fit and 2 parameter fit, 4 parameter fit and 3 parameter fit, 1075 

respectively. 1076 

 1077 

Figure 3. Flow chart of general procedure for firing pattern identification. See text for 1078 

abbreviations. Source code and executable of Java implementation available at 1079 

github.com/Hippocampome-Org/NeuroSpikePatterns. 1080 
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Figure 4. Identified firing patterns and firing pattern phenotypes complexity of neuron 1082 

types (A) and subtypes (B). Online matrix: hippocampome.org/firing_patterns. Green 1083 

and red cell type/subtype names denote excitatory (e) and inhibitory (i) neurons, 1084 

respectively. FPP is firing pattern phenotype. The numbers in the brackets correspond 1085 

to the order in which the cell types were presented in the Hippocampome (ver. 1.3). The 1086 

orange asterisk denotes different experimental conditions. C. Complexity of firing 1087 

pattern phenotypes; percentages and ratios indicate occurrences of phenotypes of 1088 

different complexity among 120 cell types/subtypes. 1089 

 1090 

Figure 5. Occurrence of firing patterns, firing pattern elements and firing pattern 1091 

phenotypes among the hippocampal formation neuron types. A. Distribution of 23 firing 1092 

patterns; total numbers are shown above the bars. B. Distribution of 9 firing pattern 1093 

elements; total numbers are in parentheses below and percentages of occurrence among 1094 

90 cell types are above the bars. C. Relationships between firing pattern elements in the 1095 

firing patterns of hippocampal neuron types. Numbers of cell types with distinctive firing 1096 

patterns are indicated.  1097 

 1098 

Figure 6. Ten firing pattern phenotype families from 120 neuron types/subtypes. A. 1099 

Hierarchical tree resulting from two-step clustering of weighted firing pattern elements 1100 

with representative examples of cell types/subtypes which belong to corresponding firing 1101 

pattern phenotype family. Simple adapting firing pattern phenotype is not unique (see 1102 

Results). B. Percentage of occurrence of firing pattern elements in families of firing 1103 
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pattern phenotypes. C. Relative proportions of firing pattern phenotypes among neuron 1104 

types/subtypes. Green and red numbers represent excitatory and inhibitory cell 1105 

types/subtypes as enumerated in Fig. 4. D. Distribution of firing pattern phenotypes in 1106 

sub-regions of the hippocampal formation. FPP% is percentage of expression of firing 1107 

pattern phenotypes. 1108 

 1109 

Figure 7. Hippocampome.org enables searching neuron types by neurotransmitter; axon, 1110 

dendrite, and soma locations; molecular expression; electrophysiological parameters; 1111 

input/output connectivity; firing patterns, and firing pattern parameters. A. Sample query 1112 

for calbindin-negative neuron types with axons in CA1 stratum pyramidale, APwidth <0.8 1113 

ms, PSTUT firing, and ratio of maximum ISI to the next ISI greater than 4.8. Numbers in 1114 

parentheses indicate the number of neuron types with the selected property or specific 1115 

combination of properties. B. Search results are linked to the neuron page(s). C. The 1116 

neuron page is linked to the firing pattern evidence page. Original data extracted from 1117 

Pawelzik et al., 2002. D-H. All firing patterns parameters (D), experimental details 1118 

including information about animals (E), preparations (F), recording method and intra-1119 

pipette solution (G), as well as ACSF composition (H) can be displayed.  I. Downloadable 1120 

comma-separated-value file of inter-spike intervals. 1121 

 1122 

Figure 8. Relationships between the width of action potentials (APwidth) and minimum of 1123 

inter-spike intervals (ISImin) for 84 neuron types and subtypes. A. APwidth - ISImin scatter 1124 

diagram with results of linear regression. Green triangles and red circles indicate 1125 
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excitatory and inhibitory neurons, respectively. Dashed orange lines: horizontal line 1126 

separates neurons with slow spikes from neurons with fast and moderate spikes; vertical 1127 

lines (w1 and w2) separate neurons with narrow, medium and wide action potentials. 1128 

Black lines: solid line shows linear fitting for slow spike neurons with a function Y = - 1129 

26.72X + 76.42 (R2=0.83); dashed lie shows general linear fitting for fast and moderate 1130 

spike neurons with a function Y = 13.79X - 0.05 (R2=0.52). B. APwidth histogram. C. ISI 1131 

histogram. 1132 

 1133 

Table 1. Abbreviations: Pct. – percentage of firing pattern recordings for which this 1134 

solution was used. 1135 

 1136 

Table 2. Abbreviations: KAc – potassium acetate (KCH3COO); KGlu – potassium 1137 

gluconate; KMeSO4 – potassium methylsulphate (CH3KSO4); PCr – phosphocreatine; 1138 

Pct. – percentage of firing pattern recordings for which this solution was used; 10 mM 1139 

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) was used in all patch 1140 

pipette solutions. Asterisks indicate examples of micropipette solutions.   1141 

 1142 

Table 3. Abbreviations: a1 – slope of linear fitting for normalized ISIs vs normalized 1143 

time; DF – delay factor; fmin – minimum frequency of stuttering or bursting; Fpre, Fpost , 1144 

FPSTUT , FPSWB – ISI comparison factors,  ISImax –maximum inter-spike interval; p2,1 – p-1145 

value for differences between two-  and one-parameter linear fitting; p3,2 – p-value for 1146 
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differences between  three-  and two-parameter linear fitting; PFS – post firing silence; 1147 

SF – silence factor; SRASP – slope of linear fitting of rapid transient;  SWA – slow wave 1148 

amplitude; SWAmin – minimum slow wave amplitude.  1149 

 1150 

Table 4. NASP – HICAP (Mott et al. 1997, Fig. 11A); PSTUT - CA1 Neurogliaform 1151 

(Fuentealba et al. 2010, Fig.5B); PSWB - CA3 Pyramidal (Bilkey and Schwartzkroin 1990, 1152 

Fig. 1a); ASP.NASP - CA3 Basket-CCK (Gulyás et al. 2010, Fig. 1b, right); ASP.SLN – 1153 

EC MEC LV Pyramidal (Canto and Witter 2012b, Fig.10C7); RASP.NASP – EC LV Deep 1154 

Pyramidal (Hamam et al. 2000, Fig.3C); RASP.SLN – CA1 Radiatum Giant (Bullis et al. 1155 

2007, Fig.5A); TSTUT.NASP - EC LV Deep Pyramidal (Hamam et al. 2002, Fig.5E); 1156 

TSTUT.PSTUT - CA1 (Price et al. 2005, Fig.3A2); TSUT.SLN – CA2 SP-SR (Mercer et al. 1157 

2012; Fig. 3A); TSWB.NASP - CA1 Pyramidal (Zemankovics et al. 2009, Fig. 1158 

1B);TSWB.SLN - CA3 Pyramidal (Hemond et al. 2008, Fig. 4); D.NASP – DG 1159 

Neurogliaform (Armstrong et al. 2011,  Fig.3A, top trace); D.PSTUT - CA2 Basket (Mercer 1160 

et al. 2007, Fig. 5B); D.PSWB - cultured rutabaga mutant  giant  neuron of  Drosophila 1161 

(Zhao and Wu 1997, Fig.7, top left); D.ASP.SLN - neuron in external lateral subnucleus of 1162 

lateral parabrachial nucleus (Hayward and Felder 1999, Fig.3A, top); D.RASP.NASP - 1163 

CA3 LMR-Targeting (Ascoli et al. 2009, Fig. 1A); D.TSUT.SLN - striatal fast-spiking neuron 1164 

(Sciamanna and Wilson 2011, Fig. 1C); D.TSWB.NASP - CA1 Axo-Axonic (Buhl et al. 1165 

1994, Fig. 5D).  Abbreviations: Lat. – lateral; nucl. – nucleus. 1166 

 1167 

Illustrations and Tables 1168 
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Table 1. Representative examples of artificial cerebrospinal fluids 1169 
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Table 2. Representative examples of solutions for patch pipette and micropipette filling 1171 
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Table 3. Principles of classification of firing pattern elements 1173 
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Table 4. Occurrences of completed firing patterns in hippocampal and other neurons 1194 
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 1195 

NASP  observed in hippocampal neurons TSWB.PSTUT improbable 
D.PSWB observed in other neurons — impossible (no firing) 
D.ASP.NASP not found but possible   
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Box 1. Examples of statistically significant correlations between firing patterns and 1196 

known molecular, morphological and electrophysiological properties in 1197 

hippocampal neurons 1198 

1) None of the 35 glutamatergic neuron types show persistent stuttering (PSTUT) 

(p=0.0083). Moreover, none of the neurons with high input resistance (Rin) display 

this steady state (p=0.0478). Thus, all PSTUT cells are GABAergic interneurons 

with low or intermediate input resistance. 

2) Neither any of the 63 non-projecting (local circuit) neurons nor any of the 55 

GABAergic neuron types display transient slow-wave bursting (TSWB.) 

(p=0.0214 and p=0.0215, respectively). Moreover, no neuron type or subtype is 

found with both TSWB firing and high values of hyperpolarization-induced sag 

potential (p=0.035). In other words, TSWB cells in the hippocampus are a subset 

of projecting (long-range) glutamatergic neurons with medium or low sags. 

3) None of the 15 neuron types that express neuropeptide Y (NPY) become silent 

(SLN) after short firing discharge (p=0.0037). In contrast, half of the 14 NPY-

negative cells demonstrate this steady state. 

4) All of the 10 neuron types that express cholecystokinin (CCK) and the 

overwhelming majority of neuron types with high input resistance (17/18) display 

adapting spiking (ASP.) (p=0.0113). In contrast, this transient state is observed in 

just above half of CCK-negative cells (9/16) and two-thirds of cells with low or 

intermediate Rin (12/18). 
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5) Of 14 neuron type with wide AP, only one (EC LV-VI Pyramidal-Polymorphic) 

shows delayed (D.) firing (p=0.021). In contrast, nearly half of neuron types without 

wide AP demonstrate this transient state. 

6) With the exceptions of DG Semilunar Granule and CA1 O-LMR, none of the 

neurons with high threshold potential (Vthresh) display transient stuttering (TSTUT.) 

(p=0.0481); similarly, none of the neurons with high amplitude of fast 

afterhyperpolarization (fAHP), except CA1 Cajal-Retzius, demonstrate TSTUT. 

(p=0.0098). 

 

The p values are computed using Bernard’s exact test for 2×2 contingency tables (see 

Materials and Methods). 

 1199 
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